moved CG tests from testGFG to testIterative
parent
1fac98b4cb
commit
d9fd502656
|
@ -579,9 +579,9 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGaussianISAM.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<target name="testGaussianBayesTree.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildTarget>testGaussianISAM.run</buildTarget>
|
||||
<buildTarget>testGaussianBayesTree.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
|
@ -625,10 +625,10 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testISAM.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<target name="testIterative.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testISAM.run</buildTarget>
|
||||
<buildTarget>testIterative.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
|
|
|
@ -102,17 +102,19 @@ testBinaryBayesNet_LDADD = libgtsam.la
|
|||
# Gaussian inference
|
||||
headers += GaussianFactorSet.h
|
||||
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp
|
||||
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet
|
||||
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet testIterative
|
||||
testVectorConfig_SOURCES = testVectorConfig.cpp
|
||||
testVectorConfig_LDADD = libgtsam.la
|
||||
testGaussianFactor_SOURCES = $(example) testGaussianFactor.cpp
|
||||
testGaussianFactor_LDADD = libgtsam.la
|
||||
testGaussianFactorGraph_SOURCES = $(example) testGaussianFactorGraph.cpp
|
||||
testGaussianFactorGraph_LDADD = libgtsam.la
|
||||
testGaussianFactor_SOURCES = $(example) testGaussianFactor.cpp
|
||||
testGaussianFactor_LDADD = libgtsam.la
|
||||
testGaussianFactorGraph_SOURCES = $(example) testGaussianFactorGraph.cpp
|
||||
testGaussianFactorGraph_LDADD = libgtsam.la
|
||||
testGaussianConditional_SOURCES = $(example) testGaussianConditional.cpp
|
||||
testGaussianConditional_LDADD = libgtsam.la
|
||||
testGaussianBayesNet_SOURCES = $(example) testGaussianBayesNet.cpp
|
||||
testGaussianBayesNet_LDADD = libgtsam.la
|
||||
testIterative_SOURCES = $(example) testIterative.cpp
|
||||
testIterative_LDADD = libgtsam.la
|
||||
|
||||
# not the correct way, I'm sure: Kai ?
|
||||
timeGaussianFactor: timeGaussianFactor.cpp
|
||||
|
|
|
@ -386,7 +386,7 @@ TEST( GaussianFactorGraph, optimize )
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, COMBINE_GRAPHS_INPLACE)
|
||||
TEST( GaussianFactorGraph, combine)
|
||||
{
|
||||
// create a test graph
|
||||
GaussianFactorGraph fg1 = createGaussianFactorGraph();
|
||||
|
@ -606,131 +606,6 @@ TEST( GaussianFactorGraph, transposeMultiplication )
|
|||
CHECK(assert_equal(expected,actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorConfig gradient(const GaussianFactorGraph& Ab, const VectorConfig& x) {
|
||||
return Ab.gradient(x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
typedef pair<Matrix,Vector> System;
|
||||
|
||||
/**
|
||||
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
|
||||
*/
|
||||
Vector gradient(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
const Vector& b = Ab.second;
|
||||
return A ^ (A * x - b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply operator A
|
||||
*/
|
||||
Vector operator*(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
return A * x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply operator A^T
|
||||
*/
|
||||
Vector operator^(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
return A ^ x;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG)
|
||||
// "System" class S needs gradient(S,v), e=S*v, v=S^e
|
||||
// "Vector" class V needs dot(v,v), -v, v+v, s*v
|
||||
// "Vector" class E needs dot(v,v)
|
||||
template <class S, class V, class E>
|
||||
V CGD(const S& Ab, V x, double threshold = 1e-9) {
|
||||
|
||||
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
||||
// i.e., first step is in direction of negative gradient
|
||||
V g = gradient(Ab, x);
|
||||
V d = -g;
|
||||
double prev_dotg = dot(g, g);
|
||||
|
||||
// loop max n times
|
||||
size_t n = x.size();
|
||||
for (int k = 1; k <= n; k++) {
|
||||
|
||||
// calculate optimal step-size
|
||||
E Ad = Ab * d;
|
||||
double alpha = -dot(d, g) / dot(Ad, Ad);
|
||||
|
||||
// do step in new search direction
|
||||
x = x + alpha * d;
|
||||
if (k == n) break;
|
||||
|
||||
// update gradient
|
||||
g = g + alpha * (Ab ^ Ad);
|
||||
|
||||
// check for convergence
|
||||
double dotg = dot(g, g);
|
||||
if (dotg < threshold) break;
|
||||
|
||||
// calculate new search direction
|
||||
double beta = dotg / prev_dotg;
|
||||
prev_dotg = dotg;
|
||||
d = -g + beta * d;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG), Matrix version
|
||||
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
|
||||
const Vector& x, double threshold = 1e-9) {
|
||||
System Ab = make_pair(A, b);
|
||||
return CGD<System, Vector, Vector> (Ab, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG), Gaussian Factor Graph version
|
||||
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& Ab,
|
||||
const VectorConfig& x, double threshold = 1e-9) {
|
||||
return CGD<GaussianFactorGraph, VectorConfig, Errors> (Ab, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, gradientDescent )
|
||||
{
|
||||
// Expected solution
|
||||
Ordering ord;
|
||||
ord += "l1","x1","x2";
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph();
|
||||
VectorConfig expected = fg.optimize(ord); // destructive
|
||||
|
||||
// Do gradient descent
|
||||
GaussianFactorGraph fg2 = createGaussianFactorGraph();
|
||||
VectorConfig zero = createZeroDelta();
|
||||
VectorConfig actual = fg2.gradientDescent(zero);
|
||||
CHECK(assert_equal(expected,actual,1e-2));
|
||||
|
||||
// Do conjugate gradient descent
|
||||
//VectorConfig actual2 = fg2.conjugateGradientDescent(zero);
|
||||
VectorConfig actual2 = conjugateGradientDescent(fg2,zero);
|
||||
CHECK(assert_equal(expected,actual2,1e-2));
|
||||
|
||||
// Do conjugate gradient descent, Matrix version
|
||||
Matrix A;Vector b;
|
||||
boost::tie(A,b) = fg2.matrix(ord);
|
||||
// print(A,"A");
|
||||
// print(b,"b");
|
||||
Vector x0 = gtsam::zero(6);
|
||||
Vector actualX = conjugateGradientDescent(A,b,x0);
|
||||
Vector expectedX = Vector_(6, -0.1, 0.1, -0.1, -0.1, 0.1, -0.2);
|
||||
CHECK(assert_equal(expectedX,actualX,1e-9));
|
||||
|
||||
// Do conjugate gradient descent, System version
|
||||
System Ab = make_pair(A,b);
|
||||
Vector actualX2 = CGD<System,Vector,Vector>(Ab,x0);
|
||||
CHECK(assert_equal(expectedX,actualX2,1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Tests ported from ConstrainedGaussianFactorGraph
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -0,0 +1,145 @@
|
|||
/**
|
||||
* @file testIterative.cpp
|
||||
* @brief Unit tests for iterative methods
|
||||
* @author Frank Dellaert
|
||||
**/
|
||||
|
||||
#include <boost/assign/std/list.hpp> // for operator +=
|
||||
using namespace boost::assign;
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include "Ordering.h"
|
||||
#include "smallExample.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorConfig gradient(const GaussianFactorGraph& Ab, const VectorConfig& x) {
|
||||
return Ab.gradient(x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
typedef pair<Matrix,Vector> System;
|
||||
|
||||
/**
|
||||
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
|
||||
*/
|
||||
Vector gradient(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
const Vector& b = Ab.second;
|
||||
return A ^ (A * x - b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply operator A
|
||||
*/
|
||||
Vector operator*(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
return A * x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply operator A^T
|
||||
*/
|
||||
Vector operator^(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
return A ^ x;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG)
|
||||
// "System" class S needs gradient(S,v), e=S*v, v=S^e
|
||||
// "Vector" class V needs dot(v,v), -v, v+v, s*v
|
||||
// "Vector" class E needs dot(v,v)
|
||||
template <class S, class V, class E>
|
||||
V CGD(const S& Ab, V x, double threshold = 1e-9) {
|
||||
|
||||
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
||||
// i.e., first step is in direction of negative gradient
|
||||
V g = gradient(Ab, x);
|
||||
V d = -g;
|
||||
double prev_dotg = dot(g, g);
|
||||
|
||||
// loop max n times
|
||||
size_t n = x.size();
|
||||
for (int k = 1; k <= n; k++) {
|
||||
|
||||
// calculate optimal step-size
|
||||
E Ad = Ab * d;
|
||||
double alpha = -dot(d, g) / dot(Ad, Ad);
|
||||
|
||||
// do step in new search direction
|
||||
x = x + alpha * d;
|
||||
if (k == n) break;
|
||||
|
||||
// update gradient
|
||||
g = g + alpha * (Ab ^ Ad);
|
||||
|
||||
// check for convergence
|
||||
double dotg = dot(g, g);
|
||||
if (dotg < threshold) break;
|
||||
|
||||
// calculate new search direction
|
||||
double beta = dotg / prev_dotg;
|
||||
prev_dotg = dotg;
|
||||
d = -g + beta * d;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG), Matrix version
|
||||
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
|
||||
const Vector& x, double threshold = 1e-9) {
|
||||
System Ab = make_pair(A, b);
|
||||
return CGD<System, Vector, Vector> (Ab, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG), Gaussian Factor Graph version
|
||||
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& Ab,
|
||||
const VectorConfig& x, double threshold = 1e-9) {
|
||||
return CGD<GaussianFactorGraph, VectorConfig, Errors> (Ab, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, gradientDescent )
|
||||
{
|
||||
// Expected solution
|
||||
Ordering ord;
|
||||
ord += "l1","x1","x2";
|
||||
GaussianFactorGraph fg = createGaussianFactorGraph();
|
||||
VectorConfig expected = fg.optimize(ord); // destructive
|
||||
|
||||
// Do gradient descent
|
||||
GaussianFactorGraph fg2 = createGaussianFactorGraph();
|
||||
VectorConfig zero = createZeroDelta();
|
||||
VectorConfig actual = fg2.gradientDescent(zero);
|
||||
CHECK(assert_equal(expected,actual,1e-2));
|
||||
|
||||
// Do conjugate gradient descent
|
||||
//VectorConfig actual2 = fg2.conjugateGradientDescent(zero);
|
||||
VectorConfig actual2 = conjugateGradientDescent(fg2,zero);
|
||||
CHECK(assert_equal(expected,actual2,1e-2));
|
||||
|
||||
// Do conjugate gradient descent, Matrix version
|
||||
Matrix A;Vector b;
|
||||
boost::tie(A,b) = fg2.matrix(ord);
|
||||
// print(A,"A");
|
||||
// print(b,"b");
|
||||
Vector x0 = gtsam::zero(6);
|
||||
Vector actualX = conjugateGradientDescent(A,b,x0);
|
||||
Vector expectedX = Vector_(6, -0.1, 0.1, -0.1, -0.1, 0.1, -0.2);
|
||||
CHECK(assert_equal(expectedX,actualX,1e-9));
|
||||
|
||||
// Do conjugate gradient descent, System version
|
||||
System Ab = make_pair(A,b);
|
||||
Vector actualX2 = CGD<System,Vector,Vector>(Ab,x0);
|
||||
CHECK(assert_equal(expectedX,actualX2,1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
||||
/* ************************************************************************* */
|
Loading…
Reference in New Issue