Added BetweenFactorEM with 2 indicator variables.
							parent
							
								
									c2f5adc7d0
								
							
						
					
					
						commit
						d33f435eab
					
				|  | @ -13,6 +13,7 @@ virtual class gtsam::Point3; | |||
| virtual class gtsam::Rot3; | ||||
| virtual class gtsam::Pose3; | ||||
| virtual class gtsam::noiseModel::Base; | ||||
| virtual class gtsam::noiseModel::Gaussian; | ||||
| virtual class gtsam::imuBias::ConstantBias; | ||||
| virtual class gtsam::NonlinearFactor; | ||||
| virtual class gtsam::GaussianFactor; | ||||
|  | @ -308,6 +309,15 @@ virtual class BetweenFactor : gtsam::NonlinearFactor { | |||
|   void serializable() const; // enabling serialization functionality
 | ||||
| }; | ||||
| 
 | ||||
| //#include <gtsam_unstable/slam/BetweenFactorEM.h>
 | ||||
| //template<T = {gtsam::PoseRTV}>
 | ||||
| //virtual class BetweenFactorEM : gtsam::NonlinearFactor {
 | ||||
| //  BetweenFactorEM(size_t key1, size_t key2, const T& relativePose,
 | ||||
| //      const gtsam::noiseModel::Gaussian* model_inlier, const gtsam::noiseModel::Gaussian* model_outlier,
 | ||||
| //      double prior_inlier, double prior_outlier);
 | ||||
| //
 | ||||
| //  void serializable() const; // enabling serialization functionality
 | ||||
| //};
 | ||||
| 
 | ||||
| #include <gtsam/slam/RangeFactor.h> | ||||
| template<POSE, POINT> | ||||
|  |  | |||
|  | @ -0,0 +1,276 @@ | |||
| /* ----------------------------------------------------------------------------
 | ||||
| 
 | ||||
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,  | ||||
|  * Atlanta, Georgia 30332-0415 | ||||
|  * All Rights Reserved | ||||
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||||
| 
 | ||||
|  * See LICENSE for the license information | ||||
| 
 | ||||
|  * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
|  *  @file  BetweenFactorEM.h | ||||
|  *  @author Vadim Indelman | ||||
|  **/ | ||||
| #pragma once | ||||
| 
 | ||||
| #include <ostream> | ||||
| 
 | ||||
| #include <gtsam/base/Testable.h> | ||||
| #include <gtsam/base/Lie.h> | ||||
| #include <gtsam/nonlinear/NonlinearFactor.h> | ||||
| #include <gtsam/linear/GaussianFactor.h> | ||||
| 
 | ||||
| namespace gtsam { | ||||
| 
 | ||||
|   /**
 | ||||
|    * A class for a measurement predicted by "between(config[key1],config[key2])" | ||||
|    * @tparam VALUE the Value type | ||||
|    * @addtogroup SLAM | ||||
|    */ | ||||
|   template<class VALUE> | ||||
|   class BetweenFactorEM: public NonlinearFactor { | ||||
| 
 | ||||
|   public: | ||||
| 
 | ||||
|     typedef VALUE T; | ||||
| 
 | ||||
|   private: | ||||
| 
 | ||||
|     typedef BetweenFactorEM<VALUE> This; | ||||
|     typedef gtsam::NonlinearFactor Base; | ||||
| 
 | ||||
|     gtsam::Key key1_; | ||||
|     gtsam::Key key2_; | ||||
| 
 | ||||
|     VALUE measured_; /** The measurement */ | ||||
| 
 | ||||
|     SharedGaussian model_inlier_; | ||||
|     SharedGaussian model_outlier_; | ||||
| 
 | ||||
|     double prior_inlier_; | ||||
|     double prior_outlier_; | ||||
| 
 | ||||
|     /** concept check by type */ | ||||
|     GTSAM_CONCEPT_LIE_TYPE(T) | ||||
|     GTSAM_CONCEPT_TESTABLE_TYPE(T) | ||||
| 
 | ||||
|   public: | ||||
| 
 | ||||
|     // shorthand for a smart pointer to a factor
 | ||||
|     typedef typename boost::shared_ptr<BetweenFactorEM> shared_ptr; | ||||
| 
 | ||||
|     /** default constructor - only use for serialization */ | ||||
|     BetweenFactorEM() {} | ||||
| 
 | ||||
|     /** Constructor */ | ||||
|     BetweenFactorEM(Key key1, Key key2, const VALUE& measured, | ||||
|         const SharedGaussian& model_inlier, const SharedGaussian& model_outlier, | ||||
|         const double prior_inlier, const double prior_outlier) : | ||||
|           key1_(key1), key2_(key2), measured_(measured), | ||||
|           model_inlier_(model_inlier), model_outlier_(model_outlier), | ||||
|           prior_inlier_(prior_inlier), prior_outlier_(prior_outlier){ | ||||
|     } | ||||
| 
 | ||||
|     virtual ~BetweenFactorEM() {} | ||||
| 
 | ||||
| 
 | ||||
|     /** implement functions needed for Testable */ | ||||
| 
 | ||||
|     /** print */ | ||||
|     virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { | ||||
|       Base::print(s, keyFormatter); | ||||
|     } | ||||
| 
 | ||||
|     /** equals */ | ||||
|     virtual bool equals(const NonlinearFactor& f, double tol=1e-9) const { | ||||
|       const This *t =  dynamic_cast<const This*> (&f); | ||||
| 
 | ||||
|       if(t && Base::equals(f)) | ||||
|         return key1_ == t->key1_ && key2_ == t->key2_ && | ||||
|             //            model_inlier_->equals(t->model_inlier_ ) && // TODO: fix here
 | ||||
|             //            model_outlier_->equals(t->model_outlier_ ) &&
 | ||||
|             prior_outlier_ == t->prior_outlier_ && prior_inlier_ == t->prior_inlier_ && measured_.equals(t->measured_); | ||||
|       else | ||||
|         return false; | ||||
|     } | ||||
| 
 | ||||
|     /** implement functions needed to derive from Factor */ | ||||
| 
 | ||||
|     /* ************************************************************************* */ | ||||
|     virtual double error(const gtsam::Values& x) const { | ||||
|       return whitenedError(x).squaredNorm(); | ||||
|     } | ||||
| 
 | ||||
|     /* ************************************************************************* */ | ||||
|     /**
 | ||||
|      * Linearize a non-linearFactorN to get a gtsam::GaussianFactor, | ||||
|      * \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$ | ||||
|      * Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$ | ||||
|      */ | ||||
|     /* This version of linearize recalculates the noise model each time */ | ||||
|     virtual boost::shared_ptr<gtsam::GaussianFactor> linearize(const gtsam::Values& x, const gtsam::Ordering& ordering) const { | ||||
|       // Only linearize if the factor is active
 | ||||
|       if (!this->active(x)) | ||||
|         return boost::shared_ptr<gtsam::JacobianFactor>(); | ||||
| 
 | ||||
|       //std::cout<<"About to linearize"<<std::endl;
 | ||||
|       gtsam::Matrix A1, A2; | ||||
|       std::vector<gtsam::Matrix> A(this->size()); | ||||
|       gtsam::Vector b = -whitenedError(x, A); | ||||
|       A1 = A[0]; | ||||
|       A2 = A[1]; | ||||
| 
 | ||||
|       return gtsam::GaussianFactor::shared_ptr( | ||||
|           new gtsam::JacobianFactor(ordering[key1_], A1, ordering[key2_], A2, b, gtsam::noiseModel::Unit::Create(b.size()))); | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
|     /* ************************************************************************* */ | ||||
|     gtsam::Vector whitenedError(const gtsam::Values& x, | ||||
|         boost::optional<std::vector<gtsam::Matrix>&> H = boost::none) const { | ||||
| 
 | ||||
|       bool debug = true; | ||||
| 
 | ||||
|       const T& p1 = x.at<T>(key1_); | ||||
|       const T& p2 = x.at<T>(key2_); | ||||
| 
 | ||||
|       Matrix H1, H2; | ||||
| 
 | ||||
|       T hx = p1.between(p2, H1, H2); // h(x)
 | ||||
|       // manifold equivalent of h(x)-z -> log(z,h(x))
 | ||||
| 
 | ||||
|       Vector err = measured_.localCoordinates(hx); | ||||
| 
 | ||||
|       // Calculate indicator probabilities (inlier and outlier)
 | ||||
|       Vector err_wh_inlier  = model_inlier_->whiten(err); | ||||
|       Vector err_wh_outlier = model_outlier_->whiten(err); | ||||
| 
 | ||||
|       Matrix invCov_inlier  = model_inlier_->R().transpose() * model_inlier_->R(); | ||||
|       Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R(); | ||||
| 
 | ||||
|       double p_inlier  = prior_inlier_ * invCov_inlier.norm() * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) ); | ||||
|       double p_outlier = prior_outlier_ * invCov_outlier.norm() * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) ); | ||||
| 
 | ||||
|       double sumP = p_inlier + p_outlier; | ||||
|       p_inlier  /= sumP; | ||||
|       p_outlier /= sumP; | ||||
|       // TODO: possibly need to bump up near-zero probabilities (as in linerFlow.h)
 | ||||
| 
 | ||||
|       Vector err_wh_eq; | ||||
|       err_wh_eq.resize(err_wh_inlier.rows()*2); | ||||
|       err_wh_eq << sqrt(p_inlier) * err_wh_inlier.array() , sqrt(p_outlier) * err_wh_outlier.array(); | ||||
| 
 | ||||
|       if (H){ | ||||
| 
 | ||||
|         // stack Jacobians for the two indicators for each of the key
 | ||||
| 
 | ||||
|         Matrix H1_inlier  = sqrt(p_inlier)*model_inlier_->Whiten(H1); | ||||
|         Matrix H1_outlier = sqrt(p_outlier)*model_outlier_->Whiten(H1); | ||||
|         Matrix H1_aug = gtsam::stack(2, &H1_inlier, &H1_outlier); | ||||
| 
 | ||||
|         Matrix H2_inlier  = sqrt(p_inlier)*model_inlier_->Whiten(H2); | ||||
|         Matrix H2_outlier = sqrt(p_outlier)*model_outlier_->Whiten(H2); | ||||
|         Matrix H2_aug = gtsam::stack(2, &H2_inlier, &H2_outlier); | ||||
| 
 | ||||
|         (*H)[0].resize(H1_aug.rows(),H1_aug.cols()); | ||||
|         (*H)[1].resize(H2_aug.rows(),H2_aug.cols()); | ||||
| 
 | ||||
|         (*H)[0] = H1_aug; | ||||
|         (*H)[1] = H2_aug; | ||||
|       } | ||||
| 
 | ||||
|       if (debug){ | ||||
|         std::cout<<"unwhitened error: "<<err[0]<<" "<<err[1]<<" "<<err[2]<<std::endl; | ||||
|         std::cout<<"err_wh_inlier: "<<err_wh_inlier[0]<<" "<<err_wh_inlier[1]<<" "<<err_wh_inlier[2]<<std::endl; | ||||
|         std::cout<<"err_wh_outlier: "<<err_wh_outlier[0]<<" "<<err_wh_outlier[1]<<" "<<err_wh_outlier[2]<<std::endl; | ||||
| 
 | ||||
|         std::cout<<"p_inlier, p_outlier, sumP: "<<p_inlier<<" "<<p_outlier<<" " << sumP << std::endl; | ||||
| 
 | ||||
|         std::cout<<"prior_inlier_, prior_outlier_: "<<prior_inlier_<<" "<<prior_outlier_<< std::endl; | ||||
| 
 | ||||
|         double s_inl  = -0.5 * err_wh_inlier.dot(err_wh_inlier); | ||||
|         double s_outl = -0.5 * err_wh_outlier.dot(err_wh_outlier); | ||||
|         std::cout<<"s_inl, s_outl: "<<s_inl<<" "<<s_outl<<std::endl; | ||||
| 
 | ||||
|         std::cout<<"norm of invCov_inlier, invCov_outlier: "<<invCov_inlier.norm()<<" "<<invCov_outlier.norm()<<std::endl; | ||||
|         double q_inl  = invCov_inlier.norm() * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) ); | ||||
|         double q_outl = invCov_outlier.norm() * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) ); | ||||
|         std::cout<<"q_inl, q_outl: "<<q_inl<<" "<<q_outl<<std::endl; | ||||
| 
 | ||||
|         //        Matrix Cov_inlier  = invCov_inlier.inverse();
 | ||||
|         //        Matrix Cov_outlier = invCov_outlier.inverse();
 | ||||
|         //        std::cout<<"Cov_inlier: "<<std::endl<<
 | ||||
|         //            Cov_inlier(0,0) << " " << Cov_inlier(0,1) << " " << Cov_inlier(0,2) <<std::endl<<
 | ||||
|         //            Cov_inlier(1,0) << " " << Cov_inlier(1,1) << " " << Cov_inlier(1,2) <<std::endl<<
 | ||||
|         //            Cov_inlier(2,0) << " " << Cov_inlier(2,1) << " " << Cov_inlier(2,2) <<std::endl;
 | ||||
|         //        std::cout<<"Cov_outlier: "<<std::endl<<
 | ||||
|         //                    Cov_outlier(0,0) << " " << Cov_outlier(0,1) << " " << Cov_outlier(0,2) <<std::endl<<
 | ||||
|         //                    Cov_outlier(1,0) << " " << Cov_outlier(1,1) << " " << Cov_outlier(1,2) <<std::endl<<
 | ||||
|         //                    Cov_outlier(2,0) << " " << Cov_outlier(2,1) << " " << Cov_outlier(2,2) <<std::endl;
 | ||||
|         std::cout<<"===="<<std::endl; | ||||
|       } | ||||
| 
 | ||||
| 
 | ||||
|       return err_wh_eq; | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
|     /* ************************************************************************* */ | ||||
|     void calcIndicatorProb(const gtsam::Values& x, | ||||
|         double& p_inlier, double& p_outlier, Vector& err) const { | ||||
| 
 | ||||
|       const T& p1 = x.at<T>(key1_); | ||||
|       const T& p2 = x.at<T>(key2_); | ||||
| 
 | ||||
|       Matrix H1, H2; | ||||
| 
 | ||||
|       T hx = p1.between(p2, H1, H2); // h(x)
 | ||||
|       // manifold equivalent of h(x)-z -> log(z,h(x))
 | ||||
| 
 | ||||
|       err = measured_.localCoordinates(hx); | ||||
| 
 | ||||
|       // Calculate indicator probabilities (inlier and outlier)
 | ||||
|       Vector err_wh_inlier  = model_inlier_->whiten(err); | ||||
|       Vector err_wh_outlier = model_outlier_->whiten(err); | ||||
| 
 | ||||
|       Matrix invCov_inlier  = model_inlier_->R().transpose() * model_inlier_->R(); | ||||
|       Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R(); | ||||
| 
 | ||||
|       p_inlier  = prior_inlier_ * invCov_inlier.norm() * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) ); | ||||
|       p_outlier = prior_outlier_ * invCov_outlier.norm() * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) ); | ||||
| 
 | ||||
|       double sumP = p_inlier + p_outlier; | ||||
|       p_inlier  /= sumP; | ||||
|       p_outlier /= sumP; | ||||
|       // TODO: possibly need to bump up near-zero probabilities (as in linerFlow.h)
 | ||||
|     } | ||||
| 
 | ||||
|     /** return the measured */ | ||||
|     const VALUE& measured() const { | ||||
|       return measured_; | ||||
|     } | ||||
| 
 | ||||
|     /** number of variables attached to this factor */ | ||||
|     std::size_t size() const { | ||||
|       return 2; | ||||
|     } | ||||
| 
 | ||||
|     virtual size_t dim() const { | ||||
|       return model_inlier_->R().rows() + model_inlier_->R().cols(); | ||||
|     } | ||||
| 
 | ||||
|   private: | ||||
| 
 | ||||
|     /** Serialization function */ | ||||
|     friend class boost::serialization::access; | ||||
|     template<class ARCHIVE> | ||||
|     void serialize(ARCHIVE & ar, const unsigned int version) { | ||||
|       ar & boost::serialization::make_nvp("NonlinearFactor", | ||||
|           boost::serialization::base_object<Base>(*this)); | ||||
|       ar & BOOST_SERIALIZATION_NVP(measured_); | ||||
|     } | ||||
|   }; // \class BetweenFactorEM
 | ||||
| 
 | ||||
| } /// namespace gtsam
 | ||||
|  | @ -0,0 +1,477 @@ | |||
| /**
 | ||||
|  * @file    testBetweenFactorEM.cpp | ||||
|  * @brief   Unit test for the BetweenFactorEM | ||||
|  * @author  Vadim Indelman | ||||
|  */ | ||||
| 
 | ||||
| #include <CppUnitLite/TestHarness.h> | ||||
| 
 | ||||
| 
 | ||||
| #include <gtsam_unstable/slam/BetweenFactorEM.h> | ||||
| #include <gtsam/geometry/Pose2.h> | ||||
| #include <gtsam/nonlinear/Values.h> | ||||
| #include <gtsam/base/LieVector.h> | ||||
| #include <gtsam/base/numericalDerivative.h> | ||||
| 
 | ||||
| #include <gtsam/slam/BetweenFactor.h> | ||||
| 
 | ||||
| //#include <gtsam/nonlinear/NonlinearOptimizer.h>
 | ||||
| //#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | ||||
| //#include <gtsam/linear/GaussianSequentialSolver.h>
 | ||||
| 
 | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| 
 | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| LieVector predictionError(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactorEM<gtsam::Pose2>& factor){ | ||||
|   gtsam::Values values; | ||||
|   values.insert(key1, p1); | ||||
|   values.insert(key2, p2); | ||||
|   //  LieVector err = factor.whitenedError(values);
 | ||||
|   //  return err;
 | ||||
|   return LieVector::Expmap(factor.whitenedError(values)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| LieVector predictionError_standard(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactor<gtsam::Pose2>& factor){ | ||||
|   gtsam::Values values; | ||||
|   values.insert(key1, p1); | ||||
|   values.insert(key2, p2); | ||||
|   //  LieVector err = factor.whitenedError(values);
 | ||||
|   //  return err;
 | ||||
|   return LieVector::Expmap(factor.whitenedError(values)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( BetweenFactorEM, ConstructorAndEquals) | ||||
| { | ||||
|   gtsam::Key key1(1); | ||||
|   gtsam::Key key2(2); | ||||
| 
 | ||||
|   gtsam::Pose2 p1(10.0, 15.0, 0.1); | ||||
|   gtsam::Pose2 p2(15.0, 15.0, 0.3); | ||||
|   gtsam::Pose2 noise(0.5, 0.4, 0.01); | ||||
|   gtsam::Pose2 rel_pose_ideal = p1.between(p2); | ||||
|   gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise); | ||||
| 
 | ||||
|   SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 0.5, 0.5, 0.05))); | ||||
|   SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 5, 5, 1.0))); | ||||
| 
 | ||||
|   double prior_outlier = 0.5; | ||||
|   double prior_inlier = 0.5; | ||||
| 
 | ||||
|   // Constructor
 | ||||
|   BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, | ||||
|       prior_inlier, prior_outlier); | ||||
|   BetweenFactorEM<gtsam::Pose2> g(key1, key2, rel_pose_msr, model_inlier, model_outlier, | ||||
|         prior_inlier, prior_outlier); | ||||
| 
 | ||||
|   // Equals
 | ||||
|   CHECK(assert_equal(f, g, 1e-5)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( BetweenFactorEM, EvaluateError) | ||||
| { | ||||
|   gtsam::Key key1(1); | ||||
|   gtsam::Key key2(2); | ||||
| 
 | ||||
|   // Inlier test
 | ||||
|   gtsam::Pose2 p1(10.0, 15.0, 0.1); | ||||
|   gtsam::Pose2 p2(15.0, 15.0, 0.3); | ||||
|   gtsam::Pose2 noise(0.5, 0.4, 0.01); | ||||
|   gtsam::Pose2 rel_pose_ideal = p1.between(p2); | ||||
|   gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise); | ||||
| 
 | ||||
|   SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 0.5, 0.5, 0.05))); | ||||
|   SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 50.0, 50.0, 10.0))); | ||||
| 
 | ||||
|   gtsam::Values values; | ||||
|   values.insert(key1, p1); | ||||
|   values.insert(key2, p2); | ||||
| 
 | ||||
|   double prior_outlier = 0.5; | ||||
|   double prior_inlier = 0.5; | ||||
| 
 | ||||
|   BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, | ||||
|       prior_inlier, prior_outlier); | ||||
| 
 | ||||
|   Vector actual_err_wh = f.whitenedError(values); | ||||
| 
 | ||||
|   Vector actual_err_wh_inlier = Vector_(3, actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); | ||||
|   Vector actual_err_wh_outlier = Vector_(3, actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]); | ||||
| 
 | ||||
|   // in case of inlier, inlier-mode whitented error should be dominant
 | ||||
|   assert(actual_err_wh_inlier.norm() > 1000.0*actual_err_wh_outlier.norm()); | ||||
| 
 | ||||
|   cout << "Inlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "<<actual_err_wh_inlier.norm()<<","<<actual_err_wh_outlier.norm()<<endl; | ||||
|   cout<<actual_err_wh[0]<<" "<<actual_err_wh[1]<<" "<<actual_err_wh[2]<<actual_err_wh[3]<<" "<<actual_err_wh[4]<<" "<<actual_err_wh[5]<<endl; | ||||
| 
 | ||||
| 
 | ||||
|   // Outlier test
 | ||||
|   noise = gtsam::Pose2(10.5, 20.4, 2.01); | ||||
|   gtsam::Pose2 rel_pose_msr_test2   = rel_pose_ideal.compose(noise); | ||||
| 
 | ||||
|   BetweenFactorEM<gtsam::Pose2> g(key1, key2, rel_pose_msr_test2, model_inlier, model_outlier, | ||||
|       prior_inlier, prior_outlier); | ||||
| 
 | ||||
|   actual_err_wh = g.whitenedError(values); | ||||
| 
 | ||||
|   actual_err_wh_inlier = Vector_(3, actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); | ||||
|   actual_err_wh_outlier = Vector_(3, actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]); | ||||
| 
 | ||||
|   // in case of outlier, outlier-mode whitented error should be dominant
 | ||||
|   assert(actual_err_wh_inlier.norm() < 1000.0*actual_err_wh_outlier.norm()); | ||||
| 
 | ||||
|   cout << "Outlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "<<actual_err_wh_inlier.norm()<<","<<actual_err_wh_outlier<<endl; | ||||
|   cout<<actual_err_wh[0]<<" "<<actual_err_wh[1]<<" "<<actual_err_wh[2]<<actual_err_wh[3]<<" "<<actual_err_wh[4]<<" "<<actual_err_wh[5]<<endl; | ||||
| 
 | ||||
|   // Compare with standard between factor for the inlier case
 | ||||
|   prior_outlier = 0.0; | ||||
|   prior_inlier  = 1.0; | ||||
|   BetweenFactorEM<gtsam::Pose2> h_EM(key1, key2, rel_pose_msr, model_inlier, model_outlier, | ||||
|         prior_inlier, prior_outlier); | ||||
|   actual_err_wh = h_EM.whitenedError(values); | ||||
|   actual_err_wh_inlier = Vector_(3, actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); | ||||
| 
 | ||||
|   BetweenFactor<gtsam::Pose2> h(key1, key2, rel_pose_msr, model_inlier ); | ||||
|   Vector actual_err_wh_stnd = h.whitenedError(values); | ||||
| 
 | ||||
|   cout<<"actual_err_wh: "<<actual_err_wh_inlier[0]<<", "<<actual_err_wh_inlier[1]<<", "<<actual_err_wh_inlier[2]<<endl; | ||||
|   cout<<"actual_err_wh_stnd: "<<actual_err_wh_stnd[0]<<", "<<actual_err_wh_stnd[1]<<", "<<actual_err_wh_stnd[2]<<endl; | ||||
| 
 | ||||
|   CHECK( assert_equal(actual_err_wh_inlier, actual_err_wh_stnd, 1e-8)); | ||||
| } | ||||
| 
 | ||||
| ///* ************************************************************************** */
 | ||||
| TEST (BetweenFactorEM, jacobian ) { | ||||
| 
 | ||||
|   gtsam::Key key1(1); | ||||
|   gtsam::Key key2(2); | ||||
| 
 | ||||
|   // Inlier test
 | ||||
|   gtsam::Pose2 p1(10.0, 15.0, 0.1); | ||||
|   gtsam::Pose2 p2(15.0, 15.0, 0.3); | ||||
|   gtsam::Pose2 noise(0.5, 0.4, 0.01); | ||||
|   gtsam::Pose2 rel_pose_ideal = p1.between(p2); | ||||
|   gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise); | ||||
| 
 | ||||
|   SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 0.5, 0.5, 0.05))); | ||||
|   SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 50.0, 50.0, 10.0))); | ||||
| 
 | ||||
|   gtsam::Values values; | ||||
|   values.insert(key1, p1); | ||||
|   values.insert(key2, p2); | ||||
| 
 | ||||
|   double prior_outlier = 0.0; | ||||
|   double prior_inlier = 1.0; | ||||
| 
 | ||||
|   BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, | ||||
|       prior_inlier, prior_outlier); | ||||
| 
 | ||||
|   std::vector<gtsam::Matrix> H_actual(2); | ||||
|   Vector actual_err_wh = f.whitenedError(values, H_actual); | ||||
| 
 | ||||
|   Matrix H1_actual = H_actual[0]; | ||||
|   Matrix H2_actual = H_actual[1]; | ||||
| 
 | ||||
|   // compare to standard between factor
 | ||||
|   BetweenFactor<gtsam::Pose2> h(key1, key2, rel_pose_msr, model_inlier ); | ||||
|   Vector actual_err_wh_stnd = h.whitenedError(values); | ||||
|   Vector actual_err_wh_inlier = Vector_(3, actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); | ||||
|   CHECK( assert_equal(actual_err_wh_stnd, actual_err_wh_inlier, 1e-8)); | ||||
|   std::vector<gtsam::Matrix> H_actual_stnd_unwh(2); | ||||
|   (void)h.unwhitenedError(values, H_actual_stnd_unwh); | ||||
|   Matrix H1_actual_stnd_unwh = H_actual_stnd_unwh[0]; | ||||
|   Matrix H2_actual_stnd_unwh = H_actual_stnd_unwh[1]; | ||||
|   Matrix H1_actual_stnd = model_inlier->Whiten(H1_actual_stnd_unwh); | ||||
|   Matrix H2_actual_stnd = model_inlier->Whiten(H2_actual_stnd_unwh); | ||||
| //  CHECK( assert_equal(H1_actual_stnd, H1_actual, 1e-8));
 | ||||
| //  CHECK( assert_equal(H2_actual_stnd, H2_actual, 1e-8));
 | ||||
| 
 | ||||
|   double stepsize = 1.0e-9; | ||||
|   Matrix H1_expected = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError, _1, p2, key1, key2, f), p1, stepsize); | ||||
|   Matrix H2_expected = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError, p1, _1, key1, key2, f), p2, stepsize); | ||||
| 
 | ||||
| 
 | ||||
|   // try to check numerical derivatives of a standard between factor
 | ||||
|   Matrix H1_expected_stnd = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError_standard, _1, p2, key1, key2, h), p1, stepsize); | ||||
|   CHECK( assert_equal(H1_expected_stnd, H1_actual_stnd, 1e-5)); | ||||
| 
 | ||||
| 
 | ||||
|   CHECK( assert_equal(H1_expected, H1_actual, 1e-8)); | ||||
|   CHECK( assert_equal(H2_expected, H2_actual, 1e-8)); | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( InertialNavFactor, Equals) | ||||
| { | ||||
| //  gtsam::Key Pose1(11);
 | ||||
| //  gtsam::Key Pose2(12);
 | ||||
| //  gtsam::Key Vel1(21);
 | ||||
| //  gtsam::Key Vel2(22);
 | ||||
| //  gtsam::Key Bias1(31);
 | ||||
| //
 | ||||
| //  Vector measurement_acc(Vector_(3,0.1,0.2,0.4));
 | ||||
| //  Vector measurement_gyro(Vector_(3, -0.2, 0.5, 0.03));
 | ||||
| //
 | ||||
| //  double measurement_dt(0.1);
 | ||||
| //  Vector world_g(Vector_(3, 0.0, 0.0, 9.81));
 | ||||
| //  Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system
 | ||||
| //  gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5));
 | ||||
| //  gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
 | ||||
| //
 | ||||
| //  SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1));
 | ||||
| //
 | ||||
| //  InertialNavFactor<Pose3, LieVector, imuBias::ConstantBias> f(Pose1, Vel1, Bias1, Pose2, Vel2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
 | ||||
| //  InertialNavFactor<Pose3, LieVector, imuBias::ConstantBias> g(Pose1, Vel1, Bias1, Pose2, Vel2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
 | ||||
| //  CHECK(assert_equal(f, g, 1e-5));
 | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( InertialNavFactor, Predict) | ||||
| { | ||||
| //  gtsam::Key PoseKey1(11);
 | ||||
| //  gtsam::Key PoseKey2(12);
 | ||||
| //  gtsam::Key VelKey1(21);
 | ||||
| //  gtsam::Key VelKey2(22);
 | ||||
| //  gtsam::Key BiasKey1(31);
 | ||||
| //
 | ||||
| //  double measurement_dt(0.1);
 | ||||
| //  Vector world_g(Vector_(3, 0.0, 0.0, 9.81));
 | ||||
| //  Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system
 | ||||
| //  gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5));
 | ||||
| //  gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
 | ||||
| //
 | ||||
| //  SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1));
 | ||||
| //
 | ||||
| //
 | ||||
| //  // First test: zero angular motion, some acceleration
 | ||||
| //  Vector measurement_acc(Vector_(3,0.1,0.2,0.3-9.81));
 | ||||
| //  Vector measurement_gyro(Vector_(3, 0.0, 0.0, 0.0));
 | ||||
| //
 | ||||
| //  InertialNavFactor<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
 | ||||
| //
 | ||||
| //  Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
 | ||||
| //  LieVector Vel1(3, 0.50, -0.50, 0.40);
 | ||||
| //  imuBias::ConstantBias Bias1;
 | ||||
| //  Pose3 expectedPose2(Rot3(), Point3(2.05, 0.95, 3.04));
 | ||||
| //  LieVector expectedVel2(3, 0.51, -0.48, 0.43);
 | ||||
| //  Pose3 actualPose2;
 | ||||
| //  LieVector actualVel2;
 | ||||
| //  f.predict(Pose1, Vel1, Bias1, actualPose2, actualVel2);
 | ||||
| //
 | ||||
| //  CHECK(assert_equal(expectedPose2, actualPose2, 1e-5));
 | ||||
| //  CHECK(assert_equal(expectedVel2, actualVel2, 1e-5));
 | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( InertialNavFactor, ErrorPosVel) | ||||
| { | ||||
| //  gtsam::Key PoseKey1(11);
 | ||||
| //  gtsam::Key PoseKey2(12);
 | ||||
| //  gtsam::Key VelKey1(21);
 | ||||
| //  gtsam::Key VelKey2(22);
 | ||||
| //  gtsam::Key BiasKey1(31);
 | ||||
| //
 | ||||
| //  double measurement_dt(0.1);
 | ||||
| //  Vector world_g(Vector_(3, 0.0, 0.0, 9.81));
 | ||||
| //  Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system
 | ||||
| //  gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5));
 | ||||
| //  gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
 | ||||
| //
 | ||||
| //  SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1));
 | ||||
| //
 | ||||
| //
 | ||||
| //  // First test: zero angular motion, some acceleration
 | ||||
| //  Vector measurement_acc(Vector_(3,0.1,0.2,0.3-9.81));
 | ||||
| //  Vector measurement_gyro(Vector_(3, 0.0, 0.0, 0.0));
 | ||||
| //
 | ||||
| //  InertialNavFactor<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
 | ||||
| //
 | ||||
| //  Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
 | ||||
| //  Pose3 Pose2(Rot3(), Point3(2.05, 0.95, 3.04));
 | ||||
| //  LieVector Vel1(3, 0.50, -0.50, 0.40);
 | ||||
| //  LieVector Vel2(3, 0.51, -0.48, 0.43);
 | ||||
| //  imuBias::ConstantBias Bias1;
 | ||||
| //
 | ||||
| //  Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
 | ||||
| //  Vector ExpectedErr(zero(9));
 | ||||
| //
 | ||||
| //  CHECK(assert_equal(ExpectedErr, ActualErr, 1e-5));
 | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( InertialNavFactor, ErrorRot) | ||||
| { | ||||
| //  gtsam::Key PoseKey1(11);
 | ||||
| //  gtsam::Key PoseKey2(12);
 | ||||
| //  gtsam::Key VelKey1(21);
 | ||||
| //  gtsam::Key VelKey2(22);
 | ||||
| //  gtsam::Key BiasKey1(31);
 | ||||
| //
 | ||||
| //  double measurement_dt(0.1);
 | ||||
| //  Vector world_g(Vector_(3, 0.0, 0.0, 9.81));
 | ||||
| //  Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system
 | ||||
| //  gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5));
 | ||||
| //  gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
 | ||||
| //
 | ||||
| //  SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1));
 | ||||
| //
 | ||||
| //  // Second test: zero angular motion, some acceleration
 | ||||
| //  Vector measurement_acc(Vector_(3,0.0,0.0,0.0-9.81));
 | ||||
| //  Vector measurement_gyro(Vector_(3, 0.1, 0.2, 0.3));
 | ||||
| //
 | ||||
| //  InertialNavFactor<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
 | ||||
| //
 | ||||
| //  Pose3 Pose1(Rot3(), Point3(2.0,1.0,3.0));
 | ||||
| //  Pose3 Pose2(Rot3::Expmap(measurement_gyro*measurement_dt), Point3(2.0,1.0,3.0));
 | ||||
| //  LieVector Vel1(3,0.0,0.0,0.0);
 | ||||
| //  LieVector Vel2(3,0.0,0.0,0.0);
 | ||||
| //  imuBias::ConstantBias Bias1;
 | ||||
| //
 | ||||
| //  Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
 | ||||
| //  Vector ExpectedErr(zero(9));
 | ||||
| //
 | ||||
| //  CHECK(assert_equal(ExpectedErr, ActualErr, 1e-5));
 | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( InertialNavFactor, ErrorRotPosVel) | ||||
| { | ||||
| //  gtsam::Key PoseKey1(11);
 | ||||
| //  gtsam::Key PoseKey2(12);
 | ||||
| //  gtsam::Key VelKey1(21);
 | ||||
| //  gtsam::Key VelKey2(22);
 | ||||
| //  gtsam::Key BiasKey1(31);
 | ||||
| //
 | ||||
| //  double measurement_dt(0.1);
 | ||||
| //  Vector world_g(Vector_(3, 0.0, 0.0, 9.81));
 | ||||
| //  Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system
 | ||||
| //  gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5));
 | ||||
| //  gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
 | ||||
| //
 | ||||
| //  SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1));
 | ||||
| //
 | ||||
| //  // Second test: zero angular motion, some acceleration - generated in matlab
 | ||||
| //  Vector measurement_acc(Vector_(3, 6.501390843381716,  -6.763926150509185,  -2.300389940090343));
 | ||||
| //  Vector measurement_gyro(Vector_(3, 0.1, 0.2, 0.3));
 | ||||
| //
 | ||||
| //  InertialNavFactor<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
 | ||||
| //
 | ||||
| //  Rot3 R1(0.487316618,   0.125253866,   0.86419557,
 | ||||
| //       0.580273724,  0.693095498, -0.427669306,
 | ||||
| //      -0.652537293,  0.709880342,  0.265075427);
 | ||||
| //  Point3 t1(2.0,1.0,3.0);
 | ||||
| //  Pose3 Pose1(R1, t1);
 | ||||
| //  LieVector Vel1(3,0.5,-0.5,0.4);
 | ||||
| //  Rot3 R2(0.473618898,   0.119523052,  0.872582019,
 | ||||
| //       0.609241153,   0.67099888, -0.422594037,
 | ||||
| //      -0.636011287,  0.731761397,  0.244979388);
 | ||||
| //  Point3 t2(2.052670960415706,   0.977252139079380,   2.942482135362800);
 | ||||
| //  Pose3 Pose2(R2, t2);
 | ||||
| //  LieVector Vel2(3,0.510000000000000,  -0.480000000000000,   0.430000000000000);
 | ||||
| //  imuBias::ConstantBias Bias1;
 | ||||
| //
 | ||||
| //  Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
 | ||||
| //  Vector ExpectedErr(zero(9));
 | ||||
| //
 | ||||
| //  CHECK(assert_equal(ExpectedErr, ActualErr, 1e-5));
 | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST (InertialNavFactor, Jacobian ) { | ||||
| 
 | ||||
| //  gtsam::Key PoseKey1(11);
 | ||||
| //  gtsam::Key PoseKey2(12);
 | ||||
| //  gtsam::Key VelKey1(21);
 | ||||
| //  gtsam::Key VelKey2(22);
 | ||||
| //  gtsam::Key BiasKey1(31);
 | ||||
| //
 | ||||
| //  double measurement_dt(0.01);
 | ||||
| //  Vector world_g(Vector_(3, 0.0, 0.0, 9.81));
 | ||||
| //  Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system
 | ||||
| //  gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5));
 | ||||
| //  gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
 | ||||
| //
 | ||||
| //  SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1));
 | ||||
| //
 | ||||
| //  Vector measurement_acc(Vector_(3, 6.501390843381716,  -6.763926150509185,  -2.300389940090343));
 | ||||
| //  Vector measurement_gyro(Vector_(3, 3.14, 3.14/2, -3.14));
 | ||||
| //
 | ||||
| //  InertialNavFactor<Pose3, LieVector, imuBias::ConstantBias> factor(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
 | ||||
| //
 | ||||
| //  Rot3 R1(0.487316618,   0.125253866,   0.86419557,
 | ||||
| //       0.580273724,  0.693095498, -0.427669306,
 | ||||
| //      -0.652537293,  0.709880342,  0.265075427);
 | ||||
| //  Point3 t1(2.0,1.0,3.0);
 | ||||
| //  Pose3 Pose1(R1, t1);
 | ||||
| //  LieVector Vel1(3,0.5,-0.5,0.4);
 | ||||
| //  Rot3 R2(0.473618898,   0.119523052,  0.872582019,
 | ||||
| //       0.609241153,   0.67099888, -0.422594037,
 | ||||
| //      -0.636011287,  0.731761397,  0.244979388);
 | ||||
| //  Point3 t2(2.052670960415706,   0.977252139079380,   2.942482135362800);
 | ||||
| //  Pose3 Pose2(R2, t2);
 | ||||
| //  LieVector Vel2(3,0.510000000000000,  -0.480000000000000,   0.430000000000000);
 | ||||
| //  imuBias::ConstantBias Bias1;
 | ||||
| //
 | ||||
| //  Matrix H1_actual, H2_actual, H3_actual, H4_actual, H5_actual;
 | ||||
| //
 | ||||
| //  Vector ActualErr(factor.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2, H1_actual, H2_actual, H3_actual, H4_actual, H5_actual));
 | ||||
| //
 | ||||
| //  // Checking for Pose part in the jacobians
 | ||||
| //  // ******
 | ||||
| //  Matrix H1_actualPose(H1_actual.block(0,0,6,H1_actual.cols()));
 | ||||
| //  Matrix H2_actualPose(H2_actual.block(0,0,6,H2_actual.cols()));
 | ||||
| //  Matrix H3_actualPose(H3_actual.block(0,0,6,H3_actual.cols()));
 | ||||
| //  Matrix H4_actualPose(H4_actual.block(0,0,6,H4_actual.cols()));
 | ||||
| //  Matrix H5_actualPose(H5_actual.block(0,0,6,H5_actual.cols()));
 | ||||
| //
 | ||||
| //  // Calculate the Jacobian matrices H1 until H5 using the numerical derivative function
 | ||||
| //  gtsam::Matrix H1_expectedPose, H2_expectedPose, H3_expectedPose, H4_expectedPose, H5_expectedPose;
 | ||||
| //  H1_expectedPose = gtsam::numericalDerivative11<Pose3, Pose3>(boost::bind(&predictionErrorPose, _1, Vel1, Bias1, Pose2, Vel2, factor), Pose1);
 | ||||
| //  H2_expectedPose = gtsam::numericalDerivative11<Pose3, LieVector>(boost::bind(&predictionErrorPose, Pose1, _1, Bias1, Pose2, Vel2, factor), Vel1);
 | ||||
| //  H3_expectedPose = gtsam::numericalDerivative11<Pose3, imuBias::ConstantBias>(boost::bind(&predictionErrorPose, Pose1, Vel1, _1, Pose2, Vel2, factor), Bias1);
 | ||||
| //  H4_expectedPose = gtsam::numericalDerivative11<Pose3, Pose3>(boost::bind(&predictionErrorPose, Pose1, Vel1, Bias1, _1, Vel2, factor), Pose2);
 | ||||
| //  H5_expectedPose = gtsam::numericalDerivative11<Pose3, LieVector>(boost::bind(&predictionErrorPose, Pose1, Vel1, Bias1, Pose2, _1, factor), Vel2);
 | ||||
| //
 | ||||
| //  // Verify they are equal for this choice of state
 | ||||
| //  CHECK( gtsam::assert_equal(H1_expectedPose, H1_actualPose, 1e-6));
 | ||||
| //  CHECK( gtsam::assert_equal(H2_expectedPose, H2_actualPose, 1e-6));
 | ||||
| //  CHECK( gtsam::assert_equal(H3_expectedPose, H3_actualPose, 1e-6));
 | ||||
| //  CHECK( gtsam::assert_equal(H4_expectedPose, H4_actualPose, 1e-6));
 | ||||
| //  CHECK( gtsam::assert_equal(H5_expectedPose, H5_actualPose, 1e-6));
 | ||||
| //
 | ||||
| //  // Checking for Vel part in the jacobians
 | ||||
| //  // ******
 | ||||
| //  Matrix H1_actualVel(H1_actual.block(6,0,3,H1_actual.cols()));
 | ||||
| //  Matrix H2_actualVel(H2_actual.block(6,0,3,H2_actual.cols()));
 | ||||
| //  Matrix H3_actualVel(H3_actual.block(6,0,3,H3_actual.cols()));
 | ||||
| //  Matrix H4_actualVel(H4_actual.block(6,0,3,H4_actual.cols()));
 | ||||
| //  Matrix H5_actualVel(H5_actual.block(6,0,3,H5_actual.cols()));
 | ||||
| //
 | ||||
| //  // Calculate the Jacobian matrices H1 until H5 using the numerical derivative function
 | ||||
| //  gtsam::Matrix H1_expectedVel, H2_expectedVel, H3_expectedVel, H4_expectedVel, H5_expectedVel;
 | ||||
| //  H1_expectedVel = gtsam::numericalDerivative11<LieVector, Pose3>(boost::bind(&predictionErrorVel, _1, Vel1, Bias1, Pose2, Vel2, factor), Pose1);
 | ||||
| //  H2_expectedVel = gtsam::numericalDerivative11<LieVector, LieVector>(boost::bind(&predictionErrorVel, Pose1, _1, Bias1, Pose2, Vel2, factor), Vel1);
 | ||||
| //  H3_expectedVel = gtsam::numericalDerivative11<LieVector, imuBias::ConstantBias>(boost::bind(&predictionErrorVel, Pose1, Vel1, _1, Pose2, Vel2, factor), Bias1);
 | ||||
| //  H4_expectedVel = gtsam::numericalDerivative11<LieVector, Pose3>(boost::bind(&predictionErrorVel, Pose1, Vel1, Bias1, _1, Vel2, factor), Pose2);
 | ||||
| //  H5_expectedVel = gtsam::numericalDerivative11<LieVector, LieVector>(boost::bind(&predictionErrorVel, Pose1, Vel1, Bias1, Pose2, _1, factor), Vel2);
 | ||||
| //
 | ||||
| //  // Verify they are equal for this choice of state
 | ||||
| //  CHECK( gtsam::assert_equal(H1_expectedVel, H1_actualVel, 1e-6));
 | ||||
| //  CHECK( gtsam::assert_equal(H2_expectedVel, H2_actualVel, 1e-6));
 | ||||
| //  CHECK( gtsam::assert_equal(H3_expectedVel, H3_actualVel, 1e-6));
 | ||||
| //  CHECK( gtsam::assert_equal(H4_expectedVel, H4_actualVel, 1e-6));
 | ||||
| //  CHECK( gtsam::assert_equal(H5_expectedVel, H5_actualVel, 1e-6));
 | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
|   int main() { TestResult tr; return TestRegistry::runAllTests(tr);} | ||||
| /* ************************************************************************* */ | ||||
		Loading…
	
		Reference in New Issue