Merge branch 'feature/LM/triangulation'
commit
e321ac60c0
|
@ -0,0 +1,159 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* testTriangulationFactor.h
|
||||
* @date March 2, 2014
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <boost/optional.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Non-linear factor for a constraint derived from a 2D measurement.
|
||||
* The calibration and pose are assumed known.
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
template<class CALIBRATION = Cal3_S2>
|
||||
class TriangulationFactor: public NoiseModelFactor1<Point3> {
|
||||
|
||||
public:
|
||||
|
||||
/// Camera type
|
||||
typedef PinholeCamera<CALIBRATION> Camera;
|
||||
|
||||
protected:
|
||||
|
||||
// Keep a copy of measurement and calibration for I/O
|
||||
const Camera camera_; ///< Camera in which this landmark was seen
|
||||
const Point2 measured_; ///< 2D measurement
|
||||
|
||||
// verbosity handling for Cheirality Exceptions
|
||||
const bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
|
||||
const bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
|
||||
|
||||
public:
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef NoiseModelFactor1<Point3> Base;
|
||||
|
||||
/// shorthand for this class
|
||||
typedef TriangulationFactor<CALIBRATION> This;
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// Default constructor
|
||||
TriangulationFactor() :
|
||||
throwCheirality_(false), verboseCheirality_(false) {
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor with exception-handling flags
|
||||
* @param camera is the camera in which unknown landmark is seen
|
||||
* @param measured is the 2 dimensional location of point in image (the measurement)
|
||||
* @param model is the standard deviation
|
||||
* @param pointKey is the index of the landmark
|
||||
* @param throwCheirality determines whether Cheirality exceptions are rethrown
|
||||
* @param verboseCheirality determines whether exceptions are printed for Cheirality
|
||||
*/
|
||||
TriangulationFactor(const Camera& camera, const Point2& measured,
|
||||
const SharedNoiseModel& model, Key pointKey, bool throwCheirality = false,
|
||||
bool verboseCheirality = false) :
|
||||
Base(model, pointKey), camera_(camera), measured_(measured), throwCheirality_(
|
||||
throwCheirality), verboseCheirality_(verboseCheirality) {
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
virtual ~TriangulationFactor() {
|
||||
}
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
||||
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
||||
}
|
||||
|
||||
/**
|
||||
* print
|
||||
* @param s optional string naming the factor
|
||||
* @param keyFormatter optional formatter useful for printing Symbols
|
||||
*/
|
||||
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const {
|
||||
std::cout << s << "TriangulationFactor,";
|
||||
camera_.print("camera");
|
||||
measured_.print("z");
|
||||
Base::print("", keyFormatter);
|
||||
}
|
||||
|
||||
/// equals
|
||||
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
|
||||
const This *e = dynamic_cast<const This*>(&p);
|
||||
return e && Base::equals(p, tol) && this->camera_.equals(e->camera_, tol)
|
||||
&& this->measured_.equals(e->measured_, tol);
|
||||
}
|
||||
|
||||
/// Evaluate error h(x)-z and optionally derivatives
|
||||
Vector evaluateError(const Point3& point, boost::optional<Matrix&> H2 =
|
||||
boost::none) const {
|
||||
try {
|
||||
Point2 error(camera_.project(point, boost::none, H2) - measured_);
|
||||
return error.vector();
|
||||
} catch (CheiralityException& e) {
|
||||
if (H2)
|
||||
*H2 = zeros(2, 3);
|
||||
if (verboseCheirality_)
|
||||
std::cout << e.what() << ": Landmark "
|
||||
<< DefaultKeyFormatter(this->key()) << " moved behind camera"
|
||||
<< std::endl;
|
||||
if (throwCheirality_)
|
||||
throw e;
|
||||
return ones(2) * 2.0 * camera_.calibration().fx();
|
||||
}
|
||||
}
|
||||
|
||||
/** return the measurement */
|
||||
const Point2& measured() const {
|
||||
return measured_;
|
||||
}
|
||||
|
||||
/** return verbosity */
|
||||
inline bool verboseCheirality() const {
|
||||
return verboseCheirality_;
|
||||
}
|
||||
|
||||
/** return flag for throwing cheirality exceptions */
|
||||
inline bool throwCheirality() const {
|
||||
return throwCheirality_;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/// Serialization function
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar & BOOST_SERIALIZATION_NVP(camera_);
|
||||
ar & BOOST_SERIALIZATION_NVP(measured_);
|
||||
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
|
||||
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
|
||||
}
|
||||
};
|
||||
} // \ namespace gtsam
|
||||
|
||||
|
|
@ -16,50 +16,46 @@
|
|||
* Author: cbeall3
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
|
||||
#include <gtsam_unstable/geometry/InvDepthCamera3.h>
|
||||
#include <gtsam_unstable/geometry/triangulation.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <boost/assign.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
#include <boost/make_shared.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost::assign;
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Some common constants
|
||||
|
||||
TEST( triangulation, twoPosesBundler) {
|
||||
boost::shared_ptr<Cal3Bundler> sharedCal = //
|
||||
boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
PinholeCamera<Cal3Bundler> level_camera(level_pose, *sharedCal);
|
||||
static const boost::shared_ptr<Cal3_S2> sharedCal = //
|
||||
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
|
||||
|
||||
// Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
static const Rot3 upright = Rot3::ypr(-M_PI / 2, 0., -M_PI / 2);
|
||||
static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
|
||||
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
PinholeCamera<Cal3Bundler> level_camera_right(level_pose_right, *sharedCal);
|
||||
static const Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
PinholeCamera<Cal3_S2> camera2(pose2, *sharedCal);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
Point3 landmark(5, 0.5, 1.2);
|
||||
static const Point3 landmark(5, 0.5, 1.2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
|
||||
//******************************************************************************
|
||||
TEST( triangulation, twoPoses) {
|
||||
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += level_pose, level_pose_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
bool optimize = true;
|
||||
double rank_tol = 1e-9;
|
||||
|
@ -77,32 +73,48 @@ TEST( triangulation, twoPosesBundler) {
|
|||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
//******************************************************************************
|
||||
|
||||
TEST( triangulation, fourPoses) {
|
||||
boost::shared_ptr<Cal3_S2> sharedCal = //
|
||||
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
SimpleCamera level_camera(level_pose, *sharedCal);
|
||||
TEST( triangulation, twoPosesBundler) {
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
SimpleCamera level_camera_right(level_pose_right, *sharedCal);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
Point3 landmark(5, 0.5, 1.2);
|
||||
boost::shared_ptr<Cal3Bundler> bundlerCal = //
|
||||
boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
|
||||
PinholeCamera<Cal3Bundler> camera1(pose1, *bundlerCal);
|
||||
PinholeCamera<Cal3Bundler> camera2(pose2, *bundlerCal);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += level_pose, level_pose_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
bool optimize = true;
|
||||
double rank_tol = 1e-9;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
bundlerCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
||||
bundlerCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST( triangulation, fourPoses) {
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
sharedCal, measurements);
|
||||
|
@ -112,21 +124,20 @@ TEST( triangulation, fourPoses) {
|
|||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
||||
sharedCal, measurements);
|
||||
boost::optional<Point3> triangulated_landmark_noise = //
|
||||
triangulatePoint3(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose_top = level_pose
|
||||
* Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
SimpleCamera camera_top(pose_top, *sharedCal);
|
||||
Point2 top_uv = camera_top.project(landmark);
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
SimpleCamera camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
|
||||
poses += pose_top;
|
||||
measurements += top_uv + Point2(0.1, -0.1);
|
||||
poses += pose3;
|
||||
measurements += z3 + Point2(0.1, -0.1);
|
||||
|
||||
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(poses,
|
||||
sharedCal, measurements);
|
||||
boost::optional<Point3> triangulated_3cameras = //
|
||||
triangulatePoint3(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
||||
|
||||
// Again with nonlinear optimization
|
||||
|
@ -135,48 +146,42 @@ TEST( triangulation, fourPoses) {
|
|||
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
||||
|
||||
// 4. Test failure: Add a 4th camera facing the wrong way
|
||||
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(0, 0, 1));
|
||||
SimpleCamera camera_180(level_pose180, *sharedCal);
|
||||
Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
SimpleCamera camera4(pose4, *sharedCal);
|
||||
|
||||
CHECK_EXCEPTION(camera_180.project(landmark) ;, CheiralityException);
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
|
||||
|
||||
poses += level_pose180;
|
||||
poses += pose4;
|
||||
measurements += Point2(400, 400);
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
|
||||
TriangulationCheiralityException);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
//******************************************************************************
|
||||
TEST( triangulation, fourPoses_distinct_Ks) {
|
||||
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
SimpleCamera level_camera(level_pose, K1);
|
||||
SimpleCamera camera1(pose1, K1);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
Cal3_S2 K2(1600, 1300, 0, 650, 440);
|
||||
SimpleCamera level_camera_right(level_pose_right, K2);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
Point3 landmark(5, 0.5, 1.2);
|
||||
SimpleCamera camera2(pose2, K2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
|
||||
vector<SimpleCamera> cameras;
|
||||
vector<Point2> measurements;
|
||||
|
||||
cameras += level_camera, level_camera_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
cameras += camera1, camera2;
|
||||
measurements += z1, z2;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(cameras,
|
||||
measurements);
|
||||
boost::optional<Point3> triangulated_landmark = //
|
||||
triangulatePoint3(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
|
@ -188,17 +193,16 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose_top = level_pose
|
||||
* Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Cal3_S2 K3(700, 500, 0, 640, 480);
|
||||
SimpleCamera camera_top(pose_top, K3);
|
||||
Point2 top_uv = camera_top.project(landmark);
|
||||
SimpleCamera camera3(pose3, K3);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
|
||||
cameras += camera_top;
|
||||
measurements += top_uv + Point2(0.1, -0.1);
|
||||
cameras += camera3;
|
||||
measurements += z3 + Point2(0.1, -0.1);
|
||||
|
||||
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(cameras,
|
||||
measurements);
|
||||
boost::optional<Point3> triangulated_3cameras = //
|
||||
triangulatePoint3(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
||||
|
||||
// Again with nonlinear optimization
|
||||
|
@ -207,47 +211,40 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
||||
|
||||
// 4. Test failure: Add a 4th camera facing the wrong way
|
||||
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(0, 0, 1));
|
||||
Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
Cal3_S2 K4(700, 500, 0, 640, 480);
|
||||
SimpleCamera camera_180(level_pose180, K4);
|
||||
SimpleCamera camera4(pose4, K4);
|
||||
|
||||
CHECK_EXCEPTION(camera_180.project(landmark) ;, CheiralityException);
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
|
||||
|
||||
cameras += camera_180;
|
||||
cameras += camera4;
|
||||
measurements += Point2(400, 400);
|
||||
CHECK_EXCEPTION(triangulatePoint3(cameras, measurements),
|
||||
TriangulationCheiralityException);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
//******************************************************************************
|
||||
TEST( triangulation, twoIdenticalPoses) {
|
||||
boost::shared_ptr<Cal3_S2> sharedCal = //
|
||||
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
SimpleCamera level_camera(level_pose, *sharedCal);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
Point3 landmark(5, 0.5, 1.2);
|
||||
SimpleCamera camera1(pose1, *sharedCal);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += level_pose, level_pose;
|
||||
measurements += level_uv, level_uv;
|
||||
poses += pose1, pose1;
|
||||
measurements += z1, z1;
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
|
||||
TriangulationUnderconstrainedException);
|
||||
}
|
||||
|
||||
/* ************************************************************************* *
|
||||
|
||||
//******************************************************************************
|
||||
/*
|
||||
TEST( triangulation, onePose) {
|
||||
// we expect this test to fail with a TriangulationUnderconstrainedException
|
||||
// because there's only one camera observation
|
||||
|
@ -263,10 +260,34 @@ TEST( triangulation, twoIdenticalPoses) {
|
|||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, *sharedCal),
|
||||
TriangulationUnderconstrainedException);
|
||||
}
|
||||
*/
|
||||
|
||||
/* ************************************************************************* */
|
||||
//******************************************************************************
|
||||
TEST( triangulation, TriangulationFactor ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Key pointKey(1);
|
||||
SharedNoiseModel model;
|
||||
typedef TriangulationFactor<> Factor;
|
||||
Factor factor(camera1, z1, model, pointKey, sharedCal);
|
||||
|
||||
// Use the factor to calculate the Jacobians
|
||||
Matrix HActual;
|
||||
factor.evaluateError(landmark, HActual);
|
||||
|
||||
// Matrix expectedH1 = numericalDerivative11<Pose3>(
|
||||
// boost::bind(&EssentialMatrixConstraint::evaluateError, &factor, _1, pose2,
|
||||
// boost::none, boost::none), pose1);
|
||||
// The expected Jacobian
|
||||
Matrix HExpected = numericalDerivative11<Point3>(
|
||||
boost::bind(&Factor::evaluateError, &factor, _1, boost::none), landmark);
|
||||
|
||||
// Verify the Jacobians are correct
|
||||
CHECK(assert_equal(HExpected, HActual, 1e-3));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
//******************************************************************************
|
||||
|
|
|
@ -18,6 +18,9 @@
|
|||
|
||||
#include <gtsam_unstable/geometry/triangulation.h>
|
||||
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
|
|
|
@ -18,19 +18,11 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam_unstable/base/dllexport.h>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/assign.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
#include <gtsam_unstable/geometry/TriangulationFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
|
@ -60,10 +52,9 @@ public:
|
|||
* @param rank_tol SVD rank tolerance
|
||||
* @return Triangulated Point3
|
||||
*/
|
||||
GTSAM_UNSTABLE_EXPORT Point3 triangulateDLT(const std::vector<Matrix>& projection_matrices, const std::vector<Point2>& measurements, double rank_tol);
|
||||
|
||||
// Frank says: putting priors on poses and then optimizing is a terrible idea: we turn a 3dof problem into a much more difficult problem
|
||||
// We should have a projectionfactor that knows pose is fixed
|
||||
GTSAM_UNSTABLE_EXPORT Point3 triangulateDLT(
|
||||
const std::vector<Matrix>& projection_matrices,
|
||||
const std::vector<Point2>& measurements, double rank_tol);
|
||||
|
||||
///
|
||||
/**
|
||||
|
@ -87,10 +78,9 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
|||
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
const Pose3& pose_i = poses[i];
|
||||
graph.push_back(GenericProjectionFactor<Pose3, Point3, CALIBRATION> //
|
||||
(measurements[i], unit2, i, landmarkKey, sharedCal));
|
||||
graph.push_back(PriorFactor<Pose3>(i, pose_i, prior_model));
|
||||
values.insert(i, pose_i);
|
||||
PinholeCamera<CALIBRATION> camera_i(pose_i, *sharedCal);
|
||||
graph.push_back(TriangulationFactor<CALIBRATION> //
|
||||
(camera_i, measurements[i], unit2, landmarkKey));
|
||||
}
|
||||
return std::make_pair(graph, values);
|
||||
}
|
||||
|
@ -116,13 +106,8 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
|||
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
const PinholeCamera<CALIBRATION>& camera_i = cameras[i];
|
||||
boost::shared_ptr<CALIBRATION> // Seems wasteful to create new object
|
||||
sharedCal(new CALIBRATION(camera_i.calibration()));
|
||||
graph.push_back(GenericProjectionFactor<Pose3, Point3, CALIBRATION> //
|
||||
(measurements[i], unit2, i, landmarkKey, sharedCal));
|
||||
const Pose3& pose_i = camera_i.pose();
|
||||
graph.push_back(PriorFactor<Pose3>(i, pose_i, prior_model));
|
||||
values.insert(i, pose_i);
|
||||
graph.push_back(TriangulationFactor<CALIBRATION> //
|
||||
(camera_i, measurements[i], unit2, landmarkKey));
|
||||
}
|
||||
return std::make_pair(graph, values);
|
||||
}
|
||||
|
@ -135,7 +120,8 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
|||
* @param landmarkKey to refer to landmark
|
||||
* @return refined Point3
|
||||
*/
|
||||
GTSAM_UNSTABLE_EXPORT Point3 optimize(const NonlinearFactorGraph& graph, const Values& values, Key landmarkKey);
|
||||
GTSAM_UNSTABLE_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
|
||||
const Values& values, Key landmarkKey);
|
||||
|
||||
/**
|
||||
* Given an initial estimate , refine a point using measurements in several cameras
|
||||
|
|
Loading…
Reference in New Issue