yapf pep8 reformat
parent
f009a14151
commit
e2993eafe6
|
@ -9,7 +9,7 @@ Test Triangulation
|
||||||
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
|
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
|
||||||
"""
|
"""
|
||||||
import unittest
|
import unittest
|
||||||
from typing import Optional, Union
|
from typing import Iterable, Optional, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
@ -30,7 +30,6 @@ from gtsam import (
|
||||||
)
|
)
|
||||||
from gtsam.utils.test_case import GtsamTestCase
|
from gtsam.utils.test_case import GtsamTestCase
|
||||||
|
|
||||||
|
|
||||||
UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
|
UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
|
||||||
|
|
||||||
|
|
||||||
|
@ -56,9 +55,11 @@ class TestTriangulationExample(GtsamTestCase):
|
||||||
self,
|
self,
|
||||||
calibration: Union[Cal3Bundler, Cal3_S2],
|
calibration: Union[Cal3Bundler, Cal3_S2],
|
||||||
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
|
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
|
||||||
cal_params,
|
cal_params: Iterable[Iterable[Union[int, float]]],
|
||||||
camera_set: Optional[Union[CameraSetCal3Bundler, CameraSetCal3_S2]] = None,
|
camera_set: Optional[Union[CameraSetCal3Bundler,
|
||||||
):
|
CameraSetCal3_S2]] = None,
|
||||||
|
) -> Tuple[Point2Vector, Union[CameraSetCal3Bundler, CameraSetCal3_S2,
|
||||||
|
List[Cal3Bundler], List[Cal3_S2]]]:
|
||||||
"""
|
"""
|
||||||
Generate vector of measurements for given calibration and camera model.
|
Generate vector of measurements for given calibration and camera model.
|
||||||
|
|
||||||
|
@ -91,11 +92,16 @@ class TestTriangulationExample(GtsamTestCase):
|
||||||
# Some common constants
|
# Some common constants
|
||||||
sharedCal = (1500, 1200, 0, 640, 480)
|
sharedCal = (1500, 1200, 0, 640, 480)
|
||||||
|
|
||||||
measurements, _ = self.generate_measurements(Cal3_S2, PinholeCameraCal3_S2, (sharedCal, sharedCal))
|
measurements, _ = self.generate_measurements(
|
||||||
|
calibration=Cal3_S2,
|
||||||
|
camera_model=PinholeCameraCal3_S2,
|
||||||
|
cal_params=(sharedCal, sharedCal))
|
||||||
|
|
||||||
triangulated_landmark = gtsam.triangulatePoint3(
|
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
|
||||||
self.poses, Cal3_S2(sharedCal), measurements, rank_tol=1e-9, optimize=True
|
Cal3_S2(sharedCal),
|
||||||
)
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=True)
|
||||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||||
|
|
||||||
# Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
# Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||||
|
@ -103,9 +109,11 @@ class TestTriangulationExample(GtsamTestCase):
|
||||||
measurements_noisy.append(measurements[0] - np.array([0.1, 0.5]))
|
measurements_noisy.append(measurements[0] - np.array([0.1, 0.5]))
|
||||||
measurements_noisy.append(measurements[1] - np.array([-0.2, 0.3]))
|
measurements_noisy.append(measurements[1] - np.array([-0.2, 0.3]))
|
||||||
|
|
||||||
triangulated_landmark = gtsam.triangulatePoint3(
|
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
|
||||||
self.poses, Cal3_S2(sharedCal), measurements_noisy, rank_tol=1e-9, optimize=True
|
Cal3_S2(sharedCal),
|
||||||
)
|
measurements_noisy,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=True)
|
||||||
|
|
||||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
|
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
|
||||||
|
|
||||||
|
@ -116,10 +124,15 @@ class TestTriangulationExample(GtsamTestCase):
|
||||||
K2 = (1600, 1300, 0, 650, 440)
|
K2 = (1600, 1300, 0, 650, 440)
|
||||||
|
|
||||||
measurements, cameras = self.generate_measurements(
|
measurements, cameras = self.generate_measurements(
|
||||||
Cal3_S2, PinholeCameraCal3_S2, (K1, K2), camera_set=CameraSetCal3_S2
|
calibration=Cal3_S2,
|
||||||
)
|
camera_model=PinholeCameraCal3_S2,
|
||||||
|
cal_params=(K1, K2),
|
||||||
|
camera_set=CameraSetCal3_S2)
|
||||||
|
|
||||||
triangulated_landmark = gtsam.triangulatePoint3(cameras, measurements, rank_tol=1e-9, optimize=True)
|
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=True)
|
||||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||||
|
|
||||||
def test_distinct_Ks_Bundler(self) -> None:
|
def test_distinct_Ks_Bundler(self) -> None:
|
||||||
|
@ -129,10 +142,15 @@ class TestTriangulationExample(GtsamTestCase):
|
||||||
K2 = (1600, 0, 0, 650, 440)
|
K2 = (1600, 0, 0, 650, 440)
|
||||||
|
|
||||||
measurements, cameras = self.generate_measurements(
|
measurements, cameras = self.generate_measurements(
|
||||||
Cal3Bundler, PinholeCameraCal3Bundler, (K1, K2), camera_set=CameraSetCal3Bundler
|
calibration=Cal3Bundler,
|
||||||
)
|
camera_model=PinholeCameraCal3Bundler,
|
||||||
|
cal_params=(K1, K2),
|
||||||
|
camera_set=CameraSetCal3Bundler)
|
||||||
|
|
||||||
triangulated_landmark = gtsam.triangulatePoint3(cameras, measurements, rank_tol=1e-9, optimize=True)
|
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=True)
|
||||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||||
|
|
||||||
def test_triangulation_robust_three_poses(self) -> None:
|
def test_triangulation_robust_three_poses(self) -> None:
|
||||||
|
@ -158,28 +176,45 @@ class TestTriangulationExample(GtsamTestCase):
|
||||||
measurements = Point2Vector([z1, z2, z3])
|
measurements = Point2Vector([z1, z2, z3])
|
||||||
|
|
||||||
# noise free, so should give exactly the landmark
|
# noise free, so should give exactly the landmark
|
||||||
actual = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=False)
|
actual = gtsam.triangulatePoint3(poses,
|
||||||
|
sharedCal,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=False)
|
||||||
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
|
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
|
||||||
|
|
||||||
# Add outlier
|
# Add outlier
|
||||||
measurements[0] += Point2(100, 120) # very large pixel noise!
|
measurements[0] += Point2(100, 120) # very large pixel noise!
|
||||||
|
|
||||||
# now estimate does not match landmark
|
# now estimate does not match landmark
|
||||||
actual2 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=False)
|
actual2 = gtsam.triangulatePoint3(poses,
|
||||||
|
sharedCal,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=False)
|
||||||
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
|
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
|
||||||
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
|
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
|
||||||
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
|
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
|
||||||
|
|
||||||
# Again with nonlinear optimization
|
# Again with nonlinear optimization
|
||||||
actual3 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=True)
|
actual3 = gtsam.triangulatePoint3(poses,
|
||||||
|
sharedCal,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=True)
|
||||||
# result from nonlinear (but non-robust optimization) is close to DLT and still off
|
# result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||||
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
|
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
|
||||||
|
|
||||||
# Again with nonlinear optimization, this time with robust loss
|
# Again with nonlinear optimization, this time with robust loss
|
||||||
model = gtsam.noiseModel.Robust.Create(
|
model = gtsam.noiseModel.Robust.Create(
|
||||||
gtsam.noiseModel.mEstimator.Huber.Create(1.345), gtsam.noiseModel.Unit.Create(2)
|
gtsam.noiseModel.mEstimator.Huber.Create(1.345),
|
||||||
)
|
gtsam.noiseModel.Unit.Create(2))
|
||||||
actual4 = gtsam.triangulatePoint3(poses, sharedCal, measurements, rank_tol=1e-9, optimize=True, model=model)
|
actual4 = gtsam.triangulatePoint3(poses,
|
||||||
|
sharedCal,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=True,
|
||||||
|
model=model)
|
||||||
# using the Huber loss we now have a quite small error!! nice!
|
# using the Huber loss we now have a quite small error!! nice!
|
||||||
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))
|
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue