Merged in feature/dogleg_test (pull request #424)
Close issue #452 Experiments and new default for Doglegrelease/4.3a0
commit
dc774ed8e9
|
@ -0,0 +1,118 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Example comparing DoglegOptimizer with Levenberg-Marquardt.
|
||||
Author: Frank Dellaert
|
||||
"""
|
||||
# pylint: disable=no-member, invalid-name
|
||||
|
||||
import math
|
||||
import argparse
|
||||
|
||||
import gtsam
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
def run(args):
|
||||
"""Test Dogleg vs LM, inspired by issue #452."""
|
||||
|
||||
# print parameters
|
||||
print("num samples = {}, deltaInitial = {}".format(
|
||||
args.num_samples, args.delta))
|
||||
|
||||
# Ground truth solution
|
||||
T11 = gtsam.Pose2(0, 0, 0)
|
||||
T12 = gtsam.Pose2(1, 0, 0)
|
||||
T21 = gtsam.Pose2(0, 1, 0)
|
||||
T22 = gtsam.Pose2(1, 1, 0)
|
||||
|
||||
# Factor graph
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Priors
|
||||
prior = gtsam.noiseModel_Isotropic.Sigma(3, 1)
|
||||
graph.add(gtsam.PriorFactorPose2(11, T11, prior))
|
||||
graph.add(gtsam.PriorFactorPose2(21, T21, prior))
|
||||
|
||||
# Odometry
|
||||
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.01, 0.01, 0.3]))
|
||||
graph.add(gtsam.BetweenFactorPose2(11, 12, T11.between(T12), model))
|
||||
graph.add(gtsam.BetweenFactorPose2(21, 22, T21.between(T22), model))
|
||||
|
||||
# Range
|
||||
model_rho = gtsam.noiseModel_Isotropic.Sigma(1, 0.01)
|
||||
graph.add(gtsam.RangeFactorPose2(12, 22, 1.0, model_rho))
|
||||
|
||||
params = gtsam.DoglegParams()
|
||||
params.setDeltaInitial(args.delta) # default is 10
|
||||
|
||||
# Add progressively more noise to ground truth
|
||||
sigmas = [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20]
|
||||
n = len(sigmas)
|
||||
p_dl, s_dl, p_lm, s_lm = [0]*n, [0]*n, [0]*n, [0]*n
|
||||
for i, sigma in enumerate(sigmas):
|
||||
dl_fails, lm_fails = 0, 0
|
||||
# Attempt num_samples optimizations for both DL and LM
|
||||
for _attempt in range(args.num_samples):
|
||||
initial = gtsam.Values()
|
||||
initial.insert(11, T11.retract(np.random.normal(0, sigma, 3)))
|
||||
initial.insert(12, T12.retract(np.random.normal(0, sigma, 3)))
|
||||
initial.insert(21, T21.retract(np.random.normal(0, sigma, 3)))
|
||||
initial.insert(22, T22.retract(np.random.normal(0, sigma, 3)))
|
||||
|
||||
# Run dogleg optimizer
|
||||
dl = gtsam.DoglegOptimizer(graph, initial, params)
|
||||
result = dl.optimize()
|
||||
dl_fails += graph.error(result) > 1e-9
|
||||
|
||||
# Run
|
||||
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial)
|
||||
result = lm.optimize()
|
||||
lm_fails += graph.error(result) > 1e-9
|
||||
|
||||
# Calculate Bayes estimate of success probability
|
||||
# using a beta prior of alpha=0.5, beta=0.5
|
||||
alpha, beta = 0.5, 0.5
|
||||
v = args.num_samples+alpha+beta
|
||||
p_dl[i] = (args.num_samples-dl_fails+alpha)/v
|
||||
p_lm[i] = (args.num_samples-lm_fails+alpha)/v
|
||||
|
||||
def stddev(p):
|
||||
"""Calculate standard deviation."""
|
||||
return math.sqrt(p*(1-p)/(1+v))
|
||||
|
||||
s_dl[i] = stddev(p_dl[i])
|
||||
s_lm[i] = stddev(p_lm[i])
|
||||
|
||||
fmt = "sigma= {}:\tDL success {:.2f}% +/- {:.2f}%, LM success {:.2f}% +/- {:.2f}%"
|
||||
print(fmt.format(sigma,
|
||||
100*p_dl[i], 100*s_dl[i],
|
||||
100*p_lm[i], 100*s_lm[i]))
|
||||
|
||||
if args.plot:
|
||||
fig, ax = plt.subplots()
|
||||
dl_plot = plt.errorbar(sigmas, p_dl, yerr=s_dl, label="Dogleg")
|
||||
lm_plot = plt.errorbar(sigmas, p_lm, yerr=s_lm, label="LM")
|
||||
plt.title("Dogleg emprical success vs. LM")
|
||||
plt.legend(handles=[dl_plot, lm_plot])
|
||||
ax.set_xlim(0, sigmas[-1]+1)
|
||||
ax.set_ylim(0, 1)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Compare Dogleg and LM success rates")
|
||||
parser.add_argument("-n", "--num_samples", type=int, default=1000,
|
||||
help="Number of samples for each sigma")
|
||||
parser.add_argument("-d", "--delta", type=float, default=10.0,
|
||||
help="Initial delta for dogleg")
|
||||
parser.add_argument("-p", "--plot", action="store_true",
|
||||
help="Flag to plot results")
|
||||
args = parser.parse_args()
|
||||
run(args)
|
|
@ -37,11 +37,11 @@ public:
|
|||
VERBOSE
|
||||
};
|
||||
|
||||
double deltaInitial; ///< The initial trust region radius (default: 1.0)
|
||||
double deltaInitial; ///< The initial trust region radius (default: 10.0)
|
||||
VerbosityDL verbosityDL; ///< The verbosity level for Dogleg (default: SILENT), see also NonlinearOptimizerParams::verbosity
|
||||
|
||||
DoglegParams() :
|
||||
deltaInitial(1.0), verbosityDL(SILENT) {}
|
||||
deltaInitial(10.0), verbosityDL(SILENT) {}
|
||||
|
||||
virtual ~DoglegParams() {}
|
||||
|
||||
|
|
Loading…
Reference in New Issue