yapf pep8 reformat

release/4.3a0
John Lambert 2022-01-12 13:41:54 -05:00 committed by GitHub
parent f009a14151
commit e2993eafe6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 59 additions and 24 deletions

View File

@ -9,7 +9,7 @@ Test Triangulation
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
"""
import unittest
from typing import Optional, Union
from typing import Iterable, Optional, Union
import numpy as np
@ -30,7 +30,6 @@ from gtsam import (
)
from gtsam.utils.test_case import GtsamTestCase
UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
@ -56,9 +55,11 @@ class TestTriangulationExample(GtsamTestCase):
self,
calibration: Union[Cal3Bundler, Cal3_S2],
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
cal_params,
camera_set: Optional[Union[CameraSetCal3Bundler, CameraSetCal3_S2]] = None,
):
cal_params: Iterable[Iterable[Union[int, float]]],
camera_set: Optional[Union[CameraSetCal3Bundler,
CameraSetCal3_S2]] = None,
) -> Tuple[Point2Vector, Union[CameraSetCal3Bundler, CameraSetCal3_S2,
List[Cal3Bundler], List[Cal3_S2]]]:
"""
Generate vector of measurements for given calibration and camera model.
@ -91,11 +92,16 @@ class TestTriangulationExample(GtsamTestCase):
# Some common constants
sharedCal = (1500, 1200, 0, 640, 480)
measurements, _ = self.generate_measurements(Cal3_S2, PinholeCameraCal3_S2, (sharedCal, sharedCal))
measurements, _ = self.generate_measurements(
calibration=Cal3_S2,
camera_model=PinholeCameraCal3_S2,
cal_params=(sharedCal, sharedCal))
triangulated_landmark = gtsam.triangulatePoint3(
self.poses, Cal3_S2(sharedCal), measurements, rank_tol=1e-9, optimize=True
)
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
Cal3_S2(sharedCal),
measurements,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
# Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
@ -103,9 +109,11 @@ class TestTriangulationExample(GtsamTestCase):
measurements_noisy.append(measurements[0] - np.array([0.1, 0.5]))
measurements_noisy.append(measurements[1] - np.array([-0.2, 0.3]))
triangulated_landmark = gtsam.triangulatePoint3(
self.poses, Cal3_S2(sharedCal), measurements_noisy, rank_tol=1e-9, optimize=True
)
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
Cal3_S2(sharedCal),
measurements_noisy,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
@ -116,10 +124,15 @@ class TestTriangulationExample(GtsamTestCase):
K2 = (1600, 1300, 0, 650, 440)
measurements, cameras = self.generate_measurements(
Cal3_S2, PinholeCameraCal3_S2, (K1, K2), camera_set=CameraSetCal3_S2
)
calibration=Cal3_S2,
camera_model=PinholeCameraCal3_S2,
cal_params=(K1, K2),
camera_set=CameraSetCal3_S2)
triangulated_landmark = gtsam.triangulatePoint3(cameras, measurements, rank_tol=1e-9, optimize=True)
triangulated_landmark = gtsam.triangulatePoint3(cameras,
measurements,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
def test_distinct_Ks_Bundler(self) -> None:
@ -129,10 +142,15 @@ class TestTriangulationExample(GtsamTestCase):
K2 = (1600, 0, 0, 650, 440)
measurements, cameras = self.generate_measurements(
Cal3Bundler, PinholeCameraCal3Bundler, (K1, K2), camera_set=CameraSetCal3Bundler
)
calibration=Cal3Bundler,
camera_model=PinholeCameraCal3Bundler,
cal_params=(K1, K2),
camera_set=CameraSetCal3Bundler)
triangulated_landmark = gtsam.triangulatePoint3(cameras, measurements, rank_tol=1e-9, optimize=True)
triangulated_landmark = gtsam.triangulatePoint3(cameras,
measurements,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
def test_triangulation_robust_three_poses(self) -> None:
@ -158,28 +176,45 @@ class TestTriangulationExample(GtsamTestCase):
measurements = Point2Vector([z1, z2, z3])
# noise free, so should give exactly the landmark
actual = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=False)
actual = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=False)
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
# Add outlier
measurements[0] += Point2(100, 120) # very large pixel noise!
# now estimate does not match landmark
actual2 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=False)
actual2 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=False)
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
# Again with nonlinear optimization
actual3 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=True)
actual3 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=True)
# result from nonlinear (but non-robust optimization) is close to DLT and still off
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
# Again with nonlinear optimization, this time with robust loss
model = gtsam.noiseModel.Robust.Create(
gtsam.noiseModel.mEstimator.Huber.Create(1.345), gtsam.noiseModel.Unit.Create(2)
)
actual4 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=True, model=model)
gtsam.noiseModel.mEstimator.Huber.Create(1.345),
gtsam.noiseModel.Unit.Create(2))
actual4 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=True,
model=model)
# using the Huber loss we now have a quite small error!! nice!
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))