Merged in fix/ILS (pull request #423)

Diagnosing and fixing ILS error
release/4.3a0
Frank Dellaert 2019-05-16 04:21:18 +00:00
commit 796ab28b4b
4 changed files with 65 additions and 15 deletions

View File

@ -65,8 +65,9 @@ Matrix SymmetricBlockMatrix::block(DenseIndex I, DenseIndex J) const {
void SymmetricBlockMatrix::choleskyPartial(DenseIndex nFrontals) {
gttic(VerticalBlockMatrix_choleskyPartial);
DenseIndex topleft = variableColOffsets_[blockStart_];
if (!gtsam::choleskyPartial(matrix_, offset(nFrontals) - topleft, topleft))
if (!gtsam::choleskyPartial(matrix_, offset(nFrontals) - topleft, topleft)) {
throw CholeskyFailed();
}
}
/* ************************************************************************* */

View File

@ -49,8 +49,7 @@ namespace gtsam {
// Do dense elimination step
KeyVector keyAsVector(1); keyAsVector[0] = key;
std::pair<boost::shared_ptr<ConditionalType>, boost::shared_ptr<FactorType> > eliminationResult =
function(gatheredFactors, Ordering(keyAsVector));
auto eliminationResult = function(gatheredFactors, Ordering(keyAsVector));
// Add conditional to BayesNet
output->push_back(eliminationResult.first);
@ -190,13 +189,13 @@ namespace gtsam {
{
gttic(EliminationTree_eliminate);
// Allocate result
boost::shared_ptr<BayesNetType> result = boost::make_shared<BayesNetType>();
auto result = boost::make_shared<BayesNetType>();
// Run tree elimination algorithm
FastVector<sharedFactor> remainingFactors = inference::EliminateTree(result, *this, function);
// Add remaining factors that were not involved with eliminated variables
boost::shared_ptr<FactorGraphType> allRemainingFactors = boost::make_shared<FactorGraphType>();
auto allRemainingFactors = boost::make_shared<FactorGraphType>();
allRemainingFactors->push_back(remainingFactors_.begin(), remainingFactors_.end());
allRemainingFactors->push_back(remainingFactors.begin(), remainingFactors.end());

View File

@ -487,6 +487,11 @@ boost::shared_ptr<GaussianConditional> HessianFactor::eliminateCholesky(const Or
// Erase the eliminated keys in this factor
keys_.erase(begin(), begin() + nFrontals);
} catch (const CholeskyFailed&) {
#ifndef NDEBUG
cout << "Partial Cholesky on HessianFactor failed." << endl;
keys.print("Frontal keys ");
print("HessianFactor:");
#endif
throw IndeterminantLinearSystemException(keys.front());
}

View File

@ -17,16 +17,6 @@
* @author Christian Potthast
*/
/*STL/C++*/
#include <iostream>
using namespace std;
#include <boost/assign/std/list.hpp>
#include <boost/assign/std/set.hpp>
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Matrix.h>
#include <tests/smallExample.h>
@ -34,7 +24,21 @@ using namespace boost::assign;
#include <gtsam/inference/Symbol.h>
#include <gtsam/symbolic/SymbolicFactorGraph.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/sam/RangeFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/list.hpp>
#include <boost/assign/std/set.hpp>
using namespace boost::assign;
/*STL/C++*/
#include <iostream>
using namespace std;
using namespace gtsam;
using namespace example;
@ -197,6 +201,47 @@ TEST(NonlinearFactorGraph, UpdateCholesky) {
EXPECT(assert_equal(initial, fg.updateCholesky(initial, boost::none, dampen), 1e-6));
}
/* ************************************************************************* */
// Example from issue #452 which threw an ILS error. The reason was a very
// weak prior on heading, which was tightened, and the ILS disappeared.
TEST(testNonlinearFactorGraph, eliminate) {
// Linearization point
Pose2 T11(0, 0, 0);
Pose2 T12(1, 0, 0);
Pose2 T21(0, 1, 0);
Pose2 T22(1, 1, 0);
// Factor graph
auto graph = NonlinearFactorGraph();
// Priors
auto prior = noiseModel::Isotropic::Sigma(3, 1);
graph.add(PriorFactor<Pose2>(11, T11, prior));
graph.add(PriorFactor<Pose2>(21, T21, prior));
// Odometry
auto model = noiseModel::Diagonal::Sigmas(Vector3(0.01, 0.01, 0.3));
graph.add(BetweenFactor<Pose2>(11, 12, T11.between(T12), model));
graph.add(BetweenFactor<Pose2>(21, 22, T21.between(T22), model));
// Range factor
auto model_rho = noiseModel::Isotropic::Sigma(1, 0.01);
graph.add(RangeFactor<Pose2>(12, 22, 1.0, model_rho));
Values values;
values.insert(11, T11.retract(Vector3(0.1,0.2,0.3)));
values.insert(12, T12);
values.insert(21, T21);
values.insert(22, T22);
auto linearized = graph.linearize(values);
// Eliminate
Ordering ordering;
ordering += 11, 21, 12, 22;
auto bn = linearized->eliminateSequential(ordering);
EXPECT_LONGS_EQUAL(4, bn->size());
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */