Moved stuff to Manifold.h

release/4.3a0
dellaert 2014-10-18 23:25:25 +02:00
parent fcda501ee2
commit d436d99146
2 changed files with 132 additions and 142 deletions

View File

@ -19,19 +19,12 @@
#include <string>
#include <gtsam/base/Matrix.h>
#include <boost/static_assert.hpp>
#include <type_traits>
namespace gtsam {
/**
* Concept check class for Manifold types
* Requires a mapping between a linear tangent space and the underlying
* manifold, of which Lie is a specialization.
*
* The necessary functions to implement for Manifold are defined
* below with additional details as to the interface. The
* concept checking function in class Manifold will check whether or not
* the function exists and throw compile-time errors.
*
* A manifold defines a space in which there is a notion of a linear tangent space
* that can be centered around a given point on the manifold. These nonlinear
* spaces may have such properties as wrapping around (as is the case with rotations),
@ -45,7 +38,130 @@ namespace gtsam {
* There may be multiple possible retractions for a given manifold, which can be chosen
* between depending on the computational complexity. The important criteria for
* the creation for the retract and localCoordinates functions is that they be
* inverse operations.
* inverse operations. The new notion of a Chart guarantees that.
*
*/
// Traits, same style as Boost.TypeTraits
// All meta-functions below ever only declare a single type
// or a type/value/value_type
// is manifold, by default this is false
template<typename T>
struct is_manifold: public std::false_type {
};
// dimension, can return Eigen::Dynamic (-1) if not known at compile time
template<typename T>
struct dimension;
//: public std::integral_constant<int, T::dimension> {
// BOOST_STATIC_ASSERT(is_manifold<T>::value);
//};
// Chart is a map from T -> vector, retract is its inverse
template<typename T>
struct DefaultChart {
BOOST_STATIC_ASSERT(is_manifold<T>::value);
typedef Eigen::Matrix<double, dimension<T>::value, 1> vector;
DefaultChart(const T& t) :
t_(t) {
}
vector apply(const T& other) {
return t_.localCoordinates(other);
}
T retract(const vector& d) {
return t_.retract(d);
}
private:
T const & t_;
};
// double
template<>
struct is_manifold<double> : public std::true_type {
};
template<>
struct dimension<double> : public std::integral_constant<size_t, 1> {
};
template<>
struct DefaultChart<double> {
typedef Eigen::Matrix<double, 1, 1> vector;
DefaultChart(double t) :
t_(t) {
}
vector apply(double other) {
vector d;
d << other - t_;
return d;
}
double retract(const vector& d) {
return t_ + d[0];
}
private:
double t_;
};
// Fixed size Eigen::Matrix type
template<int M, int N, int Options>
struct is_manifold<Eigen::Matrix<double, M, N, Options> > : public std::true_type {
};
// TODO: Could be more sophisticated using Eigen traits and SFINAE?
typedef std::integral_constant<size_t, Eigen::Dynamic> Dynamic;
template<int Options>
struct dimension<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Options> > : public Dynamic {
};
template<int M, int Options>
struct dimension<Eigen::Matrix<double, M, Eigen::Dynamic, Options> > : public Dynamic {
BOOST_STATIC_ASSERT(M!=Eigen::Dynamic);
};
template<int N, int Options>
struct dimension<Eigen::Matrix<double, Eigen::Dynamic, N, Options> > : public Dynamic {
BOOST_STATIC_ASSERT(N!=Eigen::Dynamic);
};
template<int M, int N, int Options>
struct dimension<Eigen::Matrix<double, M, N, Options> > : public std::integral_constant<
size_t, M * N> {
BOOST_STATIC_ASSERT(M!=Eigen::Dynamic && N!=Eigen::Dynamic);
};
template<int M, int N, int Options>
struct DefaultChart<Eigen::Matrix<double, M, N, Options> > {
typedef Eigen::Matrix<double, M, N, Options> T;
typedef Eigen::Matrix<double, dimension<T>::value, 1> vector;
DefaultChart(const T& t) :
t_(t) {
}
vector apply(const T& other) {
T diff = other - t_;
Eigen::Map<vector> map(diff.data());
return vector(map);
}
T retract(const vector& d) {
Eigen::Map<const T> map(d.data());
return t_ + map;
}
private:
T const & t_;
};
/**
* Old Concept check class for Manifold types
* Requires a mapping between a linear tangent space and the underlying
* manifold, of which Lie is a specialization.
*
* The necessary functions to implement for Manifold are defined
* below with additional details as to the interface. The
* concept checking function in class Manifold will check whether or not
* the function exists and throw compile-time errors.
*
* Returns dimensionality of the tangent space, which may be smaller than the number
* of nonlinear parameters.

View File

@ -324,137 +324,8 @@ struct SnavelyReprojectionError {
/* ************************************************************************* */
/**
* A manifold defines a space in which there is a notion of a linear tangent space
* that can be centered around a given point on the manifold. These nonlinear
* spaces may have such properties as wrapping around (as is the case with rotations),
* which might make linear operations on parameters not return a viable element of
* the manifold.
*
* We perform optimization by computing a linear delta in the tangent space of the
* current estimate, and then apply this change using a retraction operation, which
* maps the change in tangent space back to the manifold itself.
*
* There may be multiple possible retractions for a given manifold, which can be chosen
* between depending on the computational complexity. The important criteria for
* the creation for the retract and localCoordinates functions is that they be
* inverse operations.
*
*/
// Traits, same style as Boost.TypeTraits
// All meta-functions below ever only declare a single type
// or a type/value/value_type
// is manifold, by default this is false
template<typename T>
struct is_manifold: public std::false_type {
};
// dimension, can return Eigen::Dynamic (-1) if not known at compile time
template<typename T>
struct dimension;
//: public std::integral_constant<int, T::dimension> {
// BOOST_STATIC_ASSERT(is_manifold<T>::value);
//};
// Chart is a map from T -> vector, retract is its inverse
template<typename T>
struct DefaultChart {
BOOST_STATIC_ASSERT(is_manifold<T>::value);
typedef Eigen::Matrix<double, dimension<T>::value, 1> vector;
DefaultChart(const T& t) :
t_(t) {
}
vector apply(const T& other) {
return t_.localCoordinates(other);
}
T retract(const vector& d) {
return t_.retract(d);
}
private:
T const & t_;
};
// double
template<>
struct is_manifold<double> : public true_type {
};
template<>
struct dimension<double> : public integral_constant<size_t, 1> {
};
template<>
struct DefaultChart<double> {
typedef Eigen::Matrix<double, 1, 1> vector;
DefaultChart(double t) :
t_(t) {
}
vector apply(double other) {
vector d;
d << other - t_;
return d;
}
double retract(const vector& d) {
return t_ + d[0];
}
private:
double t_;
};
// Fixed size Eigen::Matrix type
template<int M, int N, int Options>
struct is_manifold<Eigen::Matrix<double, M, N, Options> > : public true_type {
};
// TODO: Could be more sophisticated using Eigen traits and SFINAE?
template<int Options>
struct dimension<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Options> > : public integral_constant<
size_t, Eigen::Dynamic> {
};
template<int M, int Options>
struct dimension<Eigen::Matrix<double, M, Eigen::Dynamic, Options> > : public integral_constant<
size_t, Eigen::Dynamic> {
BOOST_STATIC_ASSERT(M!=Eigen::Dynamic);
};
template<int N, int Options>
struct dimension<Eigen::Matrix<double, Eigen::Dynamic, N, Options> > : public integral_constant<
size_t, Eigen::Dynamic> {
BOOST_STATIC_ASSERT(N!=Eigen::Dynamic);
};
template<int M, int N, int Options>
struct dimension<Eigen::Matrix<double, M, N, Options> > : public integral_constant<
size_t, M * N> {
BOOST_STATIC_ASSERT(M!=Eigen::Dynamic && N!=Eigen::Dynamic);
};
template<int M, int N, int Options>
struct DefaultChart<Eigen::Matrix<double, M, N, Options> > {
typedef Eigen::Matrix<double, M, N, Options> T;
typedef Eigen::Matrix<double, dimension<T>::value, 1> vector;
DefaultChart(const T& t) :
t_(t) {
}
vector apply(const T& other) {
T diff = other - t_;
Eigen::Map<vector> map(diff.data());
return vector(map);
}
T retract(const vector& d) {
Eigen::Map<const T> map(d.data());
return t_ + map;
}
private:
T const & t_;
};
// Point2
namespace gtsam {
template<>
struct is_manifold<Point2> : public true_type {
@ -464,6 +335,8 @@ template<>
struct dimension<Point2> : public integral_constant<size_t, 2> {
};
}
// is_manifold
TEST(Expression, is_manifold) {
EXPECT(!is_manifold<int>::value);
@ -495,7 +368,8 @@ TEST(Expression, Charts) {
EXPECT(chart2.retract(Vector2(1,0))==Vector2(1,0));
DefaultChart<double> chart3(0);
Eigen::Matrix<double, 1, 1> v1; v1<<1;
Eigen::Matrix<double, 1, 1> v1;
v1 << 1;
EXPECT(chart3.apply(1)==v1);
EXPECT(chart3.retract(v1)==1);