yapf pep8 reformat
parent
f009a14151
commit
e2993eafe6
|
@ -9,7 +9,7 @@ Test Triangulation
|
|||
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
|
||||
"""
|
||||
import unittest
|
||||
from typing import Optional, Union
|
||||
from typing import Iterable, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
@ -30,7 +30,6 @@ from gtsam import (
|
|||
)
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
|
||||
UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
|
||||
|
||||
|
||||
|
@ -56,9 +55,11 @@ class TestTriangulationExample(GtsamTestCase):
|
|||
self,
|
||||
calibration: Union[Cal3Bundler, Cal3_S2],
|
||||
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
|
||||
cal_params,
|
||||
camera_set: Optional[Union[CameraSetCal3Bundler, CameraSetCal3_S2]] = None,
|
||||
):
|
||||
cal_params: Iterable[Iterable[Union[int, float]]],
|
||||
camera_set: Optional[Union[CameraSetCal3Bundler,
|
||||
CameraSetCal3_S2]] = None,
|
||||
) -> Tuple[Point2Vector, Union[CameraSetCal3Bundler, CameraSetCal3_S2,
|
||||
List[Cal3Bundler], List[Cal3_S2]]]:
|
||||
"""
|
||||
Generate vector of measurements for given calibration and camera model.
|
||||
|
||||
|
@ -91,11 +92,16 @@ class TestTriangulationExample(GtsamTestCase):
|
|||
# Some common constants
|
||||
sharedCal = (1500, 1200, 0, 640, 480)
|
||||
|
||||
measurements, _ = self.generate_measurements(Cal3_S2, PinholeCameraCal3_S2, (sharedCal, sharedCal))
|
||||
measurements, _ = self.generate_measurements(
|
||||
calibration=Cal3_S2,
|
||||
camera_model=PinholeCameraCal3_S2,
|
||||
cal_params=(sharedCal, sharedCal))
|
||||
|
||||
triangulated_landmark = gtsam.triangulatePoint3(
|
||||
self.poses, Cal3_S2(sharedCal), measurements, rank_tol=1e-9, optimize=True
|
||||
)
|
||||
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
|
||||
Cal3_S2(sharedCal),
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=True)
|
||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||
|
||||
# Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
|
@ -103,9 +109,11 @@ class TestTriangulationExample(GtsamTestCase):
|
|||
measurements_noisy.append(measurements[0] - np.array([0.1, 0.5]))
|
||||
measurements_noisy.append(measurements[1] - np.array([-0.2, 0.3]))
|
||||
|
||||
triangulated_landmark = gtsam.triangulatePoint3(
|
||||
self.poses, Cal3_S2(sharedCal), measurements_noisy, rank_tol=1e-9, optimize=True
|
||||
)
|
||||
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
|
||||
Cal3_S2(sharedCal),
|
||||
measurements_noisy,
|
||||
rank_tol=1e-9,
|
||||
optimize=True)
|
||||
|
||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
|
||||
|
||||
|
@ -116,10 +124,15 @@ class TestTriangulationExample(GtsamTestCase):
|
|||
K2 = (1600, 1300, 0, 650, 440)
|
||||
|
||||
measurements, cameras = self.generate_measurements(
|
||||
Cal3_S2, PinholeCameraCal3_S2, (K1, K2), camera_set=CameraSetCal3_S2
|
||||
)
|
||||
calibration=Cal3_S2,
|
||||
camera_model=PinholeCameraCal3_S2,
|
||||
cal_params=(K1, K2),
|
||||
camera_set=CameraSetCal3_S2)
|
||||
|
||||
triangulated_landmark = gtsam.triangulatePoint3(cameras, measurements, rank_tol=1e-9, optimize=True)
|
||||
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=True)
|
||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||
|
||||
def test_distinct_Ks_Bundler(self) -> None:
|
||||
|
@ -129,10 +142,15 @@ class TestTriangulationExample(GtsamTestCase):
|
|||
K2 = (1600, 0, 0, 650, 440)
|
||||
|
||||
measurements, cameras = self.generate_measurements(
|
||||
Cal3Bundler, PinholeCameraCal3Bundler, (K1, K2), camera_set=CameraSetCal3Bundler
|
||||
)
|
||||
calibration=Cal3Bundler,
|
||||
camera_model=PinholeCameraCal3Bundler,
|
||||
cal_params=(K1, K2),
|
||||
camera_set=CameraSetCal3Bundler)
|
||||
|
||||
triangulated_landmark = gtsam.triangulatePoint3(cameras, measurements, rank_tol=1e-9, optimize=True)
|
||||
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=True)
|
||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||
|
||||
def test_triangulation_robust_three_poses(self) -> None:
|
||||
|
@ -158,28 +176,45 @@ class TestTriangulationExample(GtsamTestCase):
|
|||
measurements = Point2Vector([z1, z2, z3])
|
||||
|
||||
# noise free, so should give exactly the landmark
|
||||
actual = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=False)
|
||||
actual = gtsam.triangulatePoint3(poses,
|
||||
sharedCal,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=False)
|
||||
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
|
||||
|
||||
# Add outlier
|
||||
measurements[0] += Point2(100, 120) # very large pixel noise!
|
||||
|
||||
# now estimate does not match landmark
|
||||
actual2 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=False)
|
||||
actual2 = gtsam.triangulatePoint3(poses,
|
||||
sharedCal,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=False)
|
||||
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
|
||||
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
|
||||
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
|
||||
|
||||
# Again with nonlinear optimization
|
||||
actual3 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=True)
|
||||
actual3 = gtsam.triangulatePoint3(poses,
|
||||
sharedCal,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=True)
|
||||
# result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
|
||||
|
||||
# Again with nonlinear optimization, this time with robust loss
|
||||
model = gtsam.noiseModel.Robust.Create(
|
||||
gtsam.noiseModel.mEstimator.Huber.Create(1.345), gtsam.noiseModel.Unit.Create(2)
|
||||
)
|
||||
actual4 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=True, model=model)
|
||||
gtsam.noiseModel.mEstimator.Huber.Create(1.345),
|
||||
gtsam.noiseModel.Unit.Create(2))
|
||||
actual4 = gtsam.triangulatePoint3(poses,
|
||||
sharedCal,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=True,
|
||||
model=model)
|
||||
# using the Huber loss we now have a quite small error!! nice!
|
||||
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))
|
||||
|
||||
|
|
Loading…
Reference in New Issue