lyx update
parent
3cee1b71ec
commit
dfa32e5020
|
@ -227,16 +227,62 @@ preintegrated_
|
|||
|
||||
\begin_layout Standard
|
||||
The main function of a factor is to calculate an error.
|
||||
The easiest case to look at is the NavState variant in ImuFactor2, which
|
||||
is given as:
|
||||
This is done exactly the same in both variants:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\Delta X_{ij}=X_{j}-\hat{X_{ij}}\label{eq:imu-factor-error}
|
||||
e(X_{i},X_{j})=X_{j}\ominus\widehat{X_{j}}\label{eq:imu-factor-error}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where the predicted NavState
|
||||
\begin_inset Formula $\widehat{X_{j}}$
|
||||
\end_inset
|
||||
|
||||
at time
|
||||
\begin_inset Formula $t_{j}$
|
||||
\end_inset
|
||||
|
||||
is a function of the NavState
|
||||
\begin_inset Formula $X_{i}$
|
||||
\end_inset
|
||||
|
||||
at time
|
||||
\begin_inset Formula $t_{i}$
|
||||
\end_inset
|
||||
|
||||
and the preintegrated measurements
|
||||
\begin_inset Formula $PIM$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\widehat{X_{j}}=f(X_{i},PIM)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The noise model associated with this factor is assumed to be zero-mean Gaussian
|
||||
with a
|
||||
\begin_inset Formula $9\times9$
|
||||
\end_inset
|
||||
|
||||
covariance matrix
|
||||
\begin_inset Formula $\Sigma_{ij}$
|
||||
\end_inset
|
||||
|
||||
, which is defined in the tangent space
|
||||
\begin_inset Formula $T_{X_{j}}\mathcal{N}$
|
||||
\end_inset
|
||||
|
||||
of the NavState manifold at the NavState
|
||||
\begin_inset Formula $X_{j}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This covariance matrix is computed in the preintegrated measurement class,
|
||||
of which there are two variants as discussed above.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection*
|
||||
|
@ -282,6 +328,14 @@ Gyroscope Covariance
|
|||
: Measurement uncertainty of the gyroscope.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Gyroscope Bias Covariance
|
||||
\begin_inset Formula $Q_{\Delta b^{\omega}}$
|
||||
\end_inset
|
||||
|
||||
: The covariance associated with the gyroscope bias random walk.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Accelerometer Covariance
|
||||
\begin_inset Formula $Q_{acc}$
|
||||
|
@ -298,14 +352,6 @@ Accelerometer Bias Covariance
|
|||
: The covariance associated with the accelerometer bias random walk.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Gyroscope Bias Covariance
|
||||
\begin_inset Formula $Q_{\Delta b^{\omega}}$
|
||||
\end_inset
|
||||
|
||||
: The covariance associated with the gyroscope bias random walk.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Integration Covariance
|
||||
\begin_inset Formula $Q_{int}$
|
||||
|
@ -1469,7 +1515,12 @@ Noise Propagation in IMU Factor
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Even when we assume uncorrelated noise on
|
||||
We wish to compute the ImuFactor covariance matrix
|
||||
\begin_inset Formula $\Sigma_{ij}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Even when we assume uncorrelated noise on
|
||||
\begin_inset Formula $\omega^{b}$
|
||||
\end_inset
|
||||
|
||||
|
@ -1487,11 +1538,12 @@ Even when we assume uncorrelated noise on
|
|||
\end_inset
|
||||
|
||||
appear in multiple places.
|
||||
To model the noise propagation, let us define
|
||||
To model the noise propagation, let us define the preintegrated navigation
|
||||
state
|
||||
\begin_inset Formula $\zeta_{k}=[\theta_{k},p_{k},v_{k}]$
|
||||
\end_inset
|
||||
|
||||
and rewrite Eqns.
|
||||
, as a 9D vector on tangent space at and rewrite Eqns.
|
||||
(
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
|
|
Loading…
Reference in New Issue