diff --git a/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp b/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp index dfafb923b..ede3c342d 100644 --- a/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp +++ b/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp @@ -209,14 +209,14 @@ TEST(GaussianMixtureFactor, Error) { * or both for each hybrid factor component. * * @param values Initial values for linearization. - * @param means The mean values for the conditional components. + * @param mus The mean values for the conditional components. * @param sigmas Noise model sigma values (standard deviation). * @param m1 The discrete mode key. * @param z1 The measurement value. * @return HybridGaussianFactorGraph */ HybridGaussianFactorGraph GetFactorGraphFromBayesNet( - const gtsam::Values &values, const std::vector &means, + const gtsam::Values &values, const std::vector &mus, const std::vector &sigmas, DiscreteKey &m1, double z1 = 0.0) { // Noise models auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]); @@ -224,11 +224,9 @@ HybridGaussianFactorGraph GetFactorGraphFromBayesNet( auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3); // GaussianMixtureFactor component factors - auto f0 = - std::make_shared>(X(1), X(2), means[0], model0); - auto f1 = - std::make_shared>(X(1), X(2), means[1], model1); - std::vector factors{f0, f1}; + auto f0 = std::make_shared>(X(1), X(2), mus[0], model0); + auto f1 = std::make_shared>(X(1), X(2), mus[1], model1); + // std::vector factors{f0, f1}; /// Get terms for each p^m(z1 | x1, x2) Matrix H0_1, H0_2, H1_1, H1_2; @@ -275,7 +273,7 @@ HybridGaussianFactorGraph GetFactorGraphFromBayesNet( * p(Z1 | X1, X2, M1) has 2 factors each for the binary mode m1, with only the * means being different. */ -TEST(GaussianMixtureFactor, DifferentMeansHBN) { +TEST(GaussianMixtureFactor, DifferentMeans) { DiscreteKey m1(M(1), 2); Values values;