minor edits
parent
75d4724668
commit
dce56417bd
|
|
@ -209,14 +209,14 @@ TEST(GaussianMixtureFactor, Error) {
|
||||||
* or both for each hybrid factor component.
|
* or both for each hybrid factor component.
|
||||||
*
|
*
|
||||||
* @param values Initial values for linearization.
|
* @param values Initial values for linearization.
|
||||||
* @param means The mean values for the conditional components.
|
* @param mus The mean values for the conditional components.
|
||||||
* @param sigmas Noise model sigma values (standard deviation).
|
* @param sigmas Noise model sigma values (standard deviation).
|
||||||
* @param m1 The discrete mode key.
|
* @param m1 The discrete mode key.
|
||||||
* @param z1 The measurement value.
|
* @param z1 The measurement value.
|
||||||
* @return HybridGaussianFactorGraph
|
* @return HybridGaussianFactorGraph
|
||||||
*/
|
*/
|
||||||
HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
|
HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
|
||||||
const gtsam::Values &values, const std::vector<double> &means,
|
const gtsam::Values &values, const std::vector<double> &mus,
|
||||||
const std::vector<double> &sigmas, DiscreteKey &m1, double z1 = 0.0) {
|
const std::vector<double> &sigmas, DiscreteKey &m1, double z1 = 0.0) {
|
||||||
// Noise models
|
// Noise models
|
||||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]);
|
auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]);
|
||||||
|
|
@ -224,11 +224,9 @@ HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
|
||||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||||
|
|
||||||
// GaussianMixtureFactor component factors
|
// GaussianMixtureFactor component factors
|
||||||
auto f0 =
|
auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), mus[0], model0);
|
||||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), means[0], model0);
|
auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), mus[1], model1);
|
||||||
auto f1 =
|
// std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), means[1], model1);
|
|
||||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
|
||||||
|
|
||||||
/// Get terms for each p^m(z1 | x1, x2)
|
/// Get terms for each p^m(z1 | x1, x2)
|
||||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||||
|
|
@ -275,7 +273,7 @@ HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
|
||||||
* p(Z1 | X1, X2, M1) has 2 factors each for the binary mode m1, with only the
|
* p(Z1 | X1, X2, M1) has 2 factors each for the binary mode m1, with only the
|
||||||
* means being different.
|
* means being different.
|
||||||
*/
|
*/
|
||||||
TEST(GaussianMixtureFactor, DifferentMeansHBN) {
|
TEST(GaussianMixtureFactor, DifferentMeans) {
|
||||||
DiscreteKey m1(M(1), 2);
|
DiscreteKey m1(M(1), 2);
|
||||||
|
|
||||||
Values values;
|
Values values;
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue