gtsam/gtsam_unstable/nonlinear/tests/testExpression.cpp

520 lines
16 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------1------------------------------------------- */
/**
* @file testExpression.cpp
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief unit tests for Block Automatic Differentiation
*/
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam_unstable/nonlinear/Expression.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/LieScalar.h>
#include "ceres/ceres.h"
#include "ceres/rotation.h"
#undef CHECK
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/list_of.hpp>
using boost::assign::list_of;
using boost::assign::map_list_of;
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
template<class CAL>
Point2 uncalibrate(const CAL& K, const Point2& p,
boost::optional<Matrix25&> Dcal, boost::optional<Matrix2&> Dp) {
return K.uncalibrate(p, Dcal, Dp);
}
static const Rot3 someR = Rot3::RzRyRx(1, 2, 3);
/* ************************************************************************* */
// Constant
TEST(Expression, constant) {
Expression<Rot3> R(someR);
Values values;
JacobianMap actualMap;
Rot3 actual = R.value(values, actualMap);
EXPECT(assert_equal(someR, actual));
JacobianMap expected;
EXPECT(actualMap == expected);
EXPECT_LONGS_EQUAL(0, R.traceSize())
}
/* ************************************************************************* */
// Leaf
TEST(Expression, Leaf) {
Expression<Rot3> R(100);
Values values;
values.insert(100, someR);
JacobianMap expected;
Matrix H = eye(3);
expected.insert(make_pair(100, H.block(0, 0, 3, 3)));
JacobianMap actualMap2;
actualMap2.insert(make_pair(100, H.block(0, 0, 3, 3)));
Rot3 actual2 = R.reverse(values, actualMap2);
EXPECT(assert_equal(someR, actual2));
EXPECT(actualMap2 == expected);
}
/* ************************************************************************* */
// Many Leaves
TEST(Expression, Leaves) {
Values values;
Point3 somePoint(1, 2, 3);
values.insert(Symbol('p', 10), somePoint);
std::vector<Expression<Point3> > points = createUnknowns<Point3>(10, 'p', 1);
EXPECT(assert_equal(somePoint,points.back().value(values)));
}
/* ************************************************************************* */
//TEST(Expression, NullaryMethod) {
// Expression<Point3> p(67);
// Expression<LieScalar> norm(p, &Point3::norm);
// Values values;
// values.insert(67,Point3(3,4,5));
// Augmented<LieScalar> a = norm.augmented(values);
// EXPECT(a.value() == sqrt(50));
// JacobianMap expected;
// expected[67] = (Matrix(1,3) << 3/sqrt(50),4/sqrt(50),5/sqrt(50));
// EXPECT(assert_equal(expected.at(67),a.jacobians().at(67)));
//}
/* ************************************************************************* */
// Binary(Leaf,Leaf)
namespace binary {
// Create leaves
Expression<Pose3> x(1);
Expression<Point3> p(2);
Expression<Point3> p_cam(x, &Pose3::transform_to, p);
}
/* ************************************************************************* */
// keys
TEST(Expression, BinaryKeys) {
set<Key> expected = list_of(1)(2);
EXPECT(expected == binary::p_cam.keys());
}
/* ************************************************************************* */
// dimensions
TEST(Expression, BinaryDimensions) {
map<Key, size_t> actual, expected = map_list_of<Key, size_t>(1, 6)(2, 3);
binary::p_cam.dims(actual);
EXPECT(actual==expected);
}
/* ************************************************************************* */
// dimensions
TEST(Expression, BinaryTraceSize) {
typedef BinaryExpression<Point3, Pose3, Point3> Binary;
size_t expectedTraceSize = sizeof(Binary::Record);
EXPECT_LONGS_EQUAL(expectedTraceSize, binary::p_cam.traceSize());
}
/* ************************************************************************* */
// Binary(Leaf,Unary(Binary(Leaf,Leaf)))
namespace tree {
using namespace binary;
// Create leaves
Expression<Cal3_S2> K(3);
// Create expression tree
Expression<Point2> projection(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
Expression<Point2> uv_hat(uncalibrate<Cal3_S2>, K, projection);
}
/* ************************************************************************* */
// keys
TEST(Expression, TreeKeys) {
set<Key> expected = list_of(1)(2)(3);
EXPECT(expected == tree::uv_hat.keys());
}
/* ************************************************************************* */
// dimensions
TEST(Expression, TreeDimensions) {
map<Key, size_t> actual, expected = map_list_of<Key, size_t>(1, 6)(2, 3)(3,
5);
tree::uv_hat.dims(actual);
EXPECT(actual==expected);
}
/* ************************************************************************* */
// TraceSize
TEST(Expression, TreeTraceSize) {
typedef UnaryExpression<Point2, Point3> Unary;
typedef BinaryExpression<Point3, Pose3, Point3> Binary1;
typedef BinaryExpression<Point2, Point2, Cal3_S2> Binary2;
size_t expectedTraceSize = sizeof(Unary::Record) + sizeof(Binary1::Record)
+ sizeof(Binary2::Record);
EXPECT_LONGS_EQUAL(expectedTraceSize, tree::uv_hat.traceSize());
}
/* ************************************************************************* */
TEST(Expression, compose1) {
// Create expression
Expression<Rot3> R1(1), R2(2);
Expression<Rot3> R3 = R1 * R2;
// Check keys
set<Key> expected = list_of(1)(2);
EXPECT(expected == R3.keys());
}
/* ************************************************************************* */
// Test compose with arguments referring to the same rotation
TEST(Expression, compose2) {
// Create expression
Expression<Rot3> R1(1), R2(1);
Expression<Rot3> R3 = R1 * R2;
// Check keys
set<Key> expected = list_of(1);
EXPECT(expected == R3.keys());
}
/* ************************************************************************* */
// Test compose with one arguments referring to constant rotation
TEST(Expression, compose3) {
// Create expression
Expression<Rot3> R1(Rot3::identity()), R2(3);
Expression<Rot3> R3 = R1 * R2;
// Check keys
set<Key> expected = list_of(3);
EXPECT(expected == R3.keys());
}
/* ************************************************************************* */
// Test with ternary function
Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3,
boost::optional<Matrix3&> H1, boost::optional<Matrix3&> H2,
boost::optional<Matrix3&> H3) {
// return dummy derivatives (not correct, but that's ok for testing here)
if (H1)
*H1 = eye(3);
if (H2)
*H2 = eye(3);
if (H3)
*H3 = eye(3);
return R1 * (R2 * R3);
}
TEST(Expression, ternary) {
// Create expression
Expression<Rot3> A(1), B(2), C(3);
Expression<Rot3> ABC(composeThree, A, B, C);
// Check keys
set<Key> expected = list_of(1)(2)(3);
EXPECT(expected == ABC.keys());
}
/* ************************************************************************* */
// Some Ceres Snippets copied for testing
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
template<typename T> inline T &RowMajorAccess(T *base, int rows, int cols,
int i, int j) {
return base[cols * i + j];
}
inline double RandDouble() {
double r = static_cast<double>(rand());
return r / RAND_MAX;
}
// A structure for projecting a 3x4 camera matrix and a
// homogeneous 3D point, to a 2D inhomogeneous point.
struct Projective {
// Function that takes P and X as separate vectors:
// P, X -> x
template<typename A>
bool operator()(A const P[12], A const X[4], A x[2]) const {
A PX[3];
for (int i = 0; i < 3; ++i) {
PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0]
+ RowMajorAccess(P, 3, 4, i, 1) * X[1]
+ RowMajorAccess(P, 3, 4, i, 2) * X[2]
+ RowMajorAccess(P, 3, 4, i, 3) * X[3];
}
if (PX[2] != 0.0) {
x[0] = PX[0] / PX[2];
x[1] = PX[1] / PX[2];
return true;
}
return false;
}
// Adapt to eigen types
Vector2 operator()(const MatrixRowMajor& P, const Vector4& X) const {
Vector2 x;
if (operator()(P.data(), X.data(), x.data()))
return x;
else
throw std::runtime_error("Projective fail");
}
};
// Templated pinhole camera model for used with Ceres. The camera is
// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
// focal length and 2 for radial distortion. The principal point is not modeled
// (i.e. it is assumed be located at the image center).
struct SnavelyReprojectionError {
template<typename T>
bool operator()(const T* const camera, const T* const point,
T* predicted) const {
// camera[0,1,2] are the angle-axis rotation.
T p[3];
ceres::AngleAxisRotatePoint(camera, point, p);
// camera[3,4,5] are the translation.
p[0] += camera[3];
p[1] += camera[4];
p[2] += camera[5];
// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely's Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
T xp = -p[0] / p[2];
T yp = -p[1] / p[2];
// Apply second and fourth order radial distortion.
const T& l1 = camera[7];
const T& l2 = camera[8];
T r2 = xp * xp + yp * yp;
T distortion = T(1.0) + r2 * (l1 + l2 * r2);
// Compute final projected point position.
const T& focal = camera[6];
predicted[0] = focal * distortion * xp;
predicted[1] = focal * distortion * yp;
return true;
}
// Adapt to GTSAM types
Vector2 operator()(const Vector9& P, const Vector3& X) const {
Vector2 x;
if (operator()(P.data(), X.data(), x.data()))
return x;
else
throw std::runtime_error("Snavely fail");
}
};
/* ************************************************************************* */
// Point2
namespace gtsam {
template<>
struct is_manifold<Point2> : public true_type {
};
template<>
struct dimension<Point2> : public integral_constant<size_t, 2> {
};
}
// is_manifold
TEST(Expression, is_manifold) {
EXPECT(!is_manifold<int>::value);
EXPECT(is_manifold<Point2>::value);
EXPECT(is_manifold<Matrix24>::value);
EXPECT(is_manifold<double>::value);
EXPECT(is_manifold<Vector>::value);
EXPECT(is_manifold<Matrix>::value);
}
// dimension
TEST(Expression, dimension) {
EXPECT_LONGS_EQUAL(2, dimension<Point2>::value);
EXPECT_LONGS_EQUAL(8, dimension<Matrix24>::value);
EXPECT_LONGS_EQUAL(1, dimension<double>::value);
EXPECT_LONGS_EQUAL(Eigen::Dynamic, dimension<Vector>::value);
EXPECT_LONGS_EQUAL(Eigen::Dynamic, dimension<Matrix>::value);
}
// charts
TEST(Expression, Charts) {
DefaultChart<Point2> chart1(Point2(0, 0));
EXPECT(chart1.apply(Point2(1,0))==Vector2(1,0));
EXPECT(chart1.retract(Vector2(1,0))==Point2(1,0));
DefaultChart<Vector2> chart2(Vector2(0, 0));
EXPECT(chart2.apply(Vector2(1,0))==Vector2(1,0));
EXPECT(chart2.retract(Vector2(1,0))==Vector2(1,0));
DefaultChart<double> chart3(0);
Eigen::Matrix<double, 1, 1> v1;
v1 << 1;
EXPECT(chart3.apply(1)==v1);
EXPECT(chart3.retract(v1)==1);
// Dynamic does not work yet !
// Vector z = zero(2), v(2);
// v << 1, 0;
// DefaultChart<Vector> chart4(z);
// EXPECT(chart4.apply(v)==v);
// EXPECT(chart4.retract(v)==v);
}
/* ************************************************************************* */
// New-style numerical derivatives using manifold_traits
template<typename Y, typename X>
Matrix numericalDerivative(boost::function<Y(const X&)> h, const X& x,
double delta = 1e-5) {
BOOST_STATIC_ASSERT(is_manifold<Y>::value);
static const size_t M = dimension<Y>::value;
typedef DefaultChart<Y> ChartY;
typedef typename ChartY::vector TangentY;
BOOST_STATIC_ASSERT(is_manifold<X>::value);
static const size_t N = dimension<X>::value;
typedef DefaultChart<X> ChartX;
typedef typename ChartX::vector TangentX;
// get chart at x
ChartX chartX(x);
// get value at x, and corresponding chart
Y hx = h(x);
ChartY chartY(hx);
// Prepare a tangent vector to perturb x with
TangentX dx;
dx.setZero();
// Fill in Jacobian H
Matrix H = zeros(M, N);
double factor = 1.0 / (2.0 * delta);
for (size_t j = 0; j < N; j++) {
dx(j) = delta;
TangentY dy1 = chartY.apply(h(chartX.retract(dx)));
dx(j) = -delta;
TangentY dy2 = chartY.apply(h(chartX.retract(dx)));
H.block<M, 1>(0, j) << (dy1 - dy2) * factor;
dx(j) = 0;
}
return H;
}
template<typename Y, typename X1, typename X2>
Matrix numericalDerivative21(boost::function<Y(const X1&, const X2&)> h,
const X1& x1, const X2& x2, double delta = 1e-5) {
return numericalDerivative<Y, X1>(boost::bind(h, _1, x2), x1, delta);
}
template<typename Y, typename X1, typename X2>
Matrix numericalDerivative22(boost::function<Y(const X1&, const X2&)> h,
const X1& x1, const X2& x2, double delta = 1e-5) {
return numericalDerivative<Y, X2>(boost::bind(h, x1, _1), x2, delta);
}
/* ************************************************************************* */
// Test Ceres AutoDiff
TEST(Expression, AutoDiff) {
using ceres::internal::AutoDiff;
// Instantiate function
Projective projective;
// Make arguments
typedef Eigen::Matrix<double, 3, 4, Eigen::RowMajor> M;
M P;
P << 1, 0, 0, 0, 0, 1, 0, 5, 0, 0, 1, 0;
Vector4 X(10, 0, 5, 1);
// Apply the mapping, to get image point b_x.
Vector expected = Vector2(2, 1);
Vector2 actual = projective(P, X);
EXPECT(assert_equal(expected,actual,1e-9));
// Get expected derivatives
Matrix E1 = numericalDerivative21<Vector2, M, Vector4>(Projective(), P, X);
Matrix E2 = numericalDerivative22<Vector2, M, Vector4>(Projective(), P, X);
// Get derivatives with AutoDiff
Vector2 actual2;
MatrixRowMajor H1(2, 12), H2(2, 4);
double *parameters[] = { P.data(), X.data() };
double *jacobians[] = { H1.data(), H2.data() };
CHECK(
(AutoDiff<Projective, double, 12, 4>::Differentiate( projective, parameters, 2, actual2.data(), jacobians)));
EXPECT(assert_equal(E1,H1,1e-8));
EXPECT(assert_equal(E2,H2,1e-8));
}
/* ************************************************************************* */
// Test Ceres AutoDiff on Snavely
TEST(Expression, AutoDiff2) {
using ceres::internal::AutoDiff;
// Instantiate function
SnavelyReprojectionError snavely;
// Make arguments
Vector9 P; // zero rotation, (0,5,0) translation, focal length 1
P << 0, 0, 0, 0, 5, 0, 1, 0, 0;
Vector3 X(10, 0, -5); // negative Z-axis convention of Snavely!
// Apply the mapping, to get image point b_x.
Vector expected = Vector2(2, 1);
Vector2 actual = snavely(P, X);
EXPECT(assert_equal(expected,actual,1e-9));
// Get expected derivatives
Matrix E1 = numericalDerivative21<Vector2, Vector9, Vector3>(
SnavelyReprojectionError(), P, X);
Matrix E2 = numericalDerivative22<Vector2, Vector9, Vector3>(
SnavelyReprojectionError(), P, X);
// Get derivatives with AutoDiff
Vector2 actual2;
MatrixRowMajor H1(2, 9), H2(2, 3);
double *parameters[] = { P.data(), X.data() };
double *jacobians[] = { H1.data(), H2.data() };
CHECK(
(AutoDiff<SnavelyReprojectionError, double, 9, 3>::Differentiate( snavely, parameters, 2, actual2.data(), jacobians)));
EXPECT(assert_equal(E1,H1,1e-8));
EXPECT(assert_equal(E2,H2,1e-8));
}
/* ************************************************************************* */
// keys
TEST(Expression, SnavelyKeys) {
// Expression<Vector2> expression(1);
// set<Key> expected = list_of(1)(2);
// EXPECT(expected == expression.keys());
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */