commit
796ab28b4b
|
@ -65,8 +65,9 @@ Matrix SymmetricBlockMatrix::block(DenseIndex I, DenseIndex J) const {
|
|||
void SymmetricBlockMatrix::choleskyPartial(DenseIndex nFrontals) {
|
||||
gttic(VerticalBlockMatrix_choleskyPartial);
|
||||
DenseIndex topleft = variableColOffsets_[blockStart_];
|
||||
if (!gtsam::choleskyPartial(matrix_, offset(nFrontals) - topleft, topleft))
|
||||
if (!gtsam::choleskyPartial(matrix_, offset(nFrontals) - topleft, topleft)) {
|
||||
throw CholeskyFailed();
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -49,8 +49,7 @@ namespace gtsam {
|
|||
|
||||
// Do dense elimination step
|
||||
KeyVector keyAsVector(1); keyAsVector[0] = key;
|
||||
std::pair<boost::shared_ptr<ConditionalType>, boost::shared_ptr<FactorType> > eliminationResult =
|
||||
function(gatheredFactors, Ordering(keyAsVector));
|
||||
auto eliminationResult = function(gatheredFactors, Ordering(keyAsVector));
|
||||
|
||||
// Add conditional to BayesNet
|
||||
output->push_back(eliminationResult.first);
|
||||
|
@ -190,13 +189,13 @@ namespace gtsam {
|
|||
{
|
||||
gttic(EliminationTree_eliminate);
|
||||
// Allocate result
|
||||
boost::shared_ptr<BayesNetType> result = boost::make_shared<BayesNetType>();
|
||||
auto result = boost::make_shared<BayesNetType>();
|
||||
|
||||
// Run tree elimination algorithm
|
||||
FastVector<sharedFactor> remainingFactors = inference::EliminateTree(result, *this, function);
|
||||
|
||||
// Add remaining factors that were not involved with eliminated variables
|
||||
boost::shared_ptr<FactorGraphType> allRemainingFactors = boost::make_shared<FactorGraphType>();
|
||||
auto allRemainingFactors = boost::make_shared<FactorGraphType>();
|
||||
allRemainingFactors->push_back(remainingFactors_.begin(), remainingFactors_.end());
|
||||
allRemainingFactors->push_back(remainingFactors.begin(), remainingFactors.end());
|
||||
|
||||
|
|
|
@ -487,6 +487,11 @@ boost::shared_ptr<GaussianConditional> HessianFactor::eliminateCholesky(const Or
|
|||
// Erase the eliminated keys in this factor
|
||||
keys_.erase(begin(), begin() + nFrontals);
|
||||
} catch (const CholeskyFailed&) {
|
||||
#ifndef NDEBUG
|
||||
cout << "Partial Cholesky on HessianFactor failed." << endl;
|
||||
keys.print("Frontal keys ");
|
||||
print("HessianFactor:");
|
||||
#endif
|
||||
throw IndeterminantLinearSystemException(keys.front());
|
||||
}
|
||||
|
||||
|
|
|
@ -17,16 +17,6 @@
|
|||
* @author Christian Potthast
|
||||
*/
|
||||
|
||||
/*STL/C++*/
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
#include <boost/assign/std/list.hpp>
|
||||
#include <boost/assign/std/set.hpp>
|
||||
using namespace boost::assign;
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <tests/smallExample.h>
|
||||
|
@ -34,7 +24,21 @@ using namespace boost::assign;
|
|||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/symbolic/SymbolicFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/sam/RangeFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <boost/assign/std/list.hpp>
|
||||
#include <boost/assign/std/set.hpp>
|
||||
using namespace boost::assign;
|
||||
|
||||
/*STL/C++*/
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace example;
|
||||
|
||||
|
@ -197,6 +201,47 @@ TEST(NonlinearFactorGraph, UpdateCholesky) {
|
|||
EXPECT(assert_equal(initial, fg.updateCholesky(initial, boost::none, dampen), 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Example from issue #452 which threw an ILS error. The reason was a very
|
||||
// weak prior on heading, which was tightened, and the ILS disappeared.
|
||||
TEST(testNonlinearFactorGraph, eliminate) {
|
||||
// Linearization point
|
||||
Pose2 T11(0, 0, 0);
|
||||
Pose2 T12(1, 0, 0);
|
||||
Pose2 T21(0, 1, 0);
|
||||
Pose2 T22(1, 1, 0);
|
||||
|
||||
// Factor graph
|
||||
auto graph = NonlinearFactorGraph();
|
||||
|
||||
// Priors
|
||||
auto prior = noiseModel::Isotropic::Sigma(3, 1);
|
||||
graph.add(PriorFactor<Pose2>(11, T11, prior));
|
||||
graph.add(PriorFactor<Pose2>(21, T21, prior));
|
||||
|
||||
// Odometry
|
||||
auto model = noiseModel::Diagonal::Sigmas(Vector3(0.01, 0.01, 0.3));
|
||||
graph.add(BetweenFactor<Pose2>(11, 12, T11.between(T12), model));
|
||||
graph.add(BetweenFactor<Pose2>(21, 22, T21.between(T22), model));
|
||||
|
||||
// Range factor
|
||||
auto model_rho = noiseModel::Isotropic::Sigma(1, 0.01);
|
||||
graph.add(RangeFactor<Pose2>(12, 22, 1.0, model_rho));
|
||||
|
||||
Values values;
|
||||
values.insert(11, T11.retract(Vector3(0.1,0.2,0.3)));
|
||||
values.insert(12, T12);
|
||||
values.insert(21, T21);
|
||||
values.insert(22, T22);
|
||||
auto linearized = graph.linearize(values);
|
||||
|
||||
// Eliminate
|
||||
Ordering ordering;
|
||||
ordering += 11, 21, 12, 22;
|
||||
auto bn = linearized->eliminateSequential(ordering);
|
||||
EXPECT_LONGS_EQUAL(4, bn->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue