From dfa32e50207a3b69be71ad3b17df9093ae98d8c9 Mon Sep 17 00:00:00 2001 From: Varun Agrawal Date: Sat, 9 Oct 2021 22:51:48 -0400 Subject: [PATCH] lyx update --- doc/ImuFactor.lyx | 80 ++++++++++++++++++++++++++++++++++++++--------- 1 file changed, 66 insertions(+), 14 deletions(-) diff --git a/doc/ImuFactor.lyx b/doc/ImuFactor.lyx index f76ede023..80c160e6e 100644 --- a/doc/ImuFactor.lyx +++ b/doc/ImuFactor.lyx @@ -227,16 +227,62 @@ preintegrated_ \begin_layout Standard The main function of a factor is to calculate an error. - The easiest case to look at is the NavState variant in ImuFactor2, which - is given as: + This is done exactly the same in both variants: \begin_inset Formula \begin{equation} -\Delta X_{ij}=X_{j}-\hat{X_{ij}}\label{eq:imu-factor-error} +e(X_{i},X_{j})=X_{j}\ominus\widehat{X_{j}}\label{eq:imu-factor-error} \end{equation} \end_inset +where the predicted NavState +\begin_inset Formula $\widehat{X_{j}}$ +\end_inset + at time +\begin_inset Formula $t_{j}$ +\end_inset + + is a function of the NavState +\begin_inset Formula $X_{i}$ +\end_inset + + at time +\begin_inset Formula $t_{i}$ +\end_inset + + and the preintegrated measurements +\begin_inset Formula $PIM$ +\end_inset + +: +\begin_inset Formula +\[ +\widehat{X_{j}}=f(X_{i},PIM) +\] + +\end_inset + +The noise model associated with this factor is assumed to be zero-mean Gaussian + with a +\begin_inset Formula $9\times9$ +\end_inset + + covariance matrix +\begin_inset Formula $\Sigma_{ij}$ +\end_inset + +, which is defined in the tangent space +\begin_inset Formula $T_{X_{j}}\mathcal{N}$ +\end_inset + + of the NavState manifold at the NavState +\begin_inset Formula $X_{j}$ +\end_inset + +. + This covariance matrix is computed in the preintegrated measurement class, + of which there are two variants as discussed above. \end_layout \begin_layout Subsubsection* @@ -282,6 +328,14 @@ Gyroscope Covariance : Measurement uncertainty of the gyroscope. \end_layout +\begin_layout Itemize +Gyroscope Bias Covariance +\begin_inset Formula $Q_{\Delta b^{\omega}}$ +\end_inset + + : The covariance associated with the gyroscope bias random walk. +\end_layout + \begin_layout Itemize Accelerometer Covariance \begin_inset Formula $Q_{acc}$ @@ -298,14 +352,6 @@ Accelerometer Bias Covariance : The covariance associated with the accelerometer bias random walk. \end_layout -\begin_layout Itemize -Gyroscope Bias Covariance -\begin_inset Formula $Q_{\Delta b^{\omega}}$ -\end_inset - - : The covariance associated with the gyroscope bias random walk. -\end_layout - \begin_layout Itemize Integration Covariance \begin_inset Formula $Q_{int}$ @@ -1469,7 +1515,12 @@ Noise Propagation in IMU Factor \end_layout \begin_layout Standard -Even when we assume uncorrelated noise on +We wish to compute the ImuFactor covariance matrix +\begin_inset Formula $\Sigma_{ij}$ +\end_inset + +. + Even when we assume uncorrelated noise on \begin_inset Formula $\omega^{b}$ \end_inset @@ -1487,11 +1538,12 @@ Even when we assume uncorrelated noise on \end_inset appear in multiple places. - To model the noise propagation, let us define + To model the noise propagation, let us define the preintegrated navigation + state \begin_inset Formula $\zeta_{k}=[\theta_{k},p_{k},v_{k}]$ \end_inset - and rewrite Eqns. +, as a 9D vector on tangent space at and rewrite Eqns. ( \begin_inset CommandInset ref LatexCommand ref