Merged from branch 'trunk'
commit
d7767188b3
1
gtsam.h
1
gtsam.h
|
@ -2047,6 +2047,7 @@ virtual class ISAM2 : gtsam::ISAM2BayesTree {
|
|||
|
||||
gtsam::Values getLinearizationPoint() const;
|
||||
gtsam::Values calculateEstimate() const;
|
||||
Matrix marginalCovariance(size_t key) const;
|
||||
gtsam::Values calculateBestEstimate() const;
|
||||
gtsam::VectorValues getDelta() const;
|
||||
gtsam::NonlinearFactorGraph getFactorsUnsafe() const;
|
||||
|
|
|
@ -1018,6 +1018,13 @@ Values ISAM2::calculateEstimate() const {
|
|||
return ret;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix ISAM2::marginalCovariance(Index key) const {
|
||||
return marginalFactor(ordering_[key],
|
||||
params_.factorization == ISAM2Params::QR ? EliminateQR : EliminatePreferCholesky)
|
||||
->information().inverse();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values ISAM2::calculateBestEstimate() const {
|
||||
VectorValues delta(theta_.dims(ordering_));
|
||||
|
|
|
@ -585,6 +585,9 @@ public:
|
|||
template<class VALUE>
|
||||
VALUE calculateEstimate(Key key) const;
|
||||
|
||||
/** Return marginal on any variable as a covariance matrix */
|
||||
GTSAM_EXPORT Matrix marginalCovariance(Index key) const;
|
||||
|
||||
/// @name Public members for non-typical usage
|
||||
/// @{
|
||||
|
||||
|
|
|
@ -0,0 +1,265 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SmartRangeExample_plaza2.cpp
|
||||
* @brief A 2D Range SLAM example
|
||||
* @date June 20, 2013
|
||||
* @author FRank Dellaert
|
||||
*/
|
||||
|
||||
// Both relative poses and recovered trajectory poses will be stored as Pose2 objects
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
|
||||
// Each variable in the system (poses and landmarks) must be identified with a unique key.
|
||||
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
||||
// Here we will use Symbols
|
||||
#include <gtsam/nonlinear/Symbol.h>
|
||||
|
||||
// We want to use iSAM2 to solve the range-SLAM problem incrementally
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
|
||||
// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
|
||||
// and initial guesses for any new variables used in the added factors
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
// We will use a non-liear solver to batch-inituialize from the first 150 frames
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
||||
// have been provided with the library for solving robotics SLAM problems.
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/RangeFactor.h>
|
||||
#include <gtsam_unstable/slam/SmartRangeFactor.h>
|
||||
|
||||
// Standard headers, added last, so we know headers above work on their own
|
||||
#include <boost/foreach.hpp>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
namespace NM = gtsam::noiseModel;
|
||||
|
||||
// data available at http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/
|
||||
// Datafile format (from http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/log.html)
|
||||
|
||||
// load the odometry
|
||||
// DR: Odometry Input (delta distance traveled and delta heading change)
|
||||
// Time (sec) Delta Dist. Trav. (m) Delta Heading (rad)
|
||||
typedef pair<double, Pose2> TimedOdometry;
|
||||
list<TimedOdometry> readOdometry() {
|
||||
list<TimedOdometry> odometryList;
|
||||
ifstream is("/Users/dellaert/borg/gtsam/examples/Data/Plaza1_DR.txt");
|
||||
if (!is)
|
||||
throw runtime_error(
|
||||
"/Users/dellaert/borg/gtsam/examples/Data/Plaza1_DR.txt file not found");
|
||||
|
||||
while (is) {
|
||||
double t, distance_traveled, delta_heading;
|
||||
is >> t >> distance_traveled >> delta_heading;
|
||||
odometryList.push_back(
|
||||
TimedOdometry(t, Pose2(distance_traveled, 0, delta_heading)));
|
||||
}
|
||||
is.clear(); /* clears the end-of-file and error flags */
|
||||
return odometryList;
|
||||
}
|
||||
|
||||
// load the ranges from TD
|
||||
// Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
|
||||
typedef boost::tuple<double, size_t, double> RangeTriple;
|
||||
vector<RangeTriple> readTriples() {
|
||||
vector<RangeTriple> triples;
|
||||
ifstream is("/Users/dellaert/borg/gtsam/examples/Data/Plaza1_TD.txt");
|
||||
if (!is)
|
||||
throw runtime_error(
|
||||
"/Users/dellaert/borg/gtsam/examples/Data/Plaza1_TD.txt file not found");
|
||||
|
||||
while (is) {
|
||||
double t, sender, receiver, range;
|
||||
is >> t >> sender >> receiver >> range;
|
||||
triples.push_back(RangeTriple(t, receiver, range));
|
||||
}
|
||||
is.clear(); /* clears the end-of-file and error flags */
|
||||
return triples;
|
||||
}
|
||||
|
||||
// main
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
// load Plaza1 data
|
||||
list<TimedOdometry> odometry = readOdometry();
|
||||
// size_t M = odometry.size();
|
||||
|
||||
vector<RangeTriple> triples = readTriples();
|
||||
size_t K = triples.size();
|
||||
|
||||
// parameters
|
||||
size_t start = 220, end=3000;
|
||||
size_t minK = 100; // first batch of smart factors
|
||||
size_t incK = 50; // minimum number of range measurements to process after
|
||||
bool robust = true;
|
||||
bool smart = true;
|
||||
|
||||
// Set Noise parameters
|
||||
Vector priorSigmas = Vector3(1, 1, M_PI);
|
||||
Vector odoSigmas = Vector3(0.05, 0.01, 0.2);
|
||||
double sigmaR = 100; // range standard deviation
|
||||
const NM::Base::shared_ptr // all same type
|
||||
priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior
|
||||
odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry
|
||||
gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
|
||||
tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust
|
||||
rangeNoise = robust ? tukey : gaussian;
|
||||
|
||||
// Initialize iSAM
|
||||
ISAM2 isam;
|
||||
|
||||
// Add prior on first pose
|
||||
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120,
|
||||
M_PI - 2.02108900000000);
|
||||
NonlinearFactorGraph newFactors;
|
||||
newFactors.add(PriorFactor<Pose2>(0, pose0, priorNoise));
|
||||
|
||||
ofstream os2(
|
||||
"/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResultLM.txt");
|
||||
ofstream os3(
|
||||
"/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResultSR.txt");
|
||||
|
||||
// initialize points (Gaussian)
|
||||
Values initial;
|
||||
if (!smart) {
|
||||
initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778));
|
||||
initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278));
|
||||
initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678));
|
||||
initial.insert(symbol('L', 5), Point2(1.7095, -5.8122));
|
||||
}
|
||||
Values landmarkEstimates = initial; // copy landmarks
|
||||
initial.insert(0, pose0);
|
||||
|
||||
// initialize smart range factors
|
||||
size_t ids[] = { 1, 6, 0, 5 };
|
||||
typedef boost::shared_ptr<SmartRangeFactor> SmartPtr;
|
||||
map<size_t, SmartPtr> smartFactors;
|
||||
if (smart) {
|
||||
BOOST_FOREACH(size_t jj,ids) {
|
||||
smartFactors[jj] = SmartPtr(new SmartRangeFactor(sigmaR));
|
||||
newFactors.add(smartFactors[jj]);
|
||||
}
|
||||
}
|
||||
|
||||
// set some loop variables
|
||||
size_t i = 1; // step counter
|
||||
size_t k = 0; // range measurement counter
|
||||
Pose2 lastPose = pose0;
|
||||
size_t countK = 0, totalCount=0;
|
||||
|
||||
// Loop over odometry
|
||||
gttic_(iSAM);
|
||||
BOOST_FOREACH(const TimedOdometry& timedOdometry, odometry) {
|
||||
//--------------------------------- odometry loop -----------------------------------------
|
||||
double t;
|
||||
Pose2 odometry;
|
||||
boost::tie(t, odometry) = timedOdometry;
|
||||
|
||||
// add odometry factor
|
||||
newFactors.add(
|
||||
BetweenFactor<Pose2>(i - 1, i, odometry,
|
||||
NM::Diagonal::Sigmas(odoSigmas)));
|
||||
|
||||
// predict pose and add as initial estimate
|
||||
Pose2 predictedPose = lastPose.compose(odometry);
|
||||
lastPose = predictedPose;
|
||||
initial.insert(i, predictedPose);
|
||||
landmarkEstimates.insert(i, predictedPose);
|
||||
|
||||
// Check if there are range factors to be added
|
||||
while (k < K && t >= boost::get<0>(triples[k])) {
|
||||
size_t j = boost::get<1>(triples[k]);
|
||||
double range = boost::get<2>(triples[k]);
|
||||
if (i > start) {
|
||||
if (smart && totalCount < minK) {
|
||||
smartFactors[j]->addRange(i, range);
|
||||
printf("adding range %g for %d on %d",range,(int)j,(int)i);cout << endl;
|
||||
}
|
||||
else {
|
||||
RangeFactor<Pose2, Point2> factor(i, symbol('L', j), range,
|
||||
rangeNoise);
|
||||
// Throw out obvious outliers based on current landmark estimates
|
||||
Vector error = factor.unwhitenedError(landmarkEstimates);
|
||||
if (k <= 200 || fabs(error[0]) < 5)
|
||||
newFactors.add(factor);
|
||||
}
|
||||
totalCount += 1;
|
||||
}
|
||||
k = k + 1;
|
||||
countK = countK + 1;
|
||||
}
|
||||
|
||||
// Check whether to update iSAM 2
|
||||
if (k >= minK && countK >= incK) {
|
||||
gttic_(update);
|
||||
isam.update(newFactors, initial);
|
||||
gttoc_(update);
|
||||
gttic_(calculateEstimate);
|
||||
Values result = isam.calculateEstimate();
|
||||
gttoc_(calculateEstimate);
|
||||
lastPose = result.at<Pose2>(i);
|
||||
bool hasLandmarks = result.exists(symbol('L', ids[0]));
|
||||
if (hasLandmarks) {
|
||||
// update landmark estimates
|
||||
landmarkEstimates = Values();
|
||||
BOOST_FOREACH(size_t jj,ids)
|
||||
landmarkEstimates.insert(symbol('L', jj), result.at(symbol('L', jj)));
|
||||
}
|
||||
newFactors = NonlinearFactorGraph();
|
||||
initial = Values();
|
||||
if (smart && !hasLandmarks) {
|
||||
cout << "initialize from smart landmarks" << endl;
|
||||
BOOST_FOREACH(size_t jj,ids) {
|
||||
Point2 landmark = smartFactors[jj]->triangulate(result);
|
||||
initial.insert(symbol('L', jj), landmark);
|
||||
landmarkEstimates.insert(symbol('L', jj), landmark);
|
||||
}
|
||||
}
|
||||
countK = 0;
|
||||
BOOST_FOREACH(const Values::ConstFiltered<Point2>::KeyValuePair& it, result.filter<Point2>())
|
||||
os2 << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t1"
|
||||
<< endl;
|
||||
if (smart) {
|
||||
BOOST_FOREACH(size_t jj,ids) {
|
||||
Point2 landmark = smartFactors[jj]->triangulate(result);
|
||||
os3 << jj << "\t" << landmark.x() << "\t" << landmark.y() << "\t1"
|
||||
<< endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
i += 1;
|
||||
if (i>end) break;
|
||||
//--------------------------------- odometry loop -----------------------------------------
|
||||
} // BOOST_FOREACH
|
||||
gttoc_(iSAM);
|
||||
|
||||
// Print timings
|
||||
tictoc_print_();
|
||||
|
||||
// Write result to file
|
||||
Values result = isam.calculateEstimate();
|
||||
ofstream os(
|
||||
"/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResult.txt");
|
||||
BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& it, result.filter<Pose2>())
|
||||
os << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t"
|
||||
<< it.value.theta() << endl;
|
||||
exit(0);
|
||||
}
|
||||
|
|
@ -61,7 +61,8 @@ list<TimedOdometry> readOdometry() {
|
|||
list<TimedOdometry> odometryList;
|
||||
ifstream is("/Users/dellaert/borg/gtsam/examples/Data/Plaza1_DR.txt");
|
||||
if (!is)
|
||||
throw runtime_error("/Users/dellaert/borg/gtsam/examples/Data/Plaza1_DR.txt file not found");
|
||||
throw runtime_error(
|
||||
"/Users/dellaert/borg/gtsam/examples/Data/Plaza1_DR.txt file not found");
|
||||
|
||||
while (is) {
|
||||
double t, distance_traveled, delta_heading;
|
||||
|
@ -80,7 +81,8 @@ vector<RangeTriple> readTriples() {
|
|||
vector<RangeTriple> triples;
|
||||
ifstream is("/Users/dellaert/borg/gtsam/examples/Data/Plaza1_TD.txt");
|
||||
if (!is)
|
||||
throw runtime_error("/Users/dellaert/borg/gtsam/examples/Data/Plaza1_TD.txt file not found");
|
||||
throw runtime_error(
|
||||
"/Users/dellaert/borg/gtsam/examples/Data/Plaza1_TD.txt file not found");
|
||||
|
||||
while (is) {
|
||||
double t, sender, receiver, range;
|
||||
|
@ -92,7 +94,7 @@ vector<RangeTriple> readTriples() {
|
|||
}
|
||||
|
||||
// main
|
||||
int main (int argc, char** argv) {
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
// load Plaza1 data
|
||||
list<TimedOdometry> odometry = readOdometry();
|
||||
|
@ -106,7 +108,7 @@ int main (int argc, char** argv) {
|
|||
bool robust = false;
|
||||
|
||||
// Set Noise parameters
|
||||
Vector priorSigmas = Vector3(1,1,M_PI);
|
||||
Vector priorSigmas = Vector3(0.01, 0.01, 0.01);
|
||||
Vector odoSigmas = Vector3(0.05, 0.01, 0.2);
|
||||
double sigmaR = 100; // range standard deviation
|
||||
const NM::Base::shared_ptr // all same type
|
||||
|
@ -120,8 +122,7 @@ int main (int argc, char** argv) {
|
|||
ISAM2 isam;
|
||||
|
||||
// Add prior on first pose
|
||||
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120,
|
||||
M_PI - 2.02108900000000);
|
||||
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120, -2.02108900000000);
|
||||
NonlinearFactorGraph newFactors;
|
||||
newFactors.add(PriorFactor<Pose2>(0, pose0, priorNoise));
|
||||
|
||||
|
@ -149,7 +150,9 @@ int main (int argc, char** argv) {
|
|||
boost::tie(t, odometry) = timedOdometry;
|
||||
|
||||
// add odometry factor
|
||||
newFactors.add(BetweenFactor<Pose2>(i-1, i, odometry,NM::Diagonal::Sigmas(odoSigmas)));
|
||||
newFactors.add(
|
||||
BetweenFactor<Pose2>(i - 1, i, odometry,
|
||||
NM::Diagonal::Sigmas(odoSigmas)));
|
||||
|
||||
// predict pose and add as initial estimate
|
||||
Pose2 predictedPose = lastPose.compose(odometry);
|
||||
|
@ -161,10 +164,10 @@ int main (int argc, char** argv) {
|
|||
while (k < K && t >= boost::get<0>(triples[k])) {
|
||||
size_t j = boost::get<1>(triples[k]);
|
||||
double range = boost::get<2>(triples[k]);
|
||||
RangeFactor<Pose2, Point2> factor(i, symbol('L', j), range,rangeNoise);
|
||||
RangeFactor<Pose2, Point2> factor(i, symbol('L', j), range, rangeNoise);
|
||||
// Throw out obvious outliers based on current landmark estimates
|
||||
Vector error=factor.unwhitenedError(landmarkEstimates);
|
||||
if (k<=200 || fabs(error[0])<5)
|
||||
Vector error = factor.unwhitenedError(landmarkEstimates);
|
||||
if (k <= 200 || fabs(error[0]) < 5)
|
||||
newFactors.add(factor);
|
||||
k = k + 1;
|
||||
countK = countK + 1;
|
||||
|
@ -199,12 +202,16 @@ int main (int argc, char** argv) {
|
|||
|
||||
// Write result to file
|
||||
Values result = isam.calculateEstimate();
|
||||
ofstream os2("/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResultLM.txt");
|
||||
ofstream os2(
|
||||
"/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResultLM.txt");
|
||||
BOOST_FOREACH(const Values::ConstFiltered<Point2>::KeyValuePair& it, result.filter<Point2>())
|
||||
os2 << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t1" << endl;
|
||||
ofstream os("/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResult.txt");
|
||||
os2 << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t1"
|
||||
<< endl;
|
||||
ofstream os(
|
||||
"/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResult.txt");
|
||||
BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& it, result.filter<Pose2>())
|
||||
os << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t" << it.value.theta() << endl;
|
||||
os << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t"
|
||||
<< it.value.theta() << endl;
|
||||
exit(0);
|
||||
}
|
||||
|
||||
|
|
|
@ -2,5 +2,5 @@
|
|||
reset
|
||||
#set terminal pdf
|
||||
set title "Smart range SLAM result"
|
||||
set size ratio 1
|
||||
plot "rangeResult.txt" using 2:3 with lines, "rangeResultLM.txt" using 2:3:4 with circles
|
||||
set size ratio -1
|
||||
plot "rangeResult.txt" using 2:3 with lines, "rangeResultLM.txt" using 2:3:4 with circles, "rangeResultSR.txt" using 2:3:4 with circles
|
|
@ -69,6 +69,8 @@ public:
|
|||
/** print */
|
||||
virtual void print(const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << "SmartRangeFactor with " << size() << " measurements\n";
|
||||
NoiseModelFactor::print(s);
|
||||
}
|
||||
|
||||
/** Check if two factors are equal */
|
||||
|
@ -82,7 +84,16 @@ public:
|
|||
* Triangulate a point from at least three pose-range pairs
|
||||
* Checks for best pair that includes first point
|
||||
*/
|
||||
static Point2 triangulate(const std::list<Circle2>& circles) {
|
||||
Point2 triangulate(const Values& x) const {
|
||||
gttic_(triangulate);
|
||||
// create n circles corresponding to measured range around each pose
|
||||
std::list<Circle2> circles;
|
||||
size_t n = size();
|
||||
for (size_t j = 0; j < n; j++) {
|
||||
const Pose2& pose = x.at<Pose2>(keys_[j]);
|
||||
circles.push_back(Circle2(pose.translation(), measurements_[j]));
|
||||
}
|
||||
|
||||
Circle2 circle1 = circles.front();
|
||||
boost::optional<Point2> best_fh;
|
||||
boost::optional<Circle2> best_circle;
|
||||
|
@ -116,6 +127,7 @@ public:
|
|||
error2 += it.center.dist(p2);
|
||||
}
|
||||
return (error1 < error2) ? p1 : p2;
|
||||
gttoc_(triangulate);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -133,16 +145,9 @@ public:
|
|||
} else {
|
||||
Vector error = zero(1);
|
||||
|
||||
// create n circles corresponding to measured range around each pose
|
||||
std::list<Circle2> circles;
|
||||
for (size_t j = 0; j < n; j++) {
|
||||
const Pose2& pose = x.at<Pose2>(keys_[j]);
|
||||
circles.push_back(Circle2(pose.translation(), measurements_[j]));
|
||||
}
|
||||
|
||||
// triangulate to get the optimized point
|
||||
// TODO: Should we have a (better?) variant that does this in relative coordinates ?
|
||||
Point2 optimizedPoint = triangulate(circles);
|
||||
Point2 optimizedPoint = triangulate(x);
|
||||
|
||||
// TODO: triangulation should be followed by an optimization given poses
|
||||
// now evaluate the errors between predicted and measured range
|
||||
|
|
|
@ -27,7 +27,7 @@ import gtsam.*
|
|||
% Time (sec) X_pose (m) Y_pose (m)
|
||||
% TD
|
||||
% Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
|
||||
if false % switch between data files
|
||||
if true % switch between data files
|
||||
datafile = findExampleDataFile('Plaza1_.mat');
|
||||
headingOffset=0;
|
||||
minK=200; % minimum number of range measurements to process initially
|
||||
|
@ -65,7 +65,7 @@ isam = ISAM2;
|
|||
%% Add prior on first pose
|
||||
pose0 = Pose2(GT(1,2),GT(1,3),headingOffset+GT(1,4));
|
||||
newFactors = NonlinearFactorGraph;
|
||||
if ~addRange | ~useGroundTruth
|
||||
if ~addRange || ~useGroundTruth
|
||||
newFactors.add(PriorFactorPose2(0,pose0,noiseModels.prior));
|
||||
end
|
||||
initial = Values;
|
||||
|
|
|
@ -27,7 +27,7 @@ import gtsam.*
|
|||
% Time (sec) X_pose (m) Y_pose (m)
|
||||
% TD
|
||||
% Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
|
||||
datafile = findExampleDataFile('Plaza1_.mat');
|
||||
datafile = findExampleDataFile('Plaza2_.mat');
|
||||
load(datafile)
|
||||
M=size(DR,1);
|
||||
K=size(TD,1);
|
||||
|
@ -42,7 +42,7 @@ base = noiseModel.mEstimator.Tukey(5);
|
|||
noiseModels.range = noiseModel.Robust(base,noiseModel.Isotropic.Sigma(1, sigmaR));
|
||||
|
||||
%% Add prior on first pose
|
||||
pose0 = Pose2(GT(1,2),GT(1,3),GT(1,4));
|
||||
pose0 = Pose2(GT(1,2),GT(1,3),pi+GT(1,4));
|
||||
graph = NonlinearFactorGraph;
|
||||
graph.add(PriorFactorPose2(0,pose0,noiseModels.prior));
|
||||
initial = Values;
|
||||
|
@ -84,7 +84,7 @@ for i=1:M
|
|||
end
|
||||
toc
|
||||
|
||||
%% GRaph was built, optimize !
|
||||
%% Graph was built, optimize !
|
||||
tic
|
||||
batchOptimizer = LevenbergMarquardtOptimizer(graph, initial);
|
||||
result = batchOptimizer.optimize();
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/nonlinear/Marginals.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/BearingRangeFactor.h>
|
||||
|
@ -1027,6 +1028,18 @@ TEST_UNSAFE(ISAM2, marginalizeLeaves5)
|
|||
EXPECT(checkMarginalizeLeaves(isam, marginalizeKeys));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, marginalCovariance)
|
||||
{
|
||||
// Create isam2
|
||||
ISAM2 isam = createSlamlikeISAM2();
|
||||
|
||||
// Check marginal
|
||||
Matrix expected = Marginals(isam.getFactorsUnsafe(), isam.getLinearizationPoint()).marginalCovariance(5);
|
||||
Matrix actual = isam.marginalCovariance(5);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -478,6 +478,7 @@ void Class::serialization_fragments(FileWriter& proxyFile, FileWriter& wrapperFi
|
|||
proxyFile.oss << " function sobj = saveobj(obj)\n";
|
||||
proxyFile.oss << " % SAVEOBJ Saves the object to a matlab-readable format\n";
|
||||
proxyFile.oss << " sobj = obj.string_serialize();\n";
|
||||
proxyFile.oss << " end\n";
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -66,6 +66,7 @@ classdef Point3 < handle
|
|||
function sobj = saveobj(obj)
|
||||
% SAVEOBJ Saves the object to a matlab-readable format
|
||||
sobj = obj.string_serialize();
|
||||
end
|
||||
end
|
||||
|
||||
methods(Static = true)
|
||||
|
|
Loading…
Reference in New Issue