Merge pull request #233 from jingwuOUO/feature/random_std

Feature/random std
release/4.3a0
Frank Dellaert 2020-02-29 11:33:44 -08:00 committed by GitHub
commit dd75dba801
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 285 additions and 174 deletions

View File

@ -0,0 +1,137 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file WeightedSampler.h
* @brief Fast sampling without replacement.
* @author Frank Dellaert
* @date May 2019
**/
#pragma once
#include <cmath>
#include <queue>
#include <random>
#include <stdexcept>
#include <utility>
#include <vector>
namespace gtsam {
/*
* Fast sampling without replacement.
* Example usage:
* std::mt19937 rng(42);
* WeightedSampler<std::mt19937> sampler(&rng);
* auto samples = sampler.sampleWithoutReplacement(5, weights);
*/
template <class Engine = std::mt19937>
class WeightedSampler {
private:
Engine* engine_; // random number generation engine
public:
/**
* Construct from random number generation engine
* We only store a pointer to it.
*/
explicit WeightedSampler(Engine* engine) : engine_(engine) {}
std::vector<size_t> sampleWithoutReplacement(
size_t numSamples, const std::vector<double>& weights) {
// Implementation adapted from code accompanying paper at
// https://www.ethz.ch/content/dam/ethz/special-interest/baug/ivt/ivt-dam/vpl/reports/1101-1200/ab1141.pdf
const size_t n = weights.size();
if (n < numSamples) {
throw std::runtime_error(
"numSamples must be smaller than weights.size()");
}
// Return empty array if numSamples==0
std::vector<size_t> result(numSamples);
if (numSamples == 0) return result;
// Step 1: The first m items of V are inserted into reservoir
// Step 2: For each item v_i ∈ reservoir: Calculate a key k_i = u_i^(1/w),
// where u_i = random(0, 1)
// (Modification: Calculate and store -log k_i = e_i / w where e_i = exp(1),
// reservoir is a priority queue that pops the *maximum* elements)
std::priority_queue<std::pair<double, size_t> > reservoir;
static const double kexp1 = std::exp(1.0);
for (auto it = weights.begin(); it != weights.begin() + numSamples; ++it) {
const double k_i = kexp1 / *it;
reservoir.push(std::make_pair(k_i, it - weights.begin() + 1));
}
// Step 4: Repeat Steps 510 until the population is exhausted
{
// Step 3: The threshold T_w is the minimum key of reservoir
// (Modification: This is now the logarithm)
// Step 10: The new threshold T w is the new minimum key of reservoir
const std::pair<double, size_t>& T_w = reservoir.top();
// Incrementing it is part of Step 7
for (auto it = weights.begin() + numSamples; it != weights.end(); ++it) {
// Step 5: Let r = random(0, 1) and X_w = log(r) / log(T_w)
// (Modification: Use e = -exp(1) instead of log(r))
const double X_w = kexp1 / T_w.first;
// Step 6: From the current item v_c skip items until item v_i, such
// that:
double w = 0.0;
// Step 7: w_c + w_{c+1} + ··· + w_{i1} < X_w <= w_c + w_{c+1} + ··· +
// w_{i1} + w_i
for (; it != weights.end(); ++it) {
w += *it;
if (X_w <= w) break;
}
// Step 7: No such item, terminate
if (it == weights.end()) break;
// Step 9: Let t_w = T_w^{w_i}, r_2 = random(t_w, 1) and v_is key: k_i
// = (r_2)^{1/w_i} (Mod: Let t_w = log(T_w) * {w_i}, e_2 =
// log(random(e^{t_w}, 1)) and v_is key: k_i = -e_2 / w_i)
const double t_w = -T_w.first * *it;
std::uniform_real_distribution<double> randomAngle(std::exp(t_w), 1.0);
const double e_2 = std::log(randomAngle(*engine_));
const double k_i = -e_2 / *it;
// Step 8: The item in reservoir with the minimum key is replaced by
// item v_i
reservoir.pop();
reservoir.push(std::make_pair(k_i, it - weights.begin() + 1));
}
}
for (auto iret = result.end(); iret != result.begin();) {
--iret;
if (reservoir.empty()) {
throw std::runtime_error(
"Reservoir empty before all elements have been filled");
}
*iret = reservoir.top().second - 1;
reservoir.pop();
}
if (!reservoir.empty()) {
throw std::runtime_error(
"Reservoir not empty after all elements have been filled");
}
return result;
}
}; // namespace gtsam
} // namespace gtsam

View File

@ -0,0 +1,40 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testWeightedSampler.cpp
* @brief Unit test for WeightedSampler
* @author Frank Dellaert
* @date MAy 2019
**/
#include <gtsam/base/WeightedSampler.h>
#include <CppUnitLite/TestHarness.h>
#include <random>
using namespace std;
using namespace gtsam;
TEST(WeightedSampler, sampleWithoutReplacement) {
vector<double> weights{1, 2, 3, 4, 3, 2, 1};
std::mt19937 rng(42);
WeightedSampler<std::mt19937> sampler(&rng);
auto samples = sampler.sampleWithoutReplacement(5, weights);
EXPECT_LONGS_EQUAL(5, samples.size());
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}

View File

@ -23,13 +23,11 @@
#include <gtsam/base/debug.h>
#include <boost/make_shared.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
#include <vector>
#include <algorithm>
#include <random>
#include <stdexcept>
#include <vector>
using namespace std;
@ -176,8 +174,7 @@ size_t DiscreteConditional::solve(const Values& parentsValues) const {
/* ******************************************************************************** */
size_t DiscreteConditional::sample(const Values& parentsValues) const {
using boost::uniform_real;
static boost::mt19937 gen(2); // random number generator
static mt19937 rng(2); // random number generator
bool debug = ISDEBUG("DiscreteConditional::sample");
@ -209,9 +206,8 @@ size_t DiscreteConditional::sample(const Values& parentsValues) const {
}
// inspired by http://www.boost.org/doc/libs/1_46_1/doc/html/boost_random/tutorial.html
uniform_real<> dist(0, cdf.back());
boost::variate_generator<boost::mt19937&, uniform_real<> > die(gen, dist);
size_t sampled = lower_bound(cdf.begin(), cdf.end(), die()) - cdf.begin();
uniform_real_distribution<double> dist(0, cdf.back());
size_t sampled = lower_bound(cdf.begin(), cdf.end(), dist(rng)) - cdf.begin();
if (debug)
cout << "-> " << sampled << endl;

View File

@ -97,8 +97,8 @@ TEST(DiscreteBayesNet, Asia)
// now sample from it
DiscreteFactor::Values expectedSample;
SETDEBUG("DiscreteConditional::sample", false);
insert(expectedSample)(A.first, 1)(D.first, 1)(X.first, 0)(T.first, 0)(
S.first, 1)(E.first, 0)(L.first, 0)(B.first, 1);
insert(expectedSample)(A.first, 1)(D.first, 1)(X.first, 1)(T.first, 0)(
S.first, 1)(E.first, 1)(L.first, 1)(B.first, 0);
DiscreteFactor::sharedValues actualSample = chordal2->sample();
EXPECT(assert_equal(expectedSample, *actualSample));
}

View File

@ -21,8 +21,9 @@
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/SO3.h>
#include <boost/math/constants/constants.hpp>
#include <boost/random.hpp>
#include <cmath>
#include <random>
using namespace std;
@ -34,10 +35,10 @@ void Rot3::print(const std::string& s) const {
}
/* ************************************************************************* */
Rot3 Rot3::Random(boost::mt19937& rng) {
Rot3 Rot3::Random(std::mt19937& rng) {
// TODO allow any engine without including all of boost :-(
Unit3 axis = Unit3::Random(rng);
boost::uniform_real<double> randomAngle(-M_PI, M_PI);
uniform_real_distribution<double> randomAngle(-M_PI, M_PI);
double angle = randomAngle(rng);
return AxisAngle(axis, angle);
}

View File

@ -28,6 +28,8 @@
#include <gtsam/base/concepts.h>
#include <gtsam/config.h> // Get GTSAM_USE_QUATERNIONS macro
#include <random>
// You can override the default coordinate mode using this flag
#ifndef ROT3_DEFAULT_COORDINATES_MODE
#ifdef GTSAM_USE_QUATERNIONS
@ -128,8 +130,13 @@ namespace gtsam {
Rot3(const Quaternion& q);
Rot3(double w, double x, double y, double z) : Rot3(Quaternion(w, x, y, z)) {}
/// Random, generates a random axis, then random angle \in [-p,pi]
static Rot3 Random(boost::mt19937 & rng);
/**
* Random, generates a random axis, then random angle \in [-p,pi]
* Example:
* std::mt19937 engine(42);
* Unit3 unit = Unit3::Random(engine);
*/
static Rot3 Random(std::mt19937 & rng);
/** Virtual destructor */
virtual ~Rot3() {}

View File

@ -22,11 +22,11 @@
#include <gtsam/geometry/Unit3.h>
#include <Eigen/Eigenvalues>
#include <boost/random.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <random>
#include <vector>
using namespace std;

View File

@ -27,8 +27,6 @@
#include <gtsam/base/Matrix.h>
#include <gtsam/dllexport.h>
#include <boost/random/mersenne_twister.hpp>
#include <string>
namespace gtsam {

View File

@ -23,8 +23,9 @@
#include <gtsam/dllexport.h>
#include <Eigen/Core>
#include <boost/random.hpp>
#include <iostream> // TODO(frank): how to avoid?
#include <random>
#include <string>
#include <type_traits>
#include <vector>
@ -112,12 +113,12 @@ class SO : public LieGroup<SO<N>, internal::DimensionSO(N)> {
/// currently only defined for SO3.
static SO ChordalMean(const std::vector<SO>& rotations);
/// Random SO(n) element (no big claims about uniformity)
/// Random SO(n) element (no big claims about uniformity). SO(3) is specialized in SO3.cpp
template <int N_ = N, typename = IsDynamic<N_>>
static SO Random(boost::mt19937& rng, size_t n = 0) {
static SO Random(std::mt19937& rng, size_t n = 0) {
if (n == 0) throw std::runtime_error("SO: Dimensionality not known.");
// TODO(frank): This needs to be re-thought!
static boost::uniform_real<double> randomAngle(-M_PI, M_PI);
// TODO(frank): this might need to be re-thought
static std::uniform_real_distribution<double> randomAngle(-M_PI, M_PI);
const size_t d = SO::Dimension(n);
Vector xi(d);
for (size_t j = 0; j < d; j++) {
@ -128,7 +129,7 @@ class SO : public LieGroup<SO<N>, internal::DimensionSO(N)> {
/// Random SO(N) element (no big claims about uniformity)
template <int N_ = N, typename = IsFixed<N_>>
static SO Random(boost::mt19937& rng) {
static SO Random(std::mt19937& rng) {
// By default, use dynamic implementation above. Specialized for SO(3).
return SO(SO<Eigen::Dynamic>::Random(rng, N).matrix());
}

View File

@ -23,16 +23,6 @@
#include <gtsam/geometry/Point2.h>
#include <gtsam/config.h> // for GTSAM_USE_TBB
#ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wunused-variable"
#endif
#include <boost/random/uniform_on_sphere.hpp>
#ifdef __clang__
# pragma clang diagnostic pop
#endif
#include <boost/random/variate_generator.hpp>
#include <iostream>
#include <limits>
#include <cmath>
@ -54,15 +44,19 @@ Unit3 Unit3::FromPoint3(const Point3& point, OptionalJacobian<2, 3> H) {
}
/* ************************************************************************* */
Unit3 Unit3::Random(boost::mt19937 & rng) {
// TODO(dellaert): allow any engine without including all of boost :-(
boost::uniform_on_sphere<double> randomDirection(3);
// This variate_generator object is required for versions of boost somewhere
// around 1.46, instead of drawing directly using boost::uniform_on_sphere(rng).
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> > generator(
rng, randomDirection);
const vector<double> d = generator();
return Unit3(d[0], d[1], d[2]);
Unit3 Unit3::Random(std::mt19937& rng) {
// http://mathworld.wolfram.com/SpherePointPicking.html
// Adapted from implementation in boost, but using std <random>
std::uniform_real_distribution<double> uniform(-1.0, 1.0);
double sqsum;
double x, y;
do {
x = uniform(rng);
y = uniform(rng);
sqsum = x * x + y * y;
} while (sqsum > 1);
const double mult = 2 * sqrt(1 - sqsum);
return Unit3(x * mult, y * mult, 2 * sqsum - 1);
}
/* ************************************************************************* */

View File

@ -27,9 +27,9 @@
#include <gtsam/dllexport.h>
#include <boost/optional.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/serialization/nvp.hpp>
#include <random>
#include <string>
#ifdef GTSAM_USE_TBB
@ -97,8 +97,13 @@ public:
GTSAM_EXPORT static Unit3 FromPoint3(const Point3& point, //
OptionalJacobian<2, 3> H = boost::none);
/// Random direction, using boost::uniform_on_sphere
GTSAM_EXPORT static Unit3 Random(boost::mt19937 & rng);
/**
* Random direction, using boost::uniform_on_sphere
* Example:
* std::mt19937 engine(42);
* Unit3 unit = Unit3::Random(engine);
*/
GTSAM_EXPORT static Unit3 Random(std::mt19937 & rng);
/// @}

View File

@ -25,6 +25,7 @@
#include <CppUnitLite/TestHarness.h>
#include <iostream>
#include <random>
using namespace std;
using namespace gtsam;
@ -57,7 +58,7 @@ SO4 Q3 = SO4::Expmap(v3);
//******************************************************************************
TEST(SO4, Random) {
boost::mt19937 rng(42);
std::mt19937 rng(42);
auto Q = SO4::Random(rng);
EXPECT_LONGS_EQUAL(4, Q.matrix().rows());
}

View File

@ -30,9 +30,8 @@
#include <CppUnitLite/TestHarness.h>
#include <boost/random.hpp>
#include <iostream>
#include <random>
#include <stdexcept>
#include <type_traits>
@ -88,7 +87,7 @@ TEST(SOn, Values) {
//******************************************************************************
TEST(SOn, Random) {
static boost::mt19937 rng(42);
static std::mt19937 rng(42);
EXPECT_LONGS_EQUAL(3, SOn::Random(rng, 3).rows());
EXPECT_LONGS_EQUAL(4, SOn::Random(rng, 4).rows());
EXPECT_LONGS_EQUAL(5, SOn::Random(rng, 5).rows());

View File

@ -33,9 +33,10 @@
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
#include <boost/random.hpp>
#include <boost/assign/std/vector.hpp>
#include <cmath>
#include <random>
using namespace boost::assign;
using namespace gtsam;
@ -339,7 +340,7 @@ TEST(Unit3, basis) {
/// Check the basis derivatives of a bunch of random Unit3s.
TEST(Unit3, basis_derivatives) {
int num_tests = 100;
boost::mt19937 rng(42);
std::mt19937 rng(42);
for (int i = 0; i < num_tests; i++) {
Unit3 p = Unit3::Random(rng);
@ -403,7 +404,7 @@ TEST(Unit3, retract_expmap) {
//*******************************************************************************
TEST(Unit3, Random) {
boost::mt19937 rng(42);
std::mt19937 rng(42);
// Check that means are all zero at least
Point3 expectedMean(0,0,0), actualMean(0,0,0);
for (size_t i = 0; i < 100; i++)
@ -415,7 +416,7 @@ TEST(Unit3, Random) {
//*******************************************************************************
// New test that uses Unit3::Random
TEST(Unit3, localCoordinates_retract) {
boost::mt19937 rng(42);
std::mt19937 rng(42);
size_t numIterations = 10000;
for (size_t i = 0; i < numIterations; i++) {

View File

@ -21,15 +21,13 @@
#include <boost/format.hpp>
#include <boost/make_shared.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/variate_generator.hpp>
#include <limits>
#include <iostream>
#include <typeinfo>
#include <stdexcept>
#include <cmath>
#include <iostream>
#include <limits>
#include <random>
#include <stdexcept>
#include <typeinfo>
using namespace std;

View File

@ -46,10 +46,9 @@ Vector Sampler::sampleDiagonal(const Vector& sigmas) {
if (sigma == 0.0) {
result(i) = 0.0;
} else {
typedef boost::normal_distribution<double> Normal;
typedef std::normal_distribution<double> Normal;
Normal dist(0.0, sigma);
boost::variate_generator<boost::mt19937_64&, Normal> norm(generator_, dist);
result(i) = norm();
result(i) = dist(generator_);
}
}
return result;

View File

@ -20,7 +20,7 @@
#include <gtsam/linear/NoiseModel.h>
#include <boost/random.hpp>
#include <random>
namespace gtsam {
@ -37,7 +37,7 @@ protected:
noiseModel::Diagonal::shared_ptr model_;
/** generator */
boost::mt19937_64 generator_;
std::mt19937_64 generator_;
public:
typedef boost::shared_ptr<Sampler> shared_ptr;

View File

@ -17,6 +17,7 @@
#include <gtsam/base/DSFVector.h>
#include <gtsam/base/FastMap.h>
#include <gtsam/base/WeightedSampler.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/VariableIndex.h>
#include <gtsam/linear/Errors.h>
@ -35,8 +36,11 @@
#include <iostream>
#include <numeric> // accumulate
#include <queue>
#include <random>
#include <set>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
using std::cout;
@ -68,81 +72,11 @@ static vector<size_t> sort_idx(const Container &src) {
return idx;
}
/*****************************************************************************/
static vector<size_t> iidSampler(const vector<double> &weight, const size_t n) {
/* compute the sum of the weights */
const double sum = std::accumulate(weight.begin(), weight.end(), 0.0);
if (sum == 0.0) {
throw std::runtime_error("Weight vector has no non-zero weights");
}
/* make a normalized and accumulated version of the weight vector */
const size_t m = weight.size();
vector<double> cdf;
cdf.reserve(m);
for (size_t i = 0; i < m; ++i) {
cdf.push_back(weight[i] / sum);
}
vector<double> acc(m);
std::partial_sum(cdf.begin(), cdf.end(), acc.begin());
/* iid sample n times */
vector<size_t> samples;
samples.reserve(n);
const double denominator = (double)RAND_MAX;
for (size_t i = 0; i < n; ++i) {
const double value = rand() / denominator;
/* binary search the interval containing "value" */
const auto it = std::lower_bound(acc.begin(), acc.end(), value);
const size_t index = it - acc.begin();
samples.push_back(index);
}
return samples;
}
/*****************************************************************************/
static vector<size_t> UniqueSampler(const vector<double> &weight,
const size_t n) {
const size_t m = weight.size();
if (n > m) throw std::invalid_argument("UniqueSampler: invalid input size");
vector<size_t> results;
size_t count = 0;
vector<bool> touched(m, false);
while (count < n) {
vector<size_t> localIndices;
localIndices.reserve(n - count);
vector<double> localWeights;
localWeights.reserve(n - count);
/* collect data */
for (size_t i = 0; i < m; ++i) {
if (!touched[i]) {
localIndices.push_back(i);
localWeights.push_back(weight[i]);
}
}
/* sampling and cache results */
vector<size_t> samples = iidSampler(localWeights, n - count);
for (const size_t &index : samples) {
if (touched[index] == false) {
touched[index] = true;
results.push_back(index);
if (++count >= n) break;
}
}
}
return results;
}
/****************************************************************************/
Subgraph::Subgraph(const vector<size_t> &indices) {
edges_.reserve(indices.size());
for (const size_t &index : indices) {
const Edge e {index,1.0};
const Edge e{index, 1.0};
edges_.push_back(e);
}
}
@ -423,12 +357,13 @@ vector<size_t> SubgraphBuilder::kruskal(const GaussianFactorGraph &gfg,
/****************************************************************/
vector<size_t> SubgraphBuilder::sample(const vector<double> &weights,
const size_t t) const {
return UniqueSampler(weights, t);
std::mt19937 rng(42); // TODO(frank): allow us to use a different seed
WeightedSampler<std::mt19937> sampler(&rng);
return sampler.sampleWithoutReplacement(t, weights);
}
/****************************************************************/
Subgraph SubgraphBuilder::operator()(
const GaussianFactorGraph &gfg) const {
Subgraph SubgraphBuilder::operator()(const GaussianFactorGraph &gfg) const {
const auto &p = parameters_;
const auto inverse_ordering = Ordering::Natural(gfg);
const FastMap<Key, size_t> forward_ordering = inverse_ordering.invert();
@ -518,15 +453,15 @@ GaussianFactorGraph::shared_ptr buildFactorSubgraph(
subgraphFactors->reserve(subgraph.size());
for (const auto &e : subgraph) {
const auto factor = gfg[e.index];
subgraphFactors->push_back(clone ? factor->clone(): factor);
subgraphFactors->push_back(clone ? factor->clone() : factor);
}
return subgraphFactors;
}
/**************************************************************************************************/
std::pair<GaussianFactorGraph::shared_ptr, GaussianFactorGraph::shared_ptr> //
splitFactorGraph(const GaussianFactorGraph &factorGraph, const Subgraph &subgraph) {
std::pair<GaussianFactorGraph::shared_ptr, GaussianFactorGraph::shared_ptr> //
splitFactorGraph(const GaussianFactorGraph &factorGraph,
const Subgraph &subgraph) {
// Get the subgraph by calling cheaper method
auto subgraphFactors = buildFactorSubgraph(factorGraph, subgraph, false);

View File

@ -4,10 +4,7 @@
*/
#include <iostream>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/variate_generator.hpp>
#include <random>
#include <gtsam_unstable/geometry/SimPolygon2D.h>
@ -16,11 +13,11 @@ namespace gtsam {
using namespace std;
const size_t max_it = 100000;
boost::minstd_rand SimPolygon2D::rng(42u);
std::minstd_rand SimPolygon2D::rng(42u);
/* ************************************************************************* */
void SimPolygon2D::seedGenerator(unsigned long seed) {
rng = boost::minstd_rand(seed);
rng = std::minstd_rand(seed);
}
/* ************************************************************************* */
@ -225,23 +222,23 @@ SimPolygon2D SimPolygon2D::randomRectangle(
/* ***************************************************************** */
Point2 SimPolygon2D::randomPoint2(double s) {
boost::uniform_real<> gen_t(-s/2.0, s/2.0);
std::uniform_real_distribution<> gen_t(-s/2.0, s/2.0);
return Point2(gen_t(rng), gen_t(rng));
}
/* ***************************************************************** */
Rot2 SimPolygon2D::randomAngle() {
boost::uniform_real<> gen_r(-M_PI, M_PI); // modified range to avoid degenerate cases in triangles
// modified range to avoid degenerate cases in triangles:
std::uniform_real_distribution<> gen_r(-M_PI, M_PI);
return Rot2::fromAngle(gen_r(rng));
}
/* ***************************************************************** */
double SimPolygon2D::randomDistance(double mu, double sigma, double min_dist) {
boost::normal_distribution<double> norm_dist(mu, sigma);
boost::variate_generator<boost::minstd_rand&, boost::normal_distribution<double> > gen_d(rng, norm_dist);
std::normal_distribution<> norm_dist(mu, sigma);
double d = -10.0;
for (size_t i=0; i<max_it; ++i) {
d = std::abs(gen_d());
d = std::abs(norm_dist(rng));
if (d > min_dist)
return d;
}
@ -294,8 +291,8 @@ Point2 SimPolygon2D::randomBoundedPoint2(
const Point2Vector& landmarks,
const std::vector<SimPolygon2D>& obstacles, double min_landmark_dist) {
boost::uniform_real<> gen_x(0.0, UR_corner.x() - LL_corner.x());
boost::uniform_real<> gen_y(0.0, UR_corner.y() - LL_corner.y());
std::uniform_real_distribution<> gen_x(0.0, UR_corner.x() - LL_corner.x());
std::uniform_real_distribution<> gen_y(0.0, UR_corner.y() - LL_corner.y());
for (size_t i=0; i<max_it; ++i) {
Point2 p = Point2(gen_x(rng), gen_y(rng)) + LL_corner;

View File

@ -6,10 +6,11 @@
#pragma once
#include <map>
#include <gtsam/geometry/Pose2.h>
#include <gtsam_unstable/geometry/SimWall2D.h>
#include <boost/random/linear_congruential.hpp>
#include <map>
#include <random>
namespace gtsam {
@ -19,7 +20,7 @@ namespace gtsam {
class GTSAM_UNSTABLE_EXPORT SimPolygon2D {
protected:
Point2Vector landmarks_;
static boost::minstd_rand rng;
static std::minstd_rand rng;
public:

View File

@ -1,12 +1,13 @@
/**
* @file testSimPolygon
* @file testSimPolygon2D.cpp
* @author Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam_unstable/geometry/SimPolygon2D.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;

View File

@ -11,13 +11,12 @@
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/geometry/Pose2.h>
#include <boost/random/mersenne_twister.hpp>
//#include <boost/random/uniform_int_distribution.hpp> // FIXME: does not exist in boost 1.46
#include <boost/random/uniform_int.hpp> // Old header - should still exist
#include <vector>
#include <cmath.>
#include <random>
#include <stdlib.h>
#include <math.h>
using namespace std;
using namespace gtsam;
@ -229,8 +228,8 @@ public:
Marginals marginals(size);
// NOTE: using older interface for boost.random due to interface changes after boost 1.46
boost::mt19937 rng;
boost::uniform_int<Index> random_cell(0,size-1);
std::mt19937 rng;
std::uniform_int_distribution<> random_cell(0, size - 1);
// run Metropolis for the requested number of operations
// compute initial probability of occupancy grid, P(x_t)

View File

@ -20,13 +20,13 @@
#include <gtsam_unstable/base/DSF.h>
#include <gtsam/base/DSFMap.h>
#include <boost/random.hpp>
#include <boost/timer.hpp>
#include <boost/format.hpp>
#include <boost/assign/std/vector.hpp>
#include <iostream>
#include <fstream>
#include <iostream>
#include <random>
#include <vector>
#include <utility>
@ -59,13 +59,14 @@ int main(int argc, char* argv[]) {
cout << format("\nTesting with %1% images, %2% points, %3% matches\n")
% (int)m % (int)N % (int)nm;
cout << "Generating " << nm << " matches" << endl;
boost::variate_generator<boost::mt19937, boost::uniform_int<size_t> > rn(
boost::mt19937(), boost::uniform_int<size_t>(0, N - 1));
std::mt19937 rng;
std::uniform_int_distribution<> rn(0, N - 1);
typedef pair<size_t, size_t> Match;
vector<Match> matches;
matches.reserve(nm);
for (size_t k = 0; k < nm; k++)
matches.push_back(Match(rn(), rn()));
matches.push_back(Match(rn(rng), rn(rng)));
os << format("%1%,%2%,%3%,") % (int)m % (int)N % (int)nm;