Errors:dot, VectorConfig::operator*/-, as a result Conjugate Gradient Descent template now works for factor graphs

release/4.3a0
Frank Dellaert 2009-12-28 08:15:09 +00:00
parent 5dfd1921e1
commit 1fac98b4cb
5 changed files with 52 additions and 7 deletions

View File

@ -31,6 +31,17 @@ bool Errors::equals(const Errors& expected, double tol) const {
return true;
}
/* ************************************************************************* */
double dot(const Errors& a, const Errors& b) {
size_t m = a.size();
if (b.size()!=m)
throw(std::invalid_argument("Errors::dot: incompatible sizes"));
double result = 0.0;
for (size_t i = 0; i < m; i++)
result += gtsam::dot(a[i], b[i]);
return result;
}
/* ************************************************************************* */
} // gtsam

View File

@ -28,4 +28,9 @@ namespace gtsam {
}; // Errors
/**
* dot product
*/
double dot(const Errors& a, const Errors& b);
} // gtsam

View File

@ -69,6 +69,15 @@ VectorConfig VectorConfig::operator*(double s) const {
return scale(s);
}
/* ************************************************************************* */
VectorConfig VectorConfig::operator-() const {
VectorConfig result;
string j; Vector v;
FOREACH_PAIR(j, v, values)
result.insert(j, -v);
return result;
}
/* ************************************************************************* */
void VectorConfig::operator+=(const VectorConfig& b) {
string j; Vector b_j;

View File

@ -62,7 +62,9 @@ namespace gtsam {
const Vector& get(const std::string& name) const;
/** operator[] syntax for get */
inline const Vector& operator[](const std::string& name) const { return get(name); }
inline const Vector& operator[](const std::string& name) const {
return get(name);
}
bool contains(const std::string& name) const {
const_iterator it = values.find(name);
@ -79,6 +81,9 @@ namespace gtsam {
VectorConfig scale(double s) const;
VectorConfig operator*(double s) const;
/** Negation */
VectorConfig operator-() const;
/** Add in place */
void operator+=(const VectorConfig &b);
@ -109,6 +114,9 @@ namespace gtsam {
}
}; // VectorConfig
/** scalar product */
inline VectorConfig operator*(double s, const VectorConfig& x) {return x*s;}
/** Dot product */
double dot(const VectorConfig&, const VectorConfig&);

View File

@ -606,6 +606,11 @@ TEST( GaussianFactorGraph, transposeMultiplication )
CHECK(assert_equal(expected,actual));
}
/* ************************************************************************* */
VectorConfig gradient(const GaussianFactorGraph& Ab, const VectorConfig& x) {
return Ab.gradient(x);
}
/* ************************************************************************* */
typedef pair<Matrix,Vector> System;
@ -640,7 +645,7 @@ Vector operator^(const System& Ab, const Vector& x) {
// "Vector" class V needs dot(v,v), -v, v+v, s*v
// "Vector" class E needs dot(v,v)
template <class S, class V, class E>
Vector conjugateGradientDescent(const S& Ab, V x, double threshold = 1e-9) {
V CGD(const S& Ab, V x, double threshold = 1e-9) {
// Start with g0 = A'*(A*x0-b), d0 = - g0
// i.e., first step is in direction of negative gradient
@ -676,11 +681,18 @@ Vector conjugateGradientDescent(const S& Ab, V x, double threshold = 1e-9) {
}
/* ************************************************************************* */
// Method of conjugate gradients (CG)
// Method of conjugate gradients (CG), Matrix version
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
const Vector& x, double threshold = 1e-9) {
System Ab = make_pair(A, b);
return conjugateGradientDescent<System, Vector, Vector> (Ab, x);
return CGD<System, Vector, Vector> (Ab, x);
}
/* ************************************************************************* */
// Method of conjugate gradients (CG), Gaussian Factor Graph version
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& Ab,
const VectorConfig& x, double threshold = 1e-9) {
return CGD<GaussianFactorGraph, VectorConfig, Errors> (Ab, x);
}
/* ************************************************************************* */
@ -699,8 +711,8 @@ TEST( GaussianFactorGraph, gradientDescent )
CHECK(assert_equal(expected,actual,1e-2));
// Do conjugate gradient descent
VectorConfig actual2 = fg2.conjugateGradientDescent(zero);
//VectorConfig actual2 = conjugateGradientDescent(fg2,zero,zero);
//VectorConfig actual2 = fg2.conjugateGradientDescent(zero);
VectorConfig actual2 = conjugateGradientDescent(fg2,zero);
CHECK(assert_equal(expected,actual2,1e-2));
// Do conjugate gradient descent, Matrix version
@ -715,7 +727,7 @@ TEST( GaussianFactorGraph, gradientDescent )
// Do conjugate gradient descent, System version
System Ab = make_pair(A,b);
Vector actualX2 = conjugateGradientDescent<System,Vector,Vector>(Ab,x0);
Vector actualX2 = CGD<System,Vector,Vector>(Ab,x0);
CHECK(assert_equal(expectedX,actualX2,1e-9));
}