Added TableFactor, a discrete factor optimized for sparsity.

release/4.3a0
ykim742 2023-05-16 12:14:32 -04:00
parent 9eb9770a43
commit dca7a980dc
3 changed files with 1258 additions and 0 deletions

View File

@ -0,0 +1,566 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file TableFactor.cpp
* @brief discrete factor
* @date May 4, 2023
* @author Yoonwoo Kim
*/
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/base/FastSet.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/discrete/TableFactor.h>
#include <gtsam/discrete/SparseDiscreteConditional.h>
#include <boost/format.hpp>
#include <utility>
using namespace std;
namespace gtsam {
/* ************************************************************************ */
TableFactor::TableFactor() {}
/* ************************************************************************ */
TableFactor::TableFactor(const DiscreteKeys& dkeys,
const TableFactor& potentials)
: DiscreteFactor(dkeys.indices()),
cardinalities_(potentials .cardinalities_) {
sparse_table_ = potentials.sparse_table_;
denominators_ = potentials.denominators_;
sorted_dkeys_ = discreteKeys();
sort(sorted_dkeys_.begin(), sorted_dkeys_.end());
}
/* ************************************************************************ */
TableFactor::TableFactor(const DiscreteKeys& dkeys,
const Eigen::SparseVector<double>& table)
: DiscreteFactor(dkeys.indices()), sparse_table_(table.size()) {
sparse_table_ = table;
double denom = table.size();
for (const DiscreteKey& dkey : dkeys) {
cardinalities_.insert(dkey);
denom /= dkey.second;
denominators_.insert(std::pair<Key, double>(dkey.first, denom));
}
sorted_dkeys_ = discreteKeys();
sort(sorted_dkeys_.begin(), sorted_dkeys_.end());
}
/* ************************************************************************ */
TableFactor::TableFactor(const SparseDiscreteConditional& c)
: DiscreteFactor(c.keys()),
sparse_table_(c.sparse_table_),
denominators_(c.denominators_) {
cardinalities_ = c.cardinalities_;
sorted_dkeys_ = discreteKeys();
sort(sorted_dkeys_.begin(), sorted_dkeys_.end());
}
/* ************************************************************************ */
Eigen::SparseVector<double> TableFactor::Convert(
const std::vector<double>& table) {
Eigen::SparseVector<double> sparse_table(table.size());
// Count number of nonzero elements in table and reserving the space.
const uint64_t nnz = std::count_if(table.begin(), table.end(),
[](uint64_t i) { return i != 0; });
sparse_table.reserve(nnz);
for (uint64_t i = 0; i < table.size(); i++) {
if (table[i] != 0) sparse_table.insert(i) = table[i];
}
sparse_table.pruned();
sparse_table.data().squeeze();
return sparse_table;
}
/* ************************************************************************ */
Eigen::SparseVector<double> TableFactor::Convert(const std::string& table) {
// Convert string to doubles.
std::vector<double> ys;
std::istringstream iss(table);
std::copy(std::istream_iterator<double>(iss), std::istream_iterator<double>(),
std::back_inserter(ys));
return Convert(ys);
}
/* ************************************************************************ */
bool TableFactor::equals(const DiscreteFactor& other,
double tol) const {
if (!dynamic_cast<const TableFactor*>(&other)) {
return false;
} else {
const auto& f(static_cast<const TableFactor&>(other));
return sparse_table_.isApprox(f.sparse_table_, tol);
}
}
/* ************************************************************************ */
double TableFactor::operator()(const DiscreteValues& values) const {
// a b c d => D * (C * (B * (a) + b) + c) + d
uint64_t idx = 0, card = 1;
for (auto it = sorted_dkeys_.rbegin(); it != sorted_dkeys_.rend(); ++it) {
if (values.find(it->first) != values.end()) {
idx += card * values.at(it->first);
}
card *= it->second;
}
return sparse_table_.coeff(idx);
}
/* ************************************************************************ */
double TableFactor::findValue(const DiscreteValues& values) const {
// a b c d => D * (C * (B * (a) + b) + c) + d
uint64_t idx = 0, card = 1;
for (auto it = keys_.rbegin(); it != keys_.rend(); ++it) {
if (values.find(*it) != values.end()) {
idx += card * values.at(*it);
}
card *= cardinality(*it);
}
return sparse_table_.coeff(idx);
}
/* ************************************************************************ */
double TableFactor::error(const DiscreteValues& values) const {
return -log(evaluate(values));
}
/* ************************************************************************ */
double TableFactor::error(const HybridValues& values) const {
return error(values.discrete());
}
/* ************************************************************************ */
DecisionTreeFactor TableFactor::operator*(const DecisionTreeFactor& f) const {
return toDecisionTreeFactor() * f;
}
/* ************************************************************************ */
DecisionTreeFactor TableFactor::toDecisionTreeFactor() const {
DiscreteKeys dkeys = discreteKeys();
std::vector<double> table;
for (auto i = 0; i < sparse_table_.size(); i++) {
table.push_back(sparse_table_.coeff(i));
}
DecisionTreeFactor f(dkeys, table);
return f;
}
/* ************************************************************************ */
TableFactor TableFactor::choose(const DiscreteValues parent_assign,
DiscreteKeys parent_keys) const {
if (parent_keys.empty()) return *this;
// Unique representation of parent values.
uint64_t unique = 0;
uint64_t card = 1;
for (auto it = keys_.rbegin(); it != keys_.rend(); ++it) {
if (parent_assign.find(*it) != parent_assign.end()) {
unique += parent_assign.at(*it) * card;
card *= cardinality(*it);
}
}
// Find child DiscreteKeys
DiscreteKeys child_dkeys;
std::sort(parent_keys.begin(), parent_keys.end());
std::set_difference(sorted_dkeys_.begin(), sorted_dkeys_.end(), parent_keys.begin(),
parent_keys.end(), std::back_inserter(child_dkeys));
// Create child sparse table to populate.
uint64_t child_card = 1;
for (const DiscreteKey& child_dkey : child_dkeys)
child_card *= child_dkey.second;
Eigen::SparseVector<double> child_sparse_table_(child_card);
child_sparse_table_.reserve(child_card);
// Populate child sparse table.
for (SparseIt it(sparse_table_); it; ++it) {
// Create unique representation of parent keys
uint64_t parent_unique = uniqueRep(parent_keys, it.index());
// Populate the table
if (parent_unique == unique) {
uint64_t idx = uniqueRep(child_dkeys, it.index());
child_sparse_table_.insert(idx) = it.value();
}
}
child_sparse_table_.pruned();
child_sparse_table_.data().squeeze();
return TableFactor(child_dkeys, child_sparse_table_);
}
/* ************************************************************************ */
double TableFactor::safe_div(const double& a, const double& b) {
// The use for safe_div is when we divide the product factor by the sum
// factor. If the product or sum is zero, we accord zero probability to the
// event.
return (a == 0 || b == 0) ? 0 : (a / b);
}
/* ************************************************************************ */
void TableFactor::print(const string& s, const KeyFormatter& formatter) const {
cout << s;
cout << " f[";
for (auto&& key : keys())
cout << boost::format(" (%1%,%2%),") % formatter(key) % cardinality(key);
cout << " ]" << endl;
for (SparseIt it(sparse_table_); it; ++it) {
DiscreteValues assignment = findAssignments(it.index());
for (auto&& kv : assignment) {
cout << "(" << formatter(kv.first) << ", " << kv.second << ")";
}
cout << " | " << it.value() << " | " << it.index() << endl;
}
cout << "number of nnzs: " <<sparse_table_.nonZeros() << endl;
}
/* ************************************************************************ */
TableFactor TableFactor::apply(const TableFactor& f, Binary op) const {
if (keys_.empty() && sparse_table_.nonZeros() == 0)
return f;
else if (f.keys_.empty() && f.sparse_table_.nonZeros() == 0)
return *this;
// 1. Identify keys for contract and free modes.
DiscreteKeys contract_dkeys = contractDkeys(f);
DiscreteKeys f_free_dkeys = f.freeDkeys(*this);
DiscreteKeys union_dkeys = unionDkeys(f);
// 2. Create hash table for input factor f
unordered_map<uint64_t, AssignValList> map_f =
f.createMap(contract_dkeys, f_free_dkeys);
// 3. Initialize multiplied factor.
uint64_t card = 1;
for (auto u_dkey : union_dkeys) card *= u_dkey.second;
Eigen::SparseVector<double> mult_sparse_table(card);
mult_sparse_table.reserve(card);
// 3. Multiply.
for (SparseIt it(sparse_table_); it; ++it) {
uint64_t contract_unique = uniqueRep(contract_dkeys, it.index());
if (map_f.find(contract_unique) == map_f.end()) continue;
for (auto assignVal : map_f[contract_unique]) {
uint64_t union_idx = unionRep(union_dkeys, assignVal.first, it.index());
mult_sparse_table.insert(union_idx) = op(it.value(), assignVal.second);
}
}
// 4. Free unused memory.
mult_sparse_table.pruned();
mult_sparse_table.data().squeeze();
// 5. Create union keys and return.
return TableFactor(union_dkeys, mult_sparse_table);
}
/* ************************************************************************ */
DiscreteKeys TableFactor::contractDkeys(const TableFactor& f) const {
// Find contract modes.
DiscreteKeys contract;
set_intersection(sorted_dkeys_.begin(), sorted_dkeys_.end(),
f.sorted_dkeys_.begin(), f.sorted_dkeys_.end(),
back_inserter(contract));
return contract;
}
/* ************************************************************************ */
DiscreteKeys TableFactor::freeDkeys(const TableFactor& f) const {
// Find free modes.
DiscreteKeys free;
set_difference(sorted_dkeys_.begin(), sorted_dkeys_.end(),
f.sorted_dkeys_.begin(), f.sorted_dkeys_.end(),
back_inserter(free));
return free;
}
/* ************************************************************************ */
DiscreteKeys TableFactor::unionDkeys(const TableFactor& f) const {
// Find union modes.
DiscreteKeys union_dkeys;
set_union(sorted_dkeys_.begin(), sorted_dkeys_.end(),
f.sorted_dkeys_.begin(), f.sorted_dkeys_.end(),
back_inserter(union_dkeys));
return union_dkeys;
}
/* ************************************************************************ */
uint64_t TableFactor::unionRep(const DiscreteKeys& union_keys,
const DiscreteValues& f_free, const uint64_t idx) const {
uint64_t union_idx = 0, card = 1;
for (auto it = union_keys.rbegin(); it != union_keys.rend(); it++) {
if (f_free.find(it->first) == f_free.end()) {
union_idx += keyValueForIndex(it->first, idx) * card;
} else {
union_idx += f_free.at(it->first) * card;
}
card *= it->second;
}
return union_idx;
}
/* ************************************************************************ */
unordered_map<uint64_t, TableFactor::AssignValList> TableFactor::createMap(
const DiscreteKeys& contract, const DiscreteKeys& free) const {
// 1. Initialize map.
unordered_map<uint64_t, AssignValList> map_f;
// 2. Iterate over nonzero elements.
for (SparseIt it(sparse_table_); it; ++it) {
// 3. Create unique representation of contract modes.
uint64_t unique_rep = uniqueRep(contract, it.index());
// 4. Create assignment for free modes.
DiscreteValues free_assignments;
for (auto& key : free) free_assignments[key.first]
= keyValueForIndex(key.first, it.index());
// 5. Populate map.
if (map_f.find(unique_rep) == map_f.end()) {
map_f[unique_rep] = {make_pair(free_assignments, it.value())};
} else {
map_f[unique_rep].push_back(make_pair(free_assignments, it.value()));
}
}
return map_f;
}
/* ************************************************************************ */
uint64_t TableFactor::uniqueRep(const DiscreteKeys& dkeys, const uint64_t idx) const {
if (dkeys.empty()) return 0;
uint64_t unique_rep = 0, card = 1;
for (auto it = dkeys.rbegin(); it != dkeys.rend(); it++) {
unique_rep += keyValueForIndex(it->first, idx) * card;
card *= it->second;
}
return unique_rep;
}
/* ************************************************************************ */
uint64_t TableFactor::uniqueRep(const DiscreteValues& assignments) const {
if (assignments.empty()) return 0;
uint64_t unique_rep = 0, card = 1;
for (auto it = assignments.rbegin(); it != assignments.rend(); it++) {
unique_rep += it->second * card;
card *= cardinalities_.at(it->first);
}
return unique_rep;
}
/* ************************************************************************ */
DiscreteValues TableFactor::findAssignments(const uint64_t idx) const {
DiscreteValues assignment;
for (Key key : keys_) {
assignment[key] = keyValueForIndex(key, idx);
}
return assignment;
}
/* ************************************************************************ */
TableFactor::shared_ptr TableFactor::combine(
size_t nrFrontals, Binary op) const {
if (nrFrontals > size()) {
throw invalid_argument(
"TableFactor::combine: invalid number of frontal "
"keys " +
to_string(nrFrontals) + ", nr.keys=" + std::to_string(size()));
}
// Find remaining keys.
DiscreteKeys remain_dkeys;
uint64_t card = 1;
for (auto i = nrFrontals; i < keys_.size(); i++) {
remain_dkeys.push_back(discreteKey(i));
card *= cardinality(keys_[i]);
}
// Create combined table.
Eigen::SparseVector<double> combined_table(card);
combined_table.reserve(sparse_table_.nonZeros());
// Populate combined table.
for (SparseIt it(sparse_table_); it; ++it) {
uint64_t idx = uniqueRep(remain_dkeys, it.index());
double new_val = op(combined_table.coeff(idx), it.value());
combined_table.coeffRef(idx) = new_val;
}
// Free unused memory.
combined_table.pruned();
combined_table.data().squeeze();
return std::make_shared<TableFactor>(remain_dkeys, combined_table);
}
/* ************************************************************************ */
TableFactor::shared_ptr TableFactor::combine(
const Ordering& frontalKeys, Binary op) const {
if (frontalKeys.size() > size()) {
throw invalid_argument(
"TableFactor::combine: invalid number of frontal "
"keys " +
std::to_string(frontalKeys.size()) + ", nr.keys=" +
std::to_string(size()));
}
// Find remaining keys.
DiscreteKeys remain_dkeys;
uint64_t card = 1;
for (Key key : keys_) {
if (std::find(frontalKeys.begin(), frontalKeys.end(), key) ==
frontalKeys.end()) {
remain_dkeys.emplace_back(key, cardinality(key));
card *= cardinality(key);
}
}
// Create combined table.
Eigen::SparseVector<double> combined_table(card);
combined_table.reserve(sparse_table_.nonZeros());
// Populate combined table.
for (SparseIt it(sparse_table_); it; ++it) {
uint64_t idx = uniqueRep(remain_dkeys, it.index());
double new_val = op(combined_table.coeff(idx), it.value());
combined_table.coeffRef(idx) = new_val;
}
// Free unused memory.
combined_table.pruned();
combined_table.data().squeeze();
return std::make_shared<TableFactor>(remain_dkeys, combined_table);
}
/* ************************************************************************ */
size_t TableFactor::keyValueForIndex(Key target_key, uint64_t index) const {
// http://phrogz.net/lazy-cartesian-product
return (index / denominators_.at(target_key)) % cardinality(target_key);
}
/* ************************************************************************ */
std::vector<std::pair<DiscreteValues, double>> TableFactor::enumerate()
const {
// Get all possible assignments
std::vector<std::pair<Key, size_t>> pairs = discreteKeys();
// Reverse to make cartesian product output a more natural ordering.
std::vector<std::pair<Key, size_t>> rpairs(pairs.rbegin(), pairs.rend());
const auto assignments = DiscreteValues::CartesianProduct(rpairs);
// Construct unordered_map with values
std::vector<std::pair<DiscreteValues, double>> result;
for (const auto& assignment : assignments) {
result.emplace_back(assignment, operator()(assignment));
}
return result;
}
/* ************************************************************************ */
DiscreteKeys TableFactor::discreteKeys() const {
DiscreteKeys result;
for (auto&& key : keys()) {
DiscreteKey dkey(key, cardinality(key));
if (std::find(result.begin(), result.end(), dkey) == result.end()) {
result.push_back(dkey);
}
}
return result;
}
// Print out header.
/* ************************************************************************ */
string TableFactor::markdown(const KeyFormatter& keyFormatter,
const Names& names) const {
stringstream ss;
// Print out header.
ss << "|";
for (auto& key : keys()) {
ss << keyFormatter(key) << "|";
}
ss << "value|\n";
// Print out separator with alignment hints.
ss << "|";
for (size_t j = 0; j < size(); j++) ss << ":-:|";
ss << ":-:|\n";
// Print out all rows.
for (SparseIt it(sparse_table_); it; ++it) {
DiscreteValues assignment = findAssignments(it.index());
ss << "|";
for (auto& key : keys()) {
size_t index = assignment.at(key);
ss << DiscreteValues::Translate(names, key, index) << "|";
}
ss << it.value() << "|\n";
}
return ss.str();
}
/* ************************************************************************ */
string TableFactor::html(const KeyFormatter& keyFormatter,
const Names& names) const {
stringstream ss;
// Print out preamble.
ss << "<div>\n<table class='TableFactor'>\n <thead>\n";
// Print out header row.
ss << " <tr>";
for (auto& key : keys()) {
ss << "<th>" << keyFormatter(key) << "</th>";
}
ss << "<th>value</th></tr>\n";
// Finish header and start body.
ss << " </thead>\n <tbody>\n";
// Print out all rows.
for (SparseIt it(sparse_table_); it; ++it) {
DiscreteValues assignment = findAssignments(it.index());
ss << " <tr>";
for (auto& key : keys()) {
size_t index = assignment.at(key);
ss << "<th>" << DiscreteValues::Translate(names, key, index) << "</th>";
}
ss << "<td>" << it.value() << "</td>"; // value
ss << "</tr>\n";
}
ss << " </tbody>\n</table>\n</div>";
return ss.str();
}
/* ************************************************************************ */
TableFactor TableFactor::prune(size_t maxNrAssignments) const {
const size_t N = maxNrAssignments;
// Get the probabilities in the TableFactor so we can threshold.
vector<pair<Eigen::Index, double>> probabilities;
// Store non-zero probabilities along with their indices in a vector.
for (SparseIt it(sparse_table_); it; ++it) {
probabilities.emplace_back(it.index(), it.value());
}
// The number of probabilities can be lower than max_leaves.
if (probabilities.size() <= N) return *this;
// Sort the vector in descending order based on the element values.
sort(probabilities.begin(), probabilities.end(), [] (
const std::pair<Eigen::Index, double>& a,
const std::pair<Eigen::Index, double>& b) {
return a.second > b.second;
});
// Keep the largest N probabilities in the vector.
if (probabilities.size() > N) probabilities.resize(N);
// Create pruned sparse vector.
Eigen::SparseVector<double> pruned_vec(sparse_table_.size());
pruned_vec.reserve(probabilities.size());
// Populate pruned sparse vector.
for (const auto& prob : probabilities) {
pruned_vec.insert(prob.first) = prob.second;
}
// Create pruned decision tree factor and return.
return TableFactor(this->discreteKeys(), pruned_vec);
}
/* ************************************************************************ */
} // namespace gtsam

View File

@ -0,0 +1,333 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file TableFactor.h
* @date May 4, 2023
* @author Yoonwoo Kim
*/
#pragma once
#include <gtsam/discrete/DiscreteFactor.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/inference/Ordering.h>
#include <Eigen/Sparse>
#include <algorithm>
#include <memory>
#include <map>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
namespace gtsam {
class SparseDiscreteConditional;
class HybridValues;
/**
* A discrete probabilistic factor optimized for sparsity.
*
* @ingroup discrete
*/
class GTSAM_EXPORT TableFactor : public DiscreteFactor {
protected:
std::map<Key, size_t> cardinalities_;
Eigen::SparseVector<double> sparse_table_;
private:
std::map<Key, size_t> denominators_;
DiscreteKeys sorted_dkeys_;
/**
* @brief Finds nth entry in the cartesian product of arrays in O(1)
* Example)
* v0 | v1 | val
* 0 | 0 | 10
* 0 | 1 | 21
* 1 | 0 | 32
* 1 | 1 | 43
* keyValueForIndex(v1, 2) = 0
* @param target_key nth entry's key to find out its assigned value
* @param index nth entry in the sparse vector
* @return TableFactor
*/
size_t keyValueForIndex(Key target_key, uint64_t index) const;
DiscreteKey discreteKey(size_t i) const {
return DiscreteKey(keys_[i], cardinalities_.at(keys_[i]));
}
/// Convert probability table given as doubles to SparseVector.
static Eigen::SparseVector<double> Convert(const std::vector<double>& table);
/// Convert probability table given as string to SparseVector.
static Eigen::SparseVector<double> Convert(const std::string& table);
public:
// typedefs needed to play nice with gtsam
typedef TableFactor This;
typedef DiscreteFactor Base; ///< Typedef to base class
typedef std::shared_ptr<TableFactor> shared_ptr;
typedef Eigen::SparseVector<double>::InnerIterator SparseIt;
typedef std::vector<std::pair<DiscreteValues, double>> AssignValList;
using Binary = std::function<double(const double, const double)>;
public:
/** The Real ring with addition and multiplication */
struct Ring {
static inline double zero() { return 0.0; }
static inline double one() { return 1.0; }
static inline double add(const double& a, const double& b) { return a + b; }
static inline double max(const double& a, const double& b) {
return std::max(a, b);
}
static inline double mul(const double& a, const double& b) { return a * b; }
static inline double div(const double& a, const double& b) {
return (a == 0 || b == 0) ? 0 : (a / b);
}
static inline double id(const double& x) { return x; }
};
/// @name Standard Constructors
/// @{
/** Default constructor for I/O */
TableFactor();
/** Constructor from DiscreteKeys and TableFactor */
TableFactor(const DiscreteKeys& keys, const TableFactor& potentials);
/** Constructor from sparse_table */
TableFactor(const DiscreteKeys& keys,
const Eigen::SparseVector<double>& table);
/** Constructor from doubles */
TableFactor(const DiscreteKeys& keys, const std::vector<double>& table)
: TableFactor(keys, Convert(table)) {}
/** Constructor from string */
TableFactor(const DiscreteKeys& keys, const std::string& table)
: TableFactor(keys, Convert(table)) {}
/// Single-key specialization
template <class SOURCE>
TableFactor(const DiscreteKey& key, SOURCE table)
: TableFactor(DiscreteKeys{key}, table) {}
/// Single-key specialization, with vector of doubles.
TableFactor(const DiscreteKey& key, const std::vector<double>& row)
: TableFactor(DiscreteKeys{key}, row) {}
/** Construct from a DiscreteTableConditional type */
explicit TableFactor(const SparseDiscreteConditional& c);
/// @}
/// @name Testable
/// @{
/// equality
bool equals(const DiscreteFactor& other, double tol = 1e-9) const override;
// print
void print(
const std::string& s = "TableFactor:\n",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
// /// @}
// /// @name Standard Interface
// /// @{
/// Calculate probability for given values `x`,
/// is just look up in TableFactor.
double evaluate(const DiscreteValues& values) const {
return operator()(values);
}
/// Evaluate probability distribution, sugar.
double operator()(const DiscreteValues& values) const override;
/// Calculate error for DiscreteValues `x`, is -log(probability).
double error(const DiscreteValues& values) const;
/// multiply two TableFactors
TableFactor operator*(const TableFactor& f) const {
return apply(f, Ring::mul);
};
/// multiple with DecisionTreeFactor
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
static double safe_div(const double& a, const double& b);
size_t cardinality(Key j) const { return cardinalities_.at(j); }
/// divide by factor f (safely)
TableFactor operator/(const TableFactor& f) const {
return apply(f, safe_div);
}
/// Convert into a decisiontree
DecisionTreeFactor toDecisionTreeFactor() const override;
/// Generate TableFactor from TableFactor
// TableFactor toTableFactor() const override { return *this; }
/// Create a TableFactor that is a subset of this TableFactor
TableFactor choose(const DiscreteValues assignments,
DiscreteKeys parent_keys) const;
/// Create new factor by summing all values with the same separator values
shared_ptr sum(size_t nrFrontals) const {
return combine(nrFrontals, Ring::add);
}
/// Create new factor by summing all values with the same separator values
shared_ptr sum(const Ordering& keys) const {
return combine(keys, Ring::add);
}
/// Create new factor by maximizing over all values with the same separator.
shared_ptr max(size_t nrFrontals) const {
return combine(nrFrontals, Ring::max);
}
/// Create new factor by maximizing over all values with the same separator.
shared_ptr max(const Ordering& keys) const {
return combine(keys, Ring::max);
}
/// @}
/// @name Advanced Interface
/// @{
/**
* Apply binary operator (*this) "op" f
* @param f the second argument for op
* @param op a binary operator that operates on TableFactor
*/
TableFactor apply(const TableFactor& f, Binary op) const;
/// Return keys in contract mode.
DiscreteKeys contractDkeys(const TableFactor& f) const;
/// Return keys in free mode.
DiscreteKeys freeDkeys(const TableFactor& f) const;
/// Return union of DiscreteKeys in two factors.
DiscreteKeys unionDkeys(const TableFactor& f) const;
/// Create unique representation of union modes.
uint64_t unionRep(const DiscreteKeys& keys,
const DiscreteValues& assign, const uint64_t idx) const;
/// Create a hash map of input factor with assignment of contract modes as
/// keys and vector of hashed assignment of free modes and value as values.
std::unordered_map<uint64_t, AssignValList> createMap(
const DiscreteKeys& contract, const DiscreteKeys& free) const;
/// Create unique representation
uint64_t uniqueRep(const DiscreteKeys& keys, const uint64_t idx) const;
/// Create unique representation with DiscreteValues
uint64_t uniqueRep(const DiscreteValues& assignments) const;
/// Find DiscreteValues for corresponding index.
DiscreteValues findAssignments(const uint64_t idx) const;
/// Find value for corresponding DiscreteValues.
double findValue(const DiscreteValues& values) const;
/**
* Combine frontal variables using binary operator "op"
* @param nrFrontals nr. of frontal to combine variables in this factor
* @param op a binary operator that operates on TableFactor
* @return shared pointer to newly created TableFactor
*/
shared_ptr combine(size_t nrFrontals, Binary op) const;
/**
* Combine frontal variables in an Ordering using binary operator "op"
* @param nrFrontals nr. of frontal to combine variables in this factor
* @param op a binary operator that operates on TableFactor
* @return shared pointer to newly created TableFactor
*/
shared_ptr combine(const Ordering& keys, Binary op) const;
/// Enumerate all values into a map from values to double.
std::vector<std::pair<DiscreteValues, double>> enumerate() const;
/// Return all the discrete keys associated with this factor.
DiscreteKeys discreteKeys() const;
/**
* @brief Prune the decision tree of discrete variables.
*
* Pruning will set the values to be "pruned" to 0 indicating a 0
* probability. An assignment is pruned if it is not in the top
* `maxNrAssignments` values.
*
* A violation can occur if there are more
* duplicate values than `maxNrAssignments`. A violation here is the need to
* un-prune the decision tree (e.g. all assignment values are 1.0). We could
* have another case where some subset of duplicates exist (e.g. for a tree
* with 8 assignments we have 1, 1, 1, 1, 0.8, 0.7, 0.6, 0.5), but this is
* not a violation since the for `maxNrAssignments=5` the top values are (1,
* 0.8).
*
* @param maxNrAssignments The maximum number of assignments to keep.
* @return TableFactor
*/
TableFactor prune(size_t maxNrAssignments) const;
/// @}
/// @name Wrapper support
/// @{
/**
* @brief Render as markdown table
*
* @param keyFormatter GTSAM-style Key formatter.
* @param names optional, category names corresponding to choices.
* @return std::string a markdown string.
*/
std::string markdown(const KeyFormatter& keyFormatter = DefaultKeyFormatter,
const Names& names = {}) const override;
/**
* @brief Render as html table
*
* @param keyFormatter GTSAM-style Key formatter.
* @param names optional, category names corresponding to choices.
* @return std::string a html string.
*/
std::string html(const KeyFormatter& keyFormatter = DefaultKeyFormatter,
const Names& names = {}) const override;
/// @}
/// @name HybridValues methods.
/// @{
/**
* Calculate error for HybridValues `x`, is -log(probability)
* Simply dispatches to DiscreteValues version.
*/
double error(const HybridValues& values) const override;
/// @}
};
// traits
template <>
struct traits<TableFactor> : public Testable<TableFactor> {};
} // namespace gtsam

View File

@ -0,0 +1,359 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* testTableFactor.cpp
*
* @date Feb 15, 2023
* @author Yoonwoo Kim
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/serializationTestHelpers.h>
#include <gtsam/discrete/TableFactor.h>
#include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/discrete/Signature.h>
#include <random>
#include <chrono>
using namespace std;
using namespace gtsam;
vector<double> genArr(double dropout, size_t size) {
random_device rd;
mt19937 g(rd());
vector<double> dropoutmask(size); // Chance of 0
uniform_int_distribution<> dist(1, 9);
auto gen = [&dist, &g]() { return dist(g); };
generate(dropoutmask.begin(), dropoutmask.end(), gen);
fill_n(dropoutmask.begin(), dropoutmask.size() * (dropout), 0);
shuffle(dropoutmask.begin(), dropoutmask.end(), g);
return dropoutmask;
}
map<double, pair<chrono::microseconds, chrono::microseconds>>
measureTime(DiscreteKeys keys1, DiscreteKeys keys2, size_t size) {
vector<double> dropouts = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
map<double, pair<chrono::microseconds, chrono::microseconds>>
measured_times;
for (auto dropout : dropouts) {
vector<double> arr1 = genArr(dropout, size);
vector<double> arr2 = genArr(dropout, size);
TableFactor f1(keys1, arr1);
TableFactor f2(keys2, arr2);
DecisionTreeFactor f1_dt(keys1, arr1);
DecisionTreeFactor f2_dt(keys2, arr2);
// measure time TableFactor
auto tb_start = chrono::high_resolution_clock::now();
TableFactor actual = f1 * f2;
auto tb_end = chrono::high_resolution_clock::now();
auto tb_time_diff = chrono::duration_cast<chrono::microseconds>(tb_end - tb_start);
// measure time DT
auto dt_start = chrono::high_resolution_clock::now();
DecisionTreeFactor actual_dt = f1_dt * f2_dt;
auto dt_end = chrono::high_resolution_clock::now();
auto dt_time_diff = chrono::duration_cast<chrono::microseconds>(dt_end - dt_start);
bool flag = true;
for (auto assignmentVal : actual_dt.enumerate()) {
flag = actual_dt(assignmentVal.first) != actual(assignmentVal.first);
if (flag) {
std::cout << "something is wrong: " << std::endl;
assignmentVal.first.print();
std::cout << "dt: " << actual_dt(assignmentVal.first) << std::endl;
std::cout << "tb: " << actual(assignmentVal.first) << std::endl;
break;
}
}
if (flag) break;
measured_times[dropout] = make_pair(tb_time_diff, dt_time_diff);
}
return measured_times;
}
void printTime(map<double, pair<chrono::microseconds, chrono::microseconds>> measured_time) {
for (auto&& kv : measured_time) {
cout << "dropout: " << kv.first << " | TableFactor time: "
<< kv.second.first.count() << " | DecisionTreeFactor time: " << kv.second.second.count()
<< endl;
}
}
/* ************************************************************************* */
TEST( TableFactor, constructors)
{
// Declare a bunch of keys
DiscreteKey X(0,2), Y(1,3), Z(2,2), A(3, 5);
// Create factors
TableFactor f_zeros(A, {0, 0, 0, 0, 1});
TableFactor f1(X, {2, 8});
TableFactor f2(X & Y, "2 5 3 6 4 7");
TableFactor f3(X & Y & Z, "2 5 3 6 4 7 25 55 35 65 45 75");
EXPECT_LONGS_EQUAL(1,f1.size());
EXPECT_LONGS_EQUAL(2,f2.size());
EXPECT_LONGS_EQUAL(3,f3.size());
DiscreteValues values;
values[0] = 1; // x
values[1] = 2; // y
values[2] = 1; // z
values[3] = 4; // a
EXPECT_DOUBLES_EQUAL(1, f_zeros(values), 1e-9);
EXPECT_DOUBLES_EQUAL(8, f1(values), 1e-9);
EXPECT_DOUBLES_EQUAL(7, f2(values), 1e-9);
EXPECT_DOUBLES_EQUAL(75, f3(values), 1e-9);
// Assert that error = -log(value)
EXPECT_DOUBLES_EQUAL(-log(f1(values)), f1.error(values), 1e-9);
}
/* ************************************************************************* */
TEST(TableFactor, multiplication) {
DiscreteKey v0(0, 2), v1(1, 2), v2(2, 2);
// Multiply with a DiscreteDistribution, i.e., Bayes Law!
DiscreteDistribution prior(v1 % "1/3");
TableFactor f1(v0 & v1, "1 2 3 4");
DecisionTreeFactor expected(v0 & v1, "0.25 1.5 0.75 3");
CHECK(assert_equal(expected, static_cast<DecisionTreeFactor>(prior) *
f1.toDecisionTreeFactor()));
CHECK(assert_equal(expected, f1 * prior));
// Multiply two factors
TableFactor f2(v1 & v2, "5 6 7 8");
TableFactor actual = f1 * f2;
TableFactor expected2(v0 & v1 & v2, "5 6 14 16 15 18 28 32");
CHECK(assert_equal(expected2, actual));
DiscreteKey A(0, 3), B(1, 2), C(2, 2);
TableFactor f_zeros1(A & C, "0 0 0 2 0 3");
TableFactor f_zeros2(B & C, "4 0 0 5");
TableFactor actual_zeros = f_zeros1 * f_zeros2;
TableFactor expected3(A & B & C, "0 0 0 0 0 0 0 10 0 0 0 15");
CHECK(assert_equal(expected3, actual_zeros));
}
/* ************************************************************************* */
TEST(TableFactor, benchmark) {
DiscreteKey A(0, 5), B(1, 2), C(2, 5), D(3, 2), E(4, 5),
F(5, 2), G(6, 3), H(7, 2), I(8, 5), J(9, 7), K(10, 2), L(11, 3);
// 100
DiscreteKeys one_1 = {A, B, C, D};
DiscreteKeys one_2 = {C, D, E, F};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_1 =
measureTime(one_1, one_2, 100);
printTime(time_map_1);
// 200
DiscreteKeys two_1 = {A, B, C, D, F};
DiscreteKeys two_2 = {B, C, D, E, F};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_2 =
measureTime(two_1, two_2, 200);
printTime(time_map_2);
// 300
DiscreteKeys three_1 = {A, B, C, D, G};
DiscreteKeys three_2 = {C, D, E, F, G};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_3 =
measureTime(three_1, three_2, 300);
printTime(time_map_3);
// 400
DiscreteKeys four_1 = {A, B, C, D, F, H};
DiscreteKeys four_2 = {B, C, D, E, F, H};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_4 =
measureTime(four_1, four_2, 400);
printTime(time_map_4);
// 500
DiscreteKeys five_1 = {A, B, C, D, I};
DiscreteKeys five_2 = {C, D, E, F, I};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_5 =
measureTime(five_1, five_2, 500);
printTime(time_map_5);
// 600
DiscreteKeys six_1 = {A, B, C, D, F, G};
DiscreteKeys six_2 = {B, C, D, E, F, G};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_6 =
measureTime(six_1, six_2, 600);
printTime(time_map_6);
// 700
DiscreteKeys seven_1 = {A, B, C, D, J};
DiscreteKeys seven_2 = {C, D, E, F, J};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_7 =
measureTime(seven_1, seven_2, 700);
printTime(time_map_7);
// 800
DiscreteKeys eight_1 = {A, B, C, D, F, H, K};
DiscreteKeys eight_2 = {B, C, D, E, F, H, K};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_8 =
measureTime(eight_1, eight_2, 800);
printTime(time_map_8);
// 900
DiscreteKeys nine_1 = {A, B, C, D, G, L};
DiscreteKeys nine_2 = {C, D, E, F, G, L};
map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_9 =
measureTime(nine_1, nine_2, 900);
printTime(time_map_9);
}
/* ************************************************************************* */
TEST( TableFactor, sum_max)
{
DiscreteKey v0(0,3), v1(1,2);
TableFactor f1(v0 & v1, "1 2 3 4 5 6");
TableFactor expected(v1, "9 12");
TableFactor::shared_ptr actual = f1.sum(1);
CHECK(assert_equal(expected, *actual, 1e-5));
TableFactor expected2(v1, "5 6");
TableFactor::shared_ptr actual2 = f1.max(1);
CHECK(assert_equal(expected2, *actual2));
TableFactor f2(v1 & v0, "1 2 3 4 5 6");
TableFactor::shared_ptr actual22 = f2.sum(1);
}
/* ************************************************************************* */
// Check enumerate yields the correct list of assignment/value pairs.
TEST(TableFactor, enumerate) {
DiscreteKey A(12, 3), B(5, 2);
TableFactor f(A & B, "1 2 3 4 5 6");
auto actual = f.enumerate();
std::vector<std::pair<DiscreteValues, double>> expected;
DiscreteValues values;
for (size_t a : {0, 1, 2}) {
for (size_t b : {0, 1}) {
values[12] = a;
values[5] = b;
expected.emplace_back(values, f(values));
}
}
EXPECT(actual == expected);
}
/* ************************************************************************* */
// Check pruning of the decision tree works as expected.
TEST(TableFactor, Prune) {
DiscreteKey A(1, 2), B(2, 2), C(3, 2);
TableFactor f(A & B & C, "1 5 3 7 2 6 4 8");
// Only keep the leaves with the top 5 values.
size_t maxNrAssignments = 5;
auto pruned5 = f.prune(maxNrAssignments);
// Pruned leaves should be 0
TableFactor expected(A & B & C, "0 5 0 7 0 6 4 8");
EXPECT(assert_equal(expected, pruned5));
// Check for more extreme pruning where we only keep the top 2 leaves
maxNrAssignments = 2;
auto pruned2 = f.prune(maxNrAssignments);
TableFactor expected2(A & B & C, "0 0 0 7 0 0 0 8");
EXPECT(assert_equal(expected2, pruned2));
DiscreteKey D(4, 2);
TableFactor factor(
D & C & B & A,
"0.0 0.0 0.0 0.60658897 0.61241912 0.61241969 0.61247685 0.61247742 0.0 "
"0.0 0.0 0.99995287 1.0 1.0 1.0 1.0");
TableFactor expected3(
D & C & B & A,
"0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 "
"0.999952870000 1.0 1.0 1.0 1.0");
maxNrAssignments = 5;
auto pruned3 = factor.prune(maxNrAssignments);
EXPECT(assert_equal(expected3, pruned3));
}
/* ************************************************************************* */
// Check markdown representation looks as expected.
TEST(TableFactor, markdown) {
DiscreteKey A(12, 3), B(5, 2);
TableFactor f(A & B, "1 2 3 4 5 6");
string expected =
"|A|B|value|\n"
"|:-:|:-:|:-:|\n"
"|0|0|1|\n"
"|0|1|2|\n"
"|1|0|3|\n"
"|1|1|4|\n"
"|2|0|5|\n"
"|2|1|6|\n";
auto formatter = [](Key key) { return key == 12 ? "A" : "B"; };
string actual = f.markdown(formatter);
EXPECT(actual == expected);
}
/* ************************************************************************* */
// Check markdown representation with a value formatter.
TEST(TableFactor, markdownWithValueFormatter) {
DiscreteKey A(12, 3), B(5, 2);
TableFactor f(A & B, "1 2 3 4 5 6");
string expected =
"|A|B|value|\n"
"|:-:|:-:|:-:|\n"
"|Zero|-|1|\n"
"|Zero|+|2|\n"
"|One|-|3|\n"
"|One|+|4|\n"
"|Two|-|5|\n"
"|Two|+|6|\n";
auto keyFormatter = [](Key key) { return key == 12 ? "A" : "B"; };
TableFactor::Names names{{12, {"Zero", "One", "Two"}},
{5, {"-", "+"}}};
string actual = f.markdown(keyFormatter, names);
EXPECT(actual == expected);
}
/* ************************************************************************* */
// Check html representation with a value formatter.
TEST(TableFactor, htmlWithValueFormatter) {
DiscreteKey A(12, 3), B(5, 2);
TableFactor f(A & B, "1 2 3 4 5 6");
string expected =
"<div>\n"
"<table class='TableFactor'>\n"
" <thead>\n"
" <tr><th>A</th><th>B</th><th>value</th></tr>\n"
" </thead>\n"
" <tbody>\n"
" <tr><th>Zero</th><th>-</th><td>1</td></tr>\n"
" <tr><th>Zero</th><th>+</th><td>2</td></tr>\n"
" <tr><th>One</th><th>-</th><td>3</td></tr>\n"
" <tr><th>One</th><th>+</th><td>4</td></tr>\n"
" <tr><th>Two</th><th>-</th><td>5</td></tr>\n"
" <tr><th>Two</th><th>+</th><td>6</td></tr>\n"
" </tbody>\n"
"</table>\n"
"</div>";
auto keyFormatter = [](Key key) { return key == 12 ? "A" : "B"; };
TableFactor::Names names{{12, {"Zero", "One", "Two"}},
{5, {"-", "+"}}};
string actual = f.html(keyFormatter, names);
EXPECT(actual == expected);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */