Added TableFactor, a discrete factor optimized for sparsity.
							parent
							
								
									9eb9770a43
								
							
						
					
					
						commit
						dca7a980dc
					
				| 
						 | 
				
			
			@ -0,0 +1,566 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file TableFactor.cpp
 | 
			
		||||
 * @brief discrete factor
 | 
			
		||||
 * @date May 4, 2023
 | 
			
		||||
 * @author Yoonwoo Kim
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam/discrete/DecisionTreeFactor.h>
 | 
			
		||||
#include <gtsam/base/FastSet.h>
 | 
			
		||||
#include <gtsam/hybrid/HybridValues.h>
 | 
			
		||||
#include <gtsam/discrete/TableFactor.h>
 | 
			
		||||
#include <gtsam/discrete/SparseDiscreteConditional.h>
 | 
			
		||||
 | 
			
		||||
#include <boost/format.hpp>
 | 
			
		||||
#include <utility>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor::TableFactor() {}
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor::TableFactor(const DiscreteKeys& dkeys,
 | 
			
		||||
                           const TableFactor& potentials)
 | 
			
		||||
      : DiscreteFactor(dkeys.indices()),
 | 
			
		||||
        cardinalities_(potentials .cardinalities_) {
 | 
			
		||||
  sparse_table_ = potentials.sparse_table_;
 | 
			
		||||
  denominators_ = potentials.denominators_;
 | 
			
		||||
  sorted_dkeys_ = discreteKeys();
 | 
			
		||||
  sort(sorted_dkeys_.begin(), sorted_dkeys_.end());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor::TableFactor(const DiscreteKeys& dkeys,
 | 
			
		||||
                          const Eigen::SparseVector<double>& table)
 | 
			
		||||
      : DiscreteFactor(dkeys.indices()), sparse_table_(table.size()) {
 | 
			
		||||
    sparse_table_ = table;
 | 
			
		||||
    double denom = table.size();
 | 
			
		||||
    for (const DiscreteKey& dkey : dkeys) {
 | 
			
		||||
      cardinalities_.insert(dkey);
 | 
			
		||||
      denom /= dkey.second;
 | 
			
		||||
      denominators_.insert(std::pair<Key, double>(dkey.first, denom));
 | 
			
		||||
    }
 | 
			
		||||
    sorted_dkeys_ = discreteKeys();
 | 
			
		||||
    sort(sorted_dkeys_.begin(), sorted_dkeys_.end());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor::TableFactor(const SparseDiscreteConditional& c)
 | 
			
		||||
      : DiscreteFactor(c.keys()),
 | 
			
		||||
        sparse_table_(c.sparse_table_),
 | 
			
		||||
        denominators_(c.denominators_) {
 | 
			
		||||
          cardinalities_ = c.cardinalities_;
 | 
			
		||||
          sorted_dkeys_ = discreteKeys();
 | 
			
		||||
          sort(sorted_dkeys_.begin(), sorted_dkeys_.end());
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  Eigen::SparseVector<double> TableFactor::Convert(
 | 
			
		||||
    const std::vector<double>& table) {
 | 
			
		||||
    Eigen::SparseVector<double> sparse_table(table.size());
 | 
			
		||||
    // Count number of nonzero elements in table and reserving the space.
 | 
			
		||||
    const uint64_t nnz = std::count_if(table.begin(), table.end(),
 | 
			
		||||
                                    [](uint64_t i) { return i != 0; });
 | 
			
		||||
    sparse_table.reserve(nnz);
 | 
			
		||||
    for (uint64_t i = 0; i < table.size(); i++) {
 | 
			
		||||
      if (table[i] != 0) sparse_table.insert(i) = table[i];
 | 
			
		||||
    }
 | 
			
		||||
    sparse_table.pruned();
 | 
			
		||||
    sparse_table.data().squeeze();
 | 
			
		||||
    return sparse_table;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  Eigen::SparseVector<double> TableFactor::Convert(const std::string& table) {
 | 
			
		||||
    // Convert string to doubles.
 | 
			
		||||
    std::vector<double> ys;
 | 
			
		||||
    std::istringstream iss(table);
 | 
			
		||||
    std::copy(std::istream_iterator<double>(iss), std::istream_iterator<double>(),
 | 
			
		||||
              std::back_inserter(ys));
 | 
			
		||||
    return Convert(ys);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  bool TableFactor::equals(const DiscreteFactor& other,
 | 
			
		||||
                                  double tol) const {
 | 
			
		||||
    if (!dynamic_cast<const TableFactor*>(&other)) {
 | 
			
		||||
      return false;
 | 
			
		||||
    } else {
 | 
			
		||||
      const auto& f(static_cast<const TableFactor&>(other));
 | 
			
		||||
      return sparse_table_.isApprox(f.sparse_table_, tol);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  double TableFactor::operator()(const DiscreteValues& values) const {
 | 
			
		||||
    // a b c d => D * (C * (B * (a) + b) + c) + d
 | 
			
		||||
    uint64_t idx = 0, card = 1;
 | 
			
		||||
    for (auto it = sorted_dkeys_.rbegin(); it != sorted_dkeys_.rend(); ++it) {
 | 
			
		||||
      if (values.find(it->first) != values.end()) {
 | 
			
		||||
        idx += card * values.at(it->first);
 | 
			
		||||
      }
 | 
			
		||||
      card *= it->second;
 | 
			
		||||
    }
 | 
			
		||||
    return sparse_table_.coeff(idx);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  double TableFactor::findValue(const DiscreteValues& values) const {
 | 
			
		||||
    // a b c d => D * (C * (B * (a) + b) + c) + d
 | 
			
		||||
    uint64_t idx = 0, card = 1;
 | 
			
		||||
    for (auto it = keys_.rbegin(); it != keys_.rend(); ++it) {
 | 
			
		||||
      if (values.find(*it) != values.end()) {
 | 
			
		||||
        idx += card * values.at(*it);
 | 
			
		||||
      }
 | 
			
		||||
      card *= cardinality(*it);
 | 
			
		||||
    }
 | 
			
		||||
    return sparse_table_.coeff(idx);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  double TableFactor::error(const DiscreteValues& values) const {
 | 
			
		||||
    return -log(evaluate(values));
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  double TableFactor::error(const HybridValues& values) const {
 | 
			
		||||
    return error(values.discrete());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  DecisionTreeFactor TableFactor::operator*(const DecisionTreeFactor& f) const {
 | 
			
		||||
    return toDecisionTreeFactor() * f;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  DecisionTreeFactor TableFactor::toDecisionTreeFactor() const {
 | 
			
		||||
    DiscreteKeys dkeys = discreteKeys();
 | 
			
		||||
    std::vector<double> table;
 | 
			
		||||
    for (auto i = 0; i < sparse_table_.size(); i++) {
 | 
			
		||||
      table.push_back(sparse_table_.coeff(i));
 | 
			
		||||
    }
 | 
			
		||||
    DecisionTreeFactor f(dkeys, table);
 | 
			
		||||
    return f;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor TableFactor::choose(const DiscreteValues parent_assign,
 | 
			
		||||
                                  DiscreteKeys parent_keys) const {
 | 
			
		||||
    if (parent_keys.empty()) return *this;
 | 
			
		||||
    
 | 
			
		||||
    // Unique representation of parent values.
 | 
			
		||||
    uint64_t unique = 0;
 | 
			
		||||
    uint64_t card = 1;
 | 
			
		||||
    for (auto it = keys_.rbegin(); it != keys_.rend(); ++it) {
 | 
			
		||||
      if (parent_assign.find(*it) != parent_assign.end()) {
 | 
			
		||||
        unique += parent_assign.at(*it) * card;
 | 
			
		||||
        card *= cardinality(*it);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // Find child DiscreteKeys
 | 
			
		||||
    DiscreteKeys child_dkeys;
 | 
			
		||||
    std::sort(parent_keys.begin(), parent_keys.end());
 | 
			
		||||
    std::set_difference(sorted_dkeys_.begin(), sorted_dkeys_.end(), parent_keys.begin(),
 | 
			
		||||
                        parent_keys.end(), std::back_inserter(child_dkeys));
 | 
			
		||||
 | 
			
		||||
    // Create child sparse table to populate.
 | 
			
		||||
    uint64_t child_card = 1;
 | 
			
		||||
    for (const DiscreteKey& child_dkey : child_dkeys)
 | 
			
		||||
      child_card *= child_dkey.second;
 | 
			
		||||
    Eigen::SparseVector<double> child_sparse_table_(child_card);
 | 
			
		||||
    child_sparse_table_.reserve(child_card);
 | 
			
		||||
 | 
			
		||||
    // Populate child sparse table.
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      // Create unique representation of parent keys
 | 
			
		||||
      uint64_t parent_unique = uniqueRep(parent_keys, it.index());
 | 
			
		||||
      // Populate the table
 | 
			
		||||
      if (parent_unique == unique) {
 | 
			
		||||
        uint64_t idx = uniqueRep(child_dkeys, it.index());
 | 
			
		||||
        child_sparse_table_.insert(idx) = it.value();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    child_sparse_table_.pruned();
 | 
			
		||||
    child_sparse_table_.data().squeeze();
 | 
			
		||||
    return TableFactor(child_dkeys, child_sparse_table_);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  double TableFactor::safe_div(const double& a, const double& b) {
 | 
			
		||||
    // The use for safe_div is when we divide the product factor by the sum
 | 
			
		||||
    // factor. If the product or sum is zero, we accord zero probability to the
 | 
			
		||||
    // event.
 | 
			
		||||
    return (a == 0 || b == 0) ? 0 : (a / b);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  void TableFactor::print(const string& s, const KeyFormatter& formatter) const {
 | 
			
		||||
    cout << s;
 | 
			
		||||
    cout << " f[";
 | 
			
		||||
    for (auto&& key : keys())
 | 
			
		||||
      cout << boost::format(" (%1%,%2%),") % formatter(key) % cardinality(key);
 | 
			
		||||
    cout << " ]" << endl;
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      DiscreteValues assignment = findAssignments(it.index());
 | 
			
		||||
      for (auto&& kv : assignment) {
 | 
			
		||||
        cout << "(" << formatter(kv.first) << ", " << kv.second << ")";
 | 
			
		||||
      }
 | 
			
		||||
      cout << " | " << it.value() << " | " << it.index() << endl;
 | 
			
		||||
    }
 | 
			
		||||
    cout << "number of nnzs: " <<sparse_table_.nonZeros() << endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor TableFactor::apply(const TableFactor& f, Binary op) const {
 | 
			
		||||
    if (keys_.empty() && sparse_table_.nonZeros() == 0)
 | 
			
		||||
      return f;
 | 
			
		||||
    else if (f.keys_.empty() && f.sparse_table_.nonZeros() == 0)
 | 
			
		||||
      return *this;
 | 
			
		||||
    // 1. Identify keys for contract and free modes.
 | 
			
		||||
    DiscreteKeys contract_dkeys = contractDkeys(f);
 | 
			
		||||
    DiscreteKeys f_free_dkeys = f.freeDkeys(*this);
 | 
			
		||||
    DiscreteKeys union_dkeys = unionDkeys(f);
 | 
			
		||||
    // 2. Create hash table for input factor f
 | 
			
		||||
    unordered_map<uint64_t, AssignValList> map_f = 
 | 
			
		||||
      f.createMap(contract_dkeys, f_free_dkeys);
 | 
			
		||||
    // 3. Initialize multiplied factor.
 | 
			
		||||
    uint64_t card = 1;
 | 
			
		||||
    for (auto u_dkey : union_dkeys) card *= u_dkey.second;
 | 
			
		||||
    Eigen::SparseVector<double> mult_sparse_table(card);
 | 
			
		||||
    mult_sparse_table.reserve(card);
 | 
			
		||||
    // 3. Multiply.
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      uint64_t contract_unique = uniqueRep(contract_dkeys, it.index());
 | 
			
		||||
      if (map_f.find(contract_unique) == map_f.end()) continue;
 | 
			
		||||
      for (auto assignVal : map_f[contract_unique]) {
 | 
			
		||||
        uint64_t union_idx = unionRep(union_dkeys, assignVal.first, it.index());
 | 
			
		||||
        mult_sparse_table.insert(union_idx) = op(it.value(), assignVal.second);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    // 4. Free unused memory.
 | 
			
		||||
    mult_sparse_table.pruned();
 | 
			
		||||
    mult_sparse_table.data().squeeze();
 | 
			
		||||
    // 5. Create union keys and return.
 | 
			
		||||
    return TableFactor(union_dkeys, mult_sparse_table);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  DiscreteKeys TableFactor::contractDkeys(const TableFactor& f) const {
 | 
			
		||||
    // Find contract modes.
 | 
			
		||||
    DiscreteKeys contract;
 | 
			
		||||
    set_intersection(sorted_dkeys_.begin(), sorted_dkeys_.end(),
 | 
			
		||||
                      f.sorted_dkeys_.begin(), f.sorted_dkeys_.end(),
 | 
			
		||||
                      back_inserter(contract));
 | 
			
		||||
    return contract;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  DiscreteKeys TableFactor::freeDkeys(const TableFactor& f) const {
 | 
			
		||||
    // Find free modes.
 | 
			
		||||
    DiscreteKeys free;
 | 
			
		||||
    set_difference(sorted_dkeys_.begin(), sorted_dkeys_.end(),
 | 
			
		||||
                    f.sorted_dkeys_.begin(), f.sorted_dkeys_.end(),
 | 
			
		||||
                    back_inserter(free));
 | 
			
		||||
    return free;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  DiscreteKeys TableFactor::unionDkeys(const TableFactor& f) const {
 | 
			
		||||
    // Find union modes.
 | 
			
		||||
    DiscreteKeys union_dkeys;
 | 
			
		||||
    set_union(sorted_dkeys_.begin(), sorted_dkeys_.end(),
 | 
			
		||||
              f.sorted_dkeys_.begin(), f.sorted_dkeys_.end(),
 | 
			
		||||
              back_inserter(union_dkeys));
 | 
			
		||||
    return union_dkeys;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  uint64_t TableFactor::unionRep(const DiscreteKeys& union_keys,
 | 
			
		||||
    const DiscreteValues& f_free, const uint64_t idx) const {
 | 
			
		||||
    uint64_t union_idx = 0, card = 1;
 | 
			
		||||
    for (auto it = union_keys.rbegin(); it != union_keys.rend(); it++) {
 | 
			
		||||
      if (f_free.find(it->first) == f_free.end()) {
 | 
			
		||||
        union_idx += keyValueForIndex(it->first, idx) * card;
 | 
			
		||||
      } else {
 | 
			
		||||
        union_idx += f_free.at(it->first) * card;
 | 
			
		||||
      }
 | 
			
		||||
      card *= it->second;
 | 
			
		||||
    }
 | 
			
		||||
    return union_idx;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  unordered_map<uint64_t, TableFactor::AssignValList> TableFactor::createMap(
 | 
			
		||||
    const DiscreteKeys& contract, const DiscreteKeys& free) const {
 | 
			
		||||
    // 1. Initialize map.
 | 
			
		||||
    unordered_map<uint64_t, AssignValList> map_f;
 | 
			
		||||
    // 2. Iterate over nonzero elements.
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      // 3. Create unique representation of contract modes.
 | 
			
		||||
      uint64_t unique_rep = uniqueRep(contract, it.index());
 | 
			
		||||
      // 4. Create assignment for free modes.
 | 
			
		||||
      DiscreteValues free_assignments;
 | 
			
		||||
      for (auto& key : free) free_assignments[key.first]
 | 
			
		||||
        = keyValueForIndex(key.first, it.index());
 | 
			
		||||
      // 5. Populate map.
 | 
			
		||||
      if (map_f.find(unique_rep) == map_f.end()) {
 | 
			
		||||
        map_f[unique_rep] = {make_pair(free_assignments, it.value())};
 | 
			
		||||
      } else {
 | 
			
		||||
        map_f[unique_rep].push_back(make_pair(free_assignments, it.value()));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return map_f;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  uint64_t TableFactor::uniqueRep(const DiscreteKeys& dkeys, const uint64_t idx) const {
 | 
			
		||||
    if (dkeys.empty()) return 0;
 | 
			
		||||
    uint64_t unique_rep = 0, card = 1;
 | 
			
		||||
    for (auto it = dkeys.rbegin(); it != dkeys.rend(); it++) {
 | 
			
		||||
      unique_rep += keyValueForIndex(it->first, idx) * card;
 | 
			
		||||
      card *= it->second;
 | 
			
		||||
    }
 | 
			
		||||
    return unique_rep;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  uint64_t TableFactor::uniqueRep(const DiscreteValues& assignments) const {
 | 
			
		||||
    if (assignments.empty()) return 0;
 | 
			
		||||
    uint64_t unique_rep = 0, card = 1;
 | 
			
		||||
    for (auto it = assignments.rbegin(); it != assignments.rend(); it++) {
 | 
			
		||||
      unique_rep += it->second * card;
 | 
			
		||||
      card *= cardinalities_.at(it->first);
 | 
			
		||||
    }
 | 
			
		||||
    return unique_rep;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  DiscreteValues TableFactor::findAssignments(const uint64_t idx) const {
 | 
			
		||||
    DiscreteValues assignment;
 | 
			
		||||
    for (Key key : keys_) {
 | 
			
		||||
      assignment[key] = keyValueForIndex(key, idx);
 | 
			
		||||
    }
 | 
			
		||||
    return assignment;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor::shared_ptr TableFactor::combine(
 | 
			
		||||
      size_t nrFrontals, Binary op) const {
 | 
			
		||||
    if (nrFrontals > size()) {
 | 
			
		||||
      throw invalid_argument(
 | 
			
		||||
          "TableFactor::combine: invalid number of frontal "
 | 
			
		||||
          "keys " +
 | 
			
		||||
          to_string(nrFrontals) + ", nr.keys=" + std::to_string(size()));
 | 
			
		||||
    }
 | 
			
		||||
    // Find remaining keys.
 | 
			
		||||
    DiscreteKeys remain_dkeys;
 | 
			
		||||
    uint64_t card = 1;
 | 
			
		||||
    for (auto i = nrFrontals; i < keys_.size(); i++) {
 | 
			
		||||
      remain_dkeys.push_back(discreteKey(i));
 | 
			
		||||
      card *= cardinality(keys_[i]);
 | 
			
		||||
    }
 | 
			
		||||
    // Create combined table.
 | 
			
		||||
    Eigen::SparseVector<double> combined_table(card);
 | 
			
		||||
    combined_table.reserve(sparse_table_.nonZeros());
 | 
			
		||||
    // Populate combined table.
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      uint64_t idx = uniqueRep(remain_dkeys, it.index());
 | 
			
		||||
      double new_val = op(combined_table.coeff(idx), it.value());
 | 
			
		||||
      combined_table.coeffRef(idx) = new_val;
 | 
			
		||||
  }
 | 
			
		||||
  // Free unused memory.
 | 
			
		||||
  combined_table.pruned();
 | 
			
		||||
  combined_table.data().squeeze();
 | 
			
		||||
  return std::make_shared<TableFactor>(remain_dkeys, combined_table);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor::shared_ptr TableFactor::combine(
 | 
			
		||||
      const Ordering& frontalKeys, Binary op) const {
 | 
			
		||||
    if (frontalKeys.size() > size()) {
 | 
			
		||||
      throw invalid_argument(
 | 
			
		||||
          "TableFactor::combine: invalid number of frontal "
 | 
			
		||||
          "keys " +
 | 
			
		||||
          std::to_string(frontalKeys.size()) + ", nr.keys=" +
 | 
			
		||||
          std::to_string(size()));
 | 
			
		||||
    }
 | 
			
		||||
    // Find remaining keys.
 | 
			
		||||
    DiscreteKeys remain_dkeys;
 | 
			
		||||
    uint64_t card = 1;
 | 
			
		||||
    for (Key key : keys_) {
 | 
			
		||||
      if (std::find(frontalKeys.begin(), frontalKeys.end(), key) ==
 | 
			
		||||
          frontalKeys.end()) {
 | 
			
		||||
        remain_dkeys.emplace_back(key, cardinality(key));
 | 
			
		||||
        card *= cardinality(key);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    // Create combined table.
 | 
			
		||||
    Eigen::SparseVector<double> combined_table(card);
 | 
			
		||||
    combined_table.reserve(sparse_table_.nonZeros());
 | 
			
		||||
    // Populate combined table.
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      uint64_t idx = uniqueRep(remain_dkeys, it.index());
 | 
			
		||||
      double new_val = op(combined_table.coeff(idx), it.value());
 | 
			
		||||
      combined_table.coeffRef(idx) = new_val;
 | 
			
		||||
    }
 | 
			
		||||
    // Free unused memory.
 | 
			
		||||
    combined_table.pruned();
 | 
			
		||||
    combined_table.data().squeeze();
 | 
			
		||||
    return std::make_shared<TableFactor>(remain_dkeys, combined_table);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  size_t TableFactor::keyValueForIndex(Key target_key, uint64_t index) const {
 | 
			
		||||
    // http://phrogz.net/lazy-cartesian-product
 | 
			
		||||
    return (index / denominators_.at(target_key)) % cardinality(target_key);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  std::vector<std::pair<DiscreteValues, double>> TableFactor::enumerate()
 | 
			
		||||
      const {
 | 
			
		||||
    // Get all possible assignments
 | 
			
		||||
    std::vector<std::pair<Key, size_t>> pairs = discreteKeys();
 | 
			
		||||
    // Reverse to make cartesian product output a more natural ordering.
 | 
			
		||||
    std::vector<std::pair<Key, size_t>> rpairs(pairs.rbegin(), pairs.rend());
 | 
			
		||||
    const auto assignments = DiscreteValues::CartesianProduct(rpairs);
 | 
			
		||||
    // Construct unordered_map with values
 | 
			
		||||
    std::vector<std::pair<DiscreteValues, double>> result;
 | 
			
		||||
    for (const auto& assignment : assignments) {
 | 
			
		||||
      result.emplace_back(assignment, operator()(assignment));
 | 
			
		||||
    }
 | 
			
		||||
    return result;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  DiscreteKeys TableFactor::discreteKeys() const {
 | 
			
		||||
    DiscreteKeys result;
 | 
			
		||||
    for (auto&& key : keys()) {
 | 
			
		||||
      DiscreteKey dkey(key, cardinality(key));
 | 
			
		||||
      if (std::find(result.begin(), result.end(), dkey) == result.end()) {
 | 
			
		||||
        result.push_back(dkey);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return result;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Print out header.
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  string TableFactor::markdown(const KeyFormatter& keyFormatter,
 | 
			
		||||
                                      const Names& names) const {
 | 
			
		||||
    stringstream ss;
 | 
			
		||||
 | 
			
		||||
    // Print out header.
 | 
			
		||||
    ss << "|";
 | 
			
		||||
    for (auto& key : keys()) {
 | 
			
		||||
      ss << keyFormatter(key) << "|";
 | 
			
		||||
    }
 | 
			
		||||
    ss << "value|\n";
 | 
			
		||||
 | 
			
		||||
    // Print out separator with alignment hints.
 | 
			
		||||
    ss << "|";
 | 
			
		||||
    for (size_t j = 0; j < size(); j++) ss << ":-:|";
 | 
			
		||||
    ss << ":-:|\n";
 | 
			
		||||
 | 
			
		||||
    // Print out all rows.
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      DiscreteValues assignment = findAssignments(it.index());
 | 
			
		||||
      ss << "|";
 | 
			
		||||
      for (auto& key : keys()) {
 | 
			
		||||
        size_t index = assignment.at(key);
 | 
			
		||||
        ss << DiscreteValues::Translate(names, key, index) << "|";
 | 
			
		||||
      }
 | 
			
		||||
      ss << it.value() << "|\n";
 | 
			
		||||
    }
 | 
			
		||||
    return ss.str();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  string TableFactor::html(const KeyFormatter& keyFormatter,
 | 
			
		||||
                                  const Names& names) const {
 | 
			
		||||
    stringstream ss;
 | 
			
		||||
 | 
			
		||||
    // Print out preamble.
 | 
			
		||||
    ss << "<div>\n<table class='TableFactor'>\n  <thead>\n";
 | 
			
		||||
 | 
			
		||||
    // Print out header row.
 | 
			
		||||
    ss << "    <tr>";
 | 
			
		||||
    for (auto& key : keys()) {
 | 
			
		||||
      ss << "<th>" << keyFormatter(key) << "</th>";
 | 
			
		||||
    }
 | 
			
		||||
    ss << "<th>value</th></tr>\n";
 | 
			
		||||
 | 
			
		||||
    // Finish header and start body.
 | 
			
		||||
    ss << "  </thead>\n  <tbody>\n";
 | 
			
		||||
    
 | 
			
		||||
    // Print out all rows.
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      DiscreteValues assignment = findAssignments(it.index());
 | 
			
		||||
      ss << "    <tr>";
 | 
			
		||||
      for (auto& key : keys()) {
 | 
			
		||||
        size_t index = assignment.at(key);
 | 
			
		||||
        ss << "<th>" << DiscreteValues::Translate(names, key, index) << "</th>";
 | 
			
		||||
      }
 | 
			
		||||
      ss << "<td>" << it.value() << "</td>";  // value
 | 
			
		||||
      ss << "</tr>\n";
 | 
			
		||||
    }
 | 
			
		||||
    ss << "  </tbody>\n</table>\n</div>";
 | 
			
		||||
    return ss.str();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
  TableFactor TableFactor::prune(size_t maxNrAssignments) const {
 | 
			
		||||
    const size_t N = maxNrAssignments;
 | 
			
		||||
 | 
			
		||||
    // Get the probabilities in the TableFactor so we can threshold.
 | 
			
		||||
    vector<pair<Eigen::Index, double>> probabilities;
 | 
			
		||||
    
 | 
			
		||||
    // Store non-zero probabilities along with their indices in a vector.
 | 
			
		||||
    for (SparseIt it(sparse_table_); it; ++it) {
 | 
			
		||||
      probabilities.emplace_back(it.index(), it.value());
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // The number of probabilities can be lower than max_leaves.
 | 
			
		||||
    if (probabilities.size() <= N) return *this;
 | 
			
		||||
    
 | 
			
		||||
    // Sort the vector in descending order based on the element values.
 | 
			
		||||
    sort(probabilities.begin(), probabilities.end(), [] (
 | 
			
		||||
      const std::pair<Eigen::Index, double>& a,
 | 
			
		||||
      const std::pair<Eigen::Index, double>& b) {
 | 
			
		||||
        return a.second > b.second;
 | 
			
		||||
      });
 | 
			
		||||
    
 | 
			
		||||
    // Keep the largest N probabilities in the vector.
 | 
			
		||||
    if (probabilities.size() > N) probabilities.resize(N);
 | 
			
		||||
 | 
			
		||||
    // Create pruned sparse vector.
 | 
			
		||||
    Eigen::SparseVector<double> pruned_vec(sparse_table_.size());
 | 
			
		||||
    pruned_vec.reserve(probabilities.size());
 | 
			
		||||
 | 
			
		||||
    // Populate pruned sparse vector.
 | 
			
		||||
    for (const auto& prob : probabilities) {
 | 
			
		||||
      pruned_vec.insert(prob.first) = prob.second;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Create pruned decision tree factor and return.
 | 
			
		||||
    return TableFactor(this->discreteKeys(), pruned_vec);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************ */
 | 
			
		||||
}  // namespace gtsam
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,333 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file TableFactor.h
 | 
			
		||||
 * @date May 4, 2023
 | 
			
		||||
 * @author Yoonwoo Kim
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/discrete/DiscreteFactor.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteKey.h>
 | 
			
		||||
#include <gtsam/inference/Ordering.h>
 | 
			
		||||
 | 
			
		||||
#include <Eigen/Sparse>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
#include <memory>
 | 
			
		||||
#include <map>
 | 
			
		||||
#include <stdexcept>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <utility>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
  class SparseDiscreteConditional;
 | 
			
		||||
  class HybridValues;
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * A discrete probabilistic factor optimized for sparsity.
 | 
			
		||||
   *
 | 
			
		||||
   * @ingroup discrete
 | 
			
		||||
   */
 | 
			
		||||
  class GTSAM_EXPORT TableFactor : public DiscreteFactor {
 | 
			
		||||
   protected:
 | 
			
		||||
    std::map<Key, size_t> cardinalities_;
 | 
			
		||||
    Eigen::SparseVector<double> sparse_table_;
 | 
			
		||||
   
 | 
			
		||||
   private:
 | 
			
		||||
    std::map<Key, size_t> denominators_;
 | 
			
		||||
    DiscreteKeys sorted_dkeys_;
 | 
			
		||||
    
 | 
			
		||||
     /**
 | 
			
		||||
      * @brief Finds nth entry in the cartesian product of arrays in O(1)
 | 
			
		||||
      * Example)
 | 
			
		||||
      *   v0 | v1 | val
 | 
			
		||||
      *    0 |  0 |  10
 | 
			
		||||
      *    0 |  1 |  21
 | 
			
		||||
      *    1 |  0 |  32
 | 
			
		||||
      *    1 |  1 |  43
 | 
			
		||||
      *   keyValueForIndex(v1, 2) = 0
 | 
			
		||||
      * @param target_key nth entry's key to find out its assigned value
 | 
			
		||||
      * @param index nth entry in the sparse vector
 | 
			
		||||
      * @return TableFactor
 | 
			
		||||
     */
 | 
			
		||||
    size_t keyValueForIndex(Key target_key, uint64_t index) const;
 | 
			
		||||
 | 
			
		||||
    DiscreteKey discreteKey(size_t i) const {
 | 
			
		||||
      return DiscreteKey(keys_[i], cardinalities_.at(keys_[i]));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /// Convert probability table given as doubles to SparseVector.
 | 
			
		||||
    static Eigen::SparseVector<double> Convert(const std::vector<double>& table);
 | 
			
		||||
 | 
			
		||||
    /// Convert probability table given as string to SparseVector.
 | 
			
		||||
    static Eigen::SparseVector<double> Convert(const std::string& table);
 | 
			
		||||
   
 | 
			
		||||
   public:
 | 
			
		||||
    // typedefs needed to play nice with gtsam
 | 
			
		||||
    typedef TableFactor This;
 | 
			
		||||
    typedef DiscreteFactor Base;  ///< Typedef to base class
 | 
			
		||||
    typedef std::shared_ptr<TableFactor> shared_ptr;
 | 
			
		||||
    typedef Eigen::SparseVector<double>::InnerIterator SparseIt;
 | 
			
		||||
    typedef std::vector<std::pair<DiscreteValues, double>> AssignValList;
 | 
			
		||||
    using Binary = std::function<double(const double, const double)>;
 | 
			
		||||
 | 
			
		||||
   public:
 | 
			
		||||
     /** The Real ring with addition and multiplication */
 | 
			
		||||
    struct Ring {
 | 
			
		||||
      static inline double zero() { return 0.0; }
 | 
			
		||||
      static inline double one() { return 1.0; }
 | 
			
		||||
      static inline double add(const double& a, const double& b) { return a + b; }
 | 
			
		||||
      static inline double max(const double& a, const double& b) {
 | 
			
		||||
        return std::max(a, b);
 | 
			
		||||
      }
 | 
			
		||||
      static inline double mul(const double& a, const double& b) { return a * b; }
 | 
			
		||||
      static inline double div(const double& a, const double& b) {
 | 
			
		||||
        return (a == 0 || b == 0) ? 0 : (a / b);
 | 
			
		||||
      }
 | 
			
		||||
      static inline double id(const double& x) { return x; }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    /// @name Standard Constructors
 | 
			
		||||
    /// @{
 | 
			
		||||
 | 
			
		||||
    /** Default constructor for I/O */
 | 
			
		||||
    TableFactor();
 | 
			
		||||
 | 
			
		||||
    /** Constructor from DiscreteKeys and TableFactor */
 | 
			
		||||
    TableFactor(const DiscreteKeys& keys, const TableFactor& potentials);
 | 
			
		||||
 | 
			
		||||
    /** Constructor from sparse_table */
 | 
			
		||||
    TableFactor(const DiscreteKeys& keys,
 | 
			
		||||
                const Eigen::SparseVector<double>& table);
 | 
			
		||||
 | 
			
		||||
    /** Constructor from doubles */
 | 
			
		||||
    TableFactor(const DiscreteKeys& keys, const std::vector<double>& table)
 | 
			
		||||
        : TableFactor(keys, Convert(table)) {}
 | 
			
		||||
 | 
			
		||||
    /** Constructor from string */
 | 
			
		||||
    TableFactor(const DiscreteKeys& keys, const std::string& table)
 | 
			
		||||
        : TableFactor(keys, Convert(table)) {}
 | 
			
		||||
 | 
			
		||||
    /// Single-key specialization
 | 
			
		||||
    template <class SOURCE>
 | 
			
		||||
    TableFactor(const DiscreteKey& key, SOURCE table)
 | 
			
		||||
        : TableFactor(DiscreteKeys{key}, table) {}
 | 
			
		||||
 | 
			
		||||
    /// Single-key specialization, with vector of doubles.
 | 
			
		||||
    TableFactor(const DiscreteKey& key, const std::vector<double>& row)
 | 
			
		||||
        : TableFactor(DiscreteKeys{key}, row) {}
 | 
			
		||||
 | 
			
		||||
    /** Construct from a DiscreteTableConditional type */
 | 
			
		||||
    explicit TableFactor(const SparseDiscreteConditional& c);
 | 
			
		||||
 | 
			
		||||
    /// @}
 | 
			
		||||
    /// @name Testable
 | 
			
		||||
    /// @{
 | 
			
		||||
 | 
			
		||||
    /// equality
 | 
			
		||||
    bool equals(const DiscreteFactor& other, double tol = 1e-9) const override;
 | 
			
		||||
 | 
			
		||||
    // print
 | 
			
		||||
    void print(
 | 
			
		||||
        const std::string& s = "TableFactor:\n",
 | 
			
		||||
        const KeyFormatter& formatter = DefaultKeyFormatter) const override;
 | 
			
		||||
 | 
			
		||||
    // /// @}
 | 
			
		||||
    // /// @name Standard Interface
 | 
			
		||||
    // /// @{
 | 
			
		||||
 | 
			
		||||
    /// Calculate probability for given values `x`, 
 | 
			
		||||
    /// is just look up in TableFactor.
 | 
			
		||||
    double evaluate(const DiscreteValues& values) const  {
 | 
			
		||||
      return operator()(values);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /// Evaluate probability distribution, sugar.
 | 
			
		||||
    double operator()(const DiscreteValues& values) const override;
 | 
			
		||||
 | 
			
		||||
    /// Calculate error for DiscreteValues `x`, is -log(probability).
 | 
			
		||||
    double error(const DiscreteValues& values) const;
 | 
			
		||||
 | 
			
		||||
    /// multiply two TableFactors
 | 
			
		||||
    TableFactor operator*(const TableFactor& f) const {
 | 
			
		||||
      return apply(f, Ring::mul);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    /// multiple with DecisionTreeFactor
 | 
			
		||||
    DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
 | 
			
		||||
 | 
			
		||||
    static double safe_div(const double& a, const double& b);
 | 
			
		||||
 | 
			
		||||
    size_t cardinality(Key j) const { return cardinalities_.at(j); }
 | 
			
		||||
 | 
			
		||||
    /// divide by factor f (safely)
 | 
			
		||||
    TableFactor operator/(const TableFactor& f) const {
 | 
			
		||||
      return apply(f, safe_div);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /// Convert into a decisiontree
 | 
			
		||||
    DecisionTreeFactor toDecisionTreeFactor() const override;
 | 
			
		||||
 | 
			
		||||
    /// Generate TableFactor from TableFactor
 | 
			
		||||
    // TableFactor toTableFactor() const override { return *this; }
 | 
			
		||||
 | 
			
		||||
    /// Create a TableFactor that is a subset of this TableFactor
 | 
			
		||||
    TableFactor choose(const DiscreteValues assignments,
 | 
			
		||||
                      DiscreteKeys parent_keys) const;
 | 
			
		||||
 | 
			
		||||
    /// Create new factor by summing all values with the same separator values
 | 
			
		||||
    shared_ptr sum(size_t nrFrontals) const {
 | 
			
		||||
      return combine(nrFrontals, Ring::add);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /// Create new factor by summing all values with the same separator values
 | 
			
		||||
    shared_ptr sum(const Ordering& keys) const {
 | 
			
		||||
      return combine(keys, Ring::add);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /// Create new factor by maximizing over all values with the same separator.
 | 
			
		||||
    shared_ptr max(size_t nrFrontals) const {
 | 
			
		||||
      return combine(nrFrontals, Ring::max);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /// Create new factor by maximizing over all values with the same separator.
 | 
			
		||||
    shared_ptr max(const Ordering& keys) const {
 | 
			
		||||
      return combine(keys, Ring::max);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /// @}
 | 
			
		||||
    /// @name Advanced Interface
 | 
			
		||||
    /// @{
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * Apply binary operator (*this) "op" f
 | 
			
		||||
     * @param f the second argument for op
 | 
			
		||||
     * @param op a binary operator that operates on TableFactor
 | 
			
		||||
     */
 | 
			
		||||
    TableFactor apply(const TableFactor& f, Binary op) const;
 | 
			
		||||
 | 
			
		||||
    /// Return keys in contract mode.
 | 
			
		||||
    DiscreteKeys contractDkeys(const TableFactor& f) const;    
 | 
			
		||||
    
 | 
			
		||||
    /// Return keys in free mode.
 | 
			
		||||
    DiscreteKeys freeDkeys(const TableFactor& f) const;
 | 
			
		||||
 | 
			
		||||
    /// Return union of DiscreteKeys in two factors.
 | 
			
		||||
    DiscreteKeys unionDkeys(const TableFactor& f) const;
 | 
			
		||||
 | 
			
		||||
    /// Create unique representation of union modes.
 | 
			
		||||
    uint64_t unionRep(const DiscreteKeys& keys,
 | 
			
		||||
      const DiscreteValues& assign, const uint64_t idx) const;
 | 
			
		||||
  
 | 
			
		||||
    /// Create a hash map of input factor with assignment of contract modes as
 | 
			
		||||
    /// keys and vector of hashed assignment of free modes and value as values.
 | 
			
		||||
    std::unordered_map<uint64_t, AssignValList> createMap(
 | 
			
		||||
      const DiscreteKeys& contract, const DiscreteKeys& free) const;
 | 
			
		||||
 | 
			
		||||
    /// Create unique representation
 | 
			
		||||
    uint64_t uniqueRep(const DiscreteKeys& keys, const uint64_t idx) const;
 | 
			
		||||
    
 | 
			
		||||
    /// Create unique representation with DiscreteValues
 | 
			
		||||
    uint64_t uniqueRep(const DiscreteValues& assignments) const;
 | 
			
		||||
 | 
			
		||||
    /// Find DiscreteValues for corresponding index.
 | 
			
		||||
    DiscreteValues findAssignments(const uint64_t idx) const;
 | 
			
		||||
  
 | 
			
		||||
    /// Find value for corresponding DiscreteValues.
 | 
			
		||||
    double findValue(const DiscreteValues& values) const;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * Combine frontal variables using binary operator "op"
 | 
			
		||||
     * @param nrFrontals nr. of frontal to combine variables in this factor
 | 
			
		||||
     * @param op a binary operator that operates on TableFactor
 | 
			
		||||
     * @return shared pointer to newly created TableFactor
 | 
			
		||||
     */
 | 
			
		||||
    shared_ptr combine(size_t nrFrontals, Binary op) const;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * Combine frontal variables in an Ordering using binary operator "op"
 | 
			
		||||
     * @param nrFrontals nr. of frontal to combine variables in this factor
 | 
			
		||||
     * @param op a binary operator that operates on TableFactor
 | 
			
		||||
     * @return shared pointer to newly created TableFactor
 | 
			
		||||
     */
 | 
			
		||||
    shared_ptr combine(const Ordering& keys, Binary op) const;
 | 
			
		||||
 | 
			
		||||
    /// Enumerate all values into a map from values to double.
 | 
			
		||||
    std::vector<std::pair<DiscreteValues, double>> enumerate() const;
 | 
			
		||||
 | 
			
		||||
    /// Return all the discrete keys associated with this factor.
 | 
			
		||||
    DiscreteKeys discreteKeys() const;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * @brief Prune the decision tree of discrete variables.
 | 
			
		||||
     *
 | 
			
		||||
     * Pruning will set the values to be "pruned" to 0 indicating a 0
 | 
			
		||||
     * probability. An assignment is pruned if it is not in the top
 | 
			
		||||
     * `maxNrAssignments` values.
 | 
			
		||||
     *
 | 
			
		||||
     * A violation can occur if there are more
 | 
			
		||||
     * duplicate values than `maxNrAssignments`. A violation here is the need to
 | 
			
		||||
     * un-prune the decision tree (e.g. all assignment values are 1.0). We could
 | 
			
		||||
     * have another case where some subset of duplicates exist (e.g. for a tree
 | 
			
		||||
     * with 8 assignments we have 1, 1, 1, 1, 0.8, 0.7, 0.6, 0.5), but this is
 | 
			
		||||
     * not a violation since the for `maxNrAssignments=5` the top values are (1,
 | 
			
		||||
     * 0.8).
 | 
			
		||||
     *
 | 
			
		||||
     * @param maxNrAssignments The maximum number of assignments to keep.
 | 
			
		||||
     * @return TableFactor
 | 
			
		||||
     */
 | 
			
		||||
    TableFactor prune(size_t maxNrAssignments) const;
 | 
			
		||||
 | 
			
		||||
    /// @}
 | 
			
		||||
    /// @name Wrapper support
 | 
			
		||||
    /// @{
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * @brief Render as markdown table
 | 
			
		||||
     *
 | 
			
		||||
     * @param keyFormatter GTSAM-style Key formatter.
 | 
			
		||||
     * @param names optional, category names corresponding to choices.
 | 
			
		||||
     * @return std::string a markdown string.
 | 
			
		||||
     */
 | 
			
		||||
    std::string markdown(const KeyFormatter& keyFormatter = DefaultKeyFormatter,
 | 
			
		||||
                        const Names& names = {}) const override;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * @brief Render as html table
 | 
			
		||||
     *
 | 
			
		||||
     * @param keyFormatter GTSAM-style Key formatter.
 | 
			
		||||
     * @param names optional, category names corresponding to choices.
 | 
			
		||||
     * @return std::string a html string.
 | 
			
		||||
     */
 | 
			
		||||
    std::string html(const KeyFormatter& keyFormatter = DefaultKeyFormatter,
 | 
			
		||||
                    const Names& names = {}) const override;
 | 
			
		||||
 | 
			
		||||
  /// @}
 | 
			
		||||
  /// @name HybridValues methods.
 | 
			
		||||
  /// @{
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Calculate error for HybridValues `x`, is -log(probability)
 | 
			
		||||
   * Simply dispatches to DiscreteValues version.
 | 
			
		||||
   */
 | 
			
		||||
  double error(const HybridValues& values) const override;
 | 
			
		||||
 | 
			
		||||
  /// @}
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
// traits
 | 
			
		||||
template <>
 | 
			
		||||
struct traits<TableFactor> : public Testable<TableFactor> {};
 | 
			
		||||
}  // namespace gtsam
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,359 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * testTableFactor.cpp
 | 
			
		||||
 *
 | 
			
		||||
 *  @date Feb 15, 2023
 | 
			
		||||
 *  @author Yoonwoo Kim
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <CppUnitLite/TestHarness.h>
 | 
			
		||||
#include <gtsam/base/Testable.h>
 | 
			
		||||
#include <gtsam/base/serializationTestHelpers.h>
 | 
			
		||||
#include <gtsam/discrete/TableFactor.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteDistribution.h>
 | 
			
		||||
#include <gtsam/discrete/Signature.h>
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <chrono>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
 | 
			
		||||
vector<double> genArr(double dropout, size_t size) {
 | 
			
		||||
  random_device rd;
 | 
			
		||||
  mt19937 g(rd());
 | 
			
		||||
  vector<double> dropoutmask(size); // Chance of 0
 | 
			
		||||
 | 
			
		||||
  uniform_int_distribution<> dist(1, 9);
 | 
			
		||||
  auto gen = [&dist, &g]() { return dist(g); };
 | 
			
		||||
  generate(dropoutmask.begin(), dropoutmask.end(), gen);
 | 
			
		||||
 | 
			
		||||
  fill_n(dropoutmask.begin(), dropoutmask.size() * (dropout), 0);
 | 
			
		||||
  shuffle(dropoutmask.begin(), dropoutmask.end(), g);
 | 
			
		||||
  
 | 
			
		||||
  return dropoutmask;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
map<double, pair<chrono::microseconds, chrono::microseconds>>
 | 
			
		||||
  measureTime(DiscreteKeys keys1, DiscreteKeys keys2, size_t size) {
 | 
			
		||||
  vector<double> dropouts = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>>
 | 
			
		||||
    measured_times;
 | 
			
		||||
  
 | 
			
		||||
  for (auto dropout : dropouts) {
 | 
			
		||||
    vector<double> arr1 = genArr(dropout, size);
 | 
			
		||||
    vector<double> arr2 = genArr(dropout, size);
 | 
			
		||||
    TableFactor f1(keys1, arr1);
 | 
			
		||||
    TableFactor f2(keys2, arr2);
 | 
			
		||||
    DecisionTreeFactor f1_dt(keys1, arr1);
 | 
			
		||||
    DecisionTreeFactor f2_dt(keys2, arr2);
 | 
			
		||||
 | 
			
		||||
    // measure time TableFactor
 | 
			
		||||
    auto tb_start = chrono::high_resolution_clock::now();
 | 
			
		||||
    TableFactor actual = f1 * f2;
 | 
			
		||||
    auto tb_end = chrono::high_resolution_clock::now();
 | 
			
		||||
    auto tb_time_diff = chrono::duration_cast<chrono::microseconds>(tb_end - tb_start);
 | 
			
		||||
 | 
			
		||||
    // measure time DT
 | 
			
		||||
    auto dt_start = chrono::high_resolution_clock::now();
 | 
			
		||||
    DecisionTreeFactor actual_dt = f1_dt * f2_dt;
 | 
			
		||||
    auto dt_end = chrono::high_resolution_clock::now();
 | 
			
		||||
    auto dt_time_diff = chrono::duration_cast<chrono::microseconds>(dt_end - dt_start);
 | 
			
		||||
 | 
			
		||||
    bool flag = true;
 | 
			
		||||
    for (auto assignmentVal : actual_dt.enumerate()) {
 | 
			
		||||
      flag = actual_dt(assignmentVal.first) != actual(assignmentVal.first);
 | 
			
		||||
      if (flag) {
 | 
			
		||||
        std::cout << "something is wrong: " << std::endl;
 | 
			
		||||
        assignmentVal.first.print();
 | 
			
		||||
        std::cout << "dt: " << actual_dt(assignmentVal.first) << std::endl;     
 | 
			
		||||
        std::cout << "tb: " << actual(assignmentVal.first) << std::endl;
 | 
			
		||||
        break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    if (flag) break;
 | 
			
		||||
    measured_times[dropout] = make_pair(tb_time_diff, dt_time_diff);
 | 
			
		||||
  }
 | 
			
		||||
  return measured_times;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void printTime(map<double, pair<chrono::microseconds, chrono::microseconds>> measured_time) {
 | 
			
		||||
  for (auto&& kv : measured_time) {
 | 
			
		||||
    cout << "dropout: " << kv.first << " | TableFactor time: "
 | 
			
		||||
      << kv.second.first.count() << " | DecisionTreeFactor time: " << kv.second.second.count()
 | 
			
		||||
      << endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST( TableFactor, constructors)
 | 
			
		||||
{
 | 
			
		||||
  // Declare a bunch of keys
 | 
			
		||||
  DiscreteKey X(0,2), Y(1,3), Z(2,2), A(3, 5);
 | 
			
		||||
 | 
			
		||||
  // Create factors
 | 
			
		||||
  TableFactor f_zeros(A, {0, 0, 0, 0, 1});
 | 
			
		||||
  TableFactor f1(X, {2, 8});
 | 
			
		||||
  TableFactor f2(X & Y, "2 5 3 6 4 7");
 | 
			
		||||
  TableFactor f3(X & Y & Z, "2 5 3 6 4 7 25 55 35 65 45 75");
 | 
			
		||||
  EXPECT_LONGS_EQUAL(1,f1.size());
 | 
			
		||||
  EXPECT_LONGS_EQUAL(2,f2.size());
 | 
			
		||||
  EXPECT_LONGS_EQUAL(3,f3.size());
 | 
			
		||||
 | 
			
		||||
  DiscreteValues values;
 | 
			
		||||
  values[0] = 1; // x
 | 
			
		||||
  values[1] = 2; // y
 | 
			
		||||
  values[2] = 1; // z
 | 
			
		||||
  values[3] = 4; // a
 | 
			
		||||
  EXPECT_DOUBLES_EQUAL(1, f_zeros(values), 1e-9);
 | 
			
		||||
  EXPECT_DOUBLES_EQUAL(8, f1(values), 1e-9);
 | 
			
		||||
  EXPECT_DOUBLES_EQUAL(7, f2(values), 1e-9);
 | 
			
		||||
  EXPECT_DOUBLES_EQUAL(75, f3(values), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // Assert that error = -log(value)
 | 
			
		||||
  EXPECT_DOUBLES_EQUAL(-log(f1(values)), f1.error(values), 1e-9);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST(TableFactor, multiplication) {
 | 
			
		||||
  DiscreteKey v0(0, 2), v1(1, 2), v2(2, 2);
 | 
			
		||||
 | 
			
		||||
  // Multiply with a DiscreteDistribution, i.e., Bayes Law!
 | 
			
		||||
  DiscreteDistribution prior(v1 % "1/3");
 | 
			
		||||
  TableFactor f1(v0 & v1, "1 2 3 4");
 | 
			
		||||
  DecisionTreeFactor expected(v0 & v1, "0.25 1.5 0.75 3");
 | 
			
		||||
  CHECK(assert_equal(expected, static_cast<DecisionTreeFactor>(prior) *
 | 
			
		||||
                                f1.toDecisionTreeFactor()));
 | 
			
		||||
  CHECK(assert_equal(expected, f1 * prior));
 | 
			
		||||
 | 
			
		||||
  // Multiply two factors
 | 
			
		||||
  TableFactor f2(v1 & v2, "5 6 7 8");
 | 
			
		||||
  TableFactor actual = f1 * f2;
 | 
			
		||||
  TableFactor expected2(v0 & v1 & v2, "5 6 14 16 15 18 28 32");
 | 
			
		||||
  CHECK(assert_equal(expected2, actual));
 | 
			
		||||
 | 
			
		||||
  DiscreteKey A(0, 3), B(1, 2), C(2, 2);
 | 
			
		||||
  TableFactor f_zeros1(A & C, "0 0 0 2 0 3");
 | 
			
		||||
  TableFactor f_zeros2(B & C, "4 0 0 5");
 | 
			
		||||
  TableFactor actual_zeros = f_zeros1 * f_zeros2;
 | 
			
		||||
  TableFactor expected3(A & B & C, "0 0 0 0 0 0 0 10 0 0 0 15");
 | 
			
		||||
  CHECK(assert_equal(expected3, actual_zeros));
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST(TableFactor, benchmark) {
 | 
			
		||||
DiscreteKey A(0, 5), B(1, 2), C(2, 5), D(3, 2), E(4, 5),
 | 
			
		||||
  F(5, 2), G(6, 3), H(7, 2), I(8, 5), J(9, 7), K(10, 2), L(11, 3);
 | 
			
		||||
 | 
			
		||||
  // 100
 | 
			
		||||
  DiscreteKeys one_1 = {A, B, C, D};
 | 
			
		||||
  DiscreteKeys one_2 = {C, D, E, F};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_1 = 
 | 
			
		||||
    measureTime(one_1, one_2, 100);
 | 
			
		||||
  printTime(time_map_1);
 | 
			
		||||
  // 200
 | 
			
		||||
  DiscreteKeys two_1 = {A, B, C, D, F};
 | 
			
		||||
  DiscreteKeys two_2 = {B, C, D, E, F};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_2 =
 | 
			
		||||
    measureTime(two_1, two_2, 200);
 | 
			
		||||
  printTime(time_map_2);
 | 
			
		||||
  // 300
 | 
			
		||||
  DiscreteKeys three_1 = {A, B, C, D, G};
 | 
			
		||||
  DiscreteKeys three_2 = {C, D, E, F, G};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_3 = 
 | 
			
		||||
    measureTime(three_1, three_2, 300);
 | 
			
		||||
  printTime(time_map_3);
 | 
			
		||||
  // 400
 | 
			
		||||
  DiscreteKeys four_1 = {A, B, C, D, F, H};
 | 
			
		||||
  DiscreteKeys four_2 = {B, C, D, E, F, H};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_4 = 
 | 
			
		||||
    measureTime(four_1, four_2, 400);
 | 
			
		||||
  printTime(time_map_4);
 | 
			
		||||
  // 500
 | 
			
		||||
  DiscreteKeys five_1 = {A, B, C, D, I};
 | 
			
		||||
  DiscreteKeys five_2 = {C, D, E, F, I};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_5 =
 | 
			
		||||
    measureTime(five_1, five_2, 500);
 | 
			
		||||
  printTime(time_map_5);
 | 
			
		||||
  // 600
 | 
			
		||||
  DiscreteKeys six_1 = {A, B, C, D, F, G};
 | 
			
		||||
  DiscreteKeys six_2 = {B, C, D, E, F, G};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_6 = 
 | 
			
		||||
    measureTime(six_1, six_2, 600);
 | 
			
		||||
  printTime(time_map_6);
 | 
			
		||||
  // 700
 | 
			
		||||
  DiscreteKeys seven_1 = {A, B, C, D, J};
 | 
			
		||||
  DiscreteKeys seven_2 = {C, D, E, F, J};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_7 = 
 | 
			
		||||
    measureTime(seven_1, seven_2, 700);
 | 
			
		||||
  printTime(time_map_7);
 | 
			
		||||
  // 800
 | 
			
		||||
  DiscreteKeys eight_1 = {A, B, C, D, F, H, K};
 | 
			
		||||
  DiscreteKeys eight_2 = {B, C, D, E, F, H, K};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_8 = 
 | 
			
		||||
    measureTime(eight_1, eight_2, 800);
 | 
			
		||||
  printTime(time_map_8);
 | 
			
		||||
  // 900
 | 
			
		||||
  DiscreteKeys nine_1 = {A, B, C, D, G, L};
 | 
			
		||||
  DiscreteKeys nine_2 = {C, D, E, F, G, L};
 | 
			
		||||
  map<double, pair<chrono::microseconds, chrono::microseconds>> time_map_9 =
 | 
			
		||||
    measureTime(nine_1, nine_2, 900);
 | 
			
		||||
  printTime(time_map_9);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST( TableFactor, sum_max)
 | 
			
		||||
{
 | 
			
		||||
  DiscreteKey v0(0,3), v1(1,2);
 | 
			
		||||
  TableFactor f1(v0 & v1, "1 2  3 4  5 6");
 | 
			
		||||
 | 
			
		||||
  TableFactor expected(v1, "9 12");
 | 
			
		||||
  TableFactor::shared_ptr actual = f1.sum(1);
 | 
			
		||||
  CHECK(assert_equal(expected, *actual, 1e-5));
 | 
			
		||||
 | 
			
		||||
  TableFactor expected2(v1, "5 6");
 | 
			
		||||
  TableFactor::shared_ptr actual2 = f1.max(1);
 | 
			
		||||
  CHECK(assert_equal(expected2, *actual2));
 | 
			
		||||
 | 
			
		||||
  TableFactor f2(v1 & v0, "1 2  3 4  5 6");
 | 
			
		||||
  TableFactor::shared_ptr actual22 = f2.sum(1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Check enumerate yields the correct list of assignment/value pairs.
 | 
			
		||||
TEST(TableFactor, enumerate) {
 | 
			
		||||
  DiscreteKey A(12, 3), B(5, 2);
 | 
			
		||||
  TableFactor f(A & B, "1 2  3 4  5 6");
 | 
			
		||||
  auto actual = f.enumerate();
 | 
			
		||||
  std::vector<std::pair<DiscreteValues, double>> expected;
 | 
			
		||||
  DiscreteValues values;
 | 
			
		||||
  for (size_t a : {0, 1, 2}) {
 | 
			
		||||
    for (size_t b : {0, 1}) {
 | 
			
		||||
      values[12] = a;
 | 
			
		||||
      values[5] = b;
 | 
			
		||||
      expected.emplace_back(values, f(values));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  EXPECT(actual == expected);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Check pruning of the decision tree works as expected.
 | 
			
		||||
TEST(TableFactor, Prune) {
 | 
			
		||||
  DiscreteKey A(1, 2), B(2, 2), C(3, 2);
 | 
			
		||||
  TableFactor f(A & B & C, "1 5 3 7 2 6 4 8");
 | 
			
		||||
 | 
			
		||||
  // Only keep the leaves with the top 5 values.
 | 
			
		||||
  size_t maxNrAssignments = 5;
 | 
			
		||||
  auto pruned5 = f.prune(maxNrAssignments);
 | 
			
		||||
 | 
			
		||||
  // Pruned leaves should be 0
 | 
			
		||||
  TableFactor expected(A & B & C, "0 5 0 7 0 6 4 8");
 | 
			
		||||
  EXPECT(assert_equal(expected, pruned5));
 | 
			
		||||
 | 
			
		||||
  // Check for more extreme pruning where we only keep the top 2 leaves
 | 
			
		||||
  maxNrAssignments = 2;
 | 
			
		||||
  auto pruned2 = f.prune(maxNrAssignments);
 | 
			
		||||
  TableFactor expected2(A & B & C, "0 0 0 7 0 0 0 8");
 | 
			
		||||
  EXPECT(assert_equal(expected2, pruned2));
 | 
			
		||||
 | 
			
		||||
  DiscreteKey D(4, 2);
 | 
			
		||||
  TableFactor factor(
 | 
			
		||||
      D & C & B & A,
 | 
			
		||||
      "0.0 0.0 0.0 0.60658897 0.61241912 0.61241969 0.61247685 0.61247742 0.0 "
 | 
			
		||||
      "0.0 0.0 0.99995287 1.0 1.0 1.0 1.0");
 | 
			
		||||
 | 
			
		||||
  TableFactor expected3(
 | 
			
		||||
      D & C & B & A,
 | 
			
		||||
      "0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 "
 | 
			
		||||
      "0.999952870000 1.0 1.0 1.0 1.0");
 | 
			
		||||
  maxNrAssignments = 5;
 | 
			
		||||
  auto pruned3 = factor.prune(maxNrAssignments);
 | 
			
		||||
  EXPECT(assert_equal(expected3, pruned3));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Check markdown representation looks as expected.
 | 
			
		||||
TEST(TableFactor, markdown) {
 | 
			
		||||
  DiscreteKey A(12, 3), B(5, 2);
 | 
			
		||||
  TableFactor f(A & B, "1 2  3 4  5 6");
 | 
			
		||||
  string expected =
 | 
			
		||||
      "|A|B|value|\n"
 | 
			
		||||
      "|:-:|:-:|:-:|\n"
 | 
			
		||||
      "|0|0|1|\n"
 | 
			
		||||
      "|0|1|2|\n"
 | 
			
		||||
      "|1|0|3|\n"
 | 
			
		||||
      "|1|1|4|\n"
 | 
			
		||||
      "|2|0|5|\n"
 | 
			
		||||
      "|2|1|6|\n";
 | 
			
		||||
  auto formatter = [](Key key) { return key == 12 ? "A" : "B"; };
 | 
			
		||||
  string actual = f.markdown(formatter);
 | 
			
		||||
  EXPECT(actual == expected);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Check markdown representation with a value formatter.
 | 
			
		||||
TEST(TableFactor, markdownWithValueFormatter) {
 | 
			
		||||
  DiscreteKey A(12, 3), B(5, 2);
 | 
			
		||||
  TableFactor f(A & B, "1 2  3 4  5 6");
 | 
			
		||||
  string expected =
 | 
			
		||||
      "|A|B|value|\n"
 | 
			
		||||
      "|:-:|:-:|:-:|\n"
 | 
			
		||||
      "|Zero|-|1|\n"
 | 
			
		||||
      "|Zero|+|2|\n"
 | 
			
		||||
      "|One|-|3|\n"
 | 
			
		||||
      "|One|+|4|\n"
 | 
			
		||||
      "|Two|-|5|\n"
 | 
			
		||||
      "|Two|+|6|\n";
 | 
			
		||||
  auto keyFormatter = [](Key key) { return key == 12 ? "A" : "B"; };
 | 
			
		||||
  TableFactor::Names names{{12, {"Zero", "One", "Two"}},
 | 
			
		||||
                                  {5, {"-", "+"}}};
 | 
			
		||||
  string actual = f.markdown(keyFormatter, names);
 | 
			
		||||
  EXPECT(actual == expected);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Check html representation with a value formatter.
 | 
			
		||||
TEST(TableFactor, htmlWithValueFormatter) {
 | 
			
		||||
  DiscreteKey A(12, 3), B(5, 2);
 | 
			
		||||
  TableFactor f(A & B, "1 2  3 4  5 6");
 | 
			
		||||
  string expected =
 | 
			
		||||
      "<div>\n"
 | 
			
		||||
      "<table class='TableFactor'>\n"
 | 
			
		||||
      "  <thead>\n"
 | 
			
		||||
      "    <tr><th>A</th><th>B</th><th>value</th></tr>\n"
 | 
			
		||||
      "  </thead>\n"
 | 
			
		||||
      "  <tbody>\n"
 | 
			
		||||
      "    <tr><th>Zero</th><th>-</th><td>1</td></tr>\n"
 | 
			
		||||
      "    <tr><th>Zero</th><th>+</th><td>2</td></tr>\n"
 | 
			
		||||
      "    <tr><th>One</th><th>-</th><td>3</td></tr>\n"
 | 
			
		||||
      "    <tr><th>One</th><th>+</th><td>4</td></tr>\n"
 | 
			
		||||
      "    <tr><th>Two</th><th>-</th><td>5</td></tr>\n"
 | 
			
		||||
      "    <tr><th>Two</th><th>+</th><td>6</td></tr>\n"
 | 
			
		||||
      "  </tbody>\n"
 | 
			
		||||
      "</table>\n"
 | 
			
		||||
      "</div>";
 | 
			
		||||
  auto keyFormatter = [](Key key) { return key == 12 ? "A" : "B"; };
 | 
			
		||||
  TableFactor::Names names{{12, {"Zero", "One", "Two"}},
 | 
			
		||||
                                  {5, {"-", "+"}}};
 | 
			
		||||
  string actual = f.html(keyFormatter, names);
 | 
			
		||||
  EXPECT(actual == expected);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
int main() {
 | 
			
		||||
  TestResult tr;
 | 
			
		||||
  return TestRegistry::runAllTests(tr);
 | 
			
		||||
}
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
		Loading…
	
		Reference in New Issue