Cleaned up code: Removed commented out code, added debug condition

If debug is enabled, both blockwise and full implementations are performed and then compared
release/4.3a0
Zsolt Kira 2013-08-07 13:05:08 +00:00
parent 6fc1464d7b
commit c2f5adc7d0
1 changed files with 80 additions and 72 deletions

View File

@ -44,8 +44,6 @@ namespace gtsam {
const SharedNoiseModel noise_; ///< noise model used
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
@ -140,7 +138,6 @@ namespace gtsam {
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// get the dimension of the factor (number of rows on linearization)
virtual size_t dim() const {
return 6*keys_.size();
@ -149,8 +146,7 @@ namespace gtsam {
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values, const Ordering& ordering) const {
// std::cout.precision(20);
bool debug = true;
// Collect all poses (Cameras)
std::vector<Pose3> cameraPoses;
@ -167,19 +163,25 @@ namespace gtsam {
if (!point)
return HessianFactor::shared_ptr(new HessianFactor());
std::cout << "point " << *point << std::endl;
if (debug) {
std::cout << "point " << *point << std::endl;
}
std::vector<Matrix> Gs(keys_.size()*(keys_.size()+1)/2);
std::vector<Vector> gs(keys_.size());
double f = 0;
// fill in the keys
double f = 0;
std::vector<Index> js;
BOOST_FOREACH(const Key& k, keys_) {
js += ordering[k];
}
bool blockwise = false;
// {
// For debug only
std::vector<Matrix> Gs1;
std::vector<Vector> gs1;
if (blockwise || debug){
// ==========================================================================================================
std::vector<Matrix> Hx(keys_.size());
std::vector<Matrix> Hl(keys_.size());
@ -190,7 +192,6 @@ namespace gtsam {
std::cout << "pose " << pose << std::endl;
PinholeCamera<CALIBRATION> camera(pose, *K_);
b.at(i) = ( camera.project(*point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector();
// std::cout << "b.at(i) " << b.at(i) << std::endl;
}
// Shur complement trick
@ -203,22 +204,23 @@ namespace gtsam {
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
C += Hl.at(i1).transpose() * Hl.at(i1);
}
// std::cout << "Cnoinv"<< "=[" << Ctemp << "];" << std::endl;
C = C.inverse().eval(); // this is very important: without eval, because of eigen aliasing the results will be incorrect
// Calculate sub blocks
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
// we only need the upper triangular entries
Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose();
if (i1==0 & i2==0){
std::cout << "Hoff"<< i1 << i2 << "=[" << Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose() << "];" << std::endl;
std::cout << "Hxoff"<< "=[" << Hx.at(i1) << "];" << std::endl;
std::cout << "Hloff"<< "=[" << Hl.at(i1) << "];" << std::endl;
std::cout << "Hloff2"<< "=[" << Hl.at(i2) << "];" << std::endl;
std::cout << "C"<< "=[" << C << "];" << std::endl;
if (debug) {
std::cout << "Hoff"<< i1 << i2 << "=[" << Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose() << "];" << std::endl;
std::cout << "Hxoff"<< "=[" << Hx.at(i1) << "];" << std::endl;
std::cout << "Hloff"<< "=[" << Hl.at(i1) << "];" << std::endl;
std::cout << "Hloff2"<< "=[" << Hl.at(i2) << "];" << std::endl;
std::cout << "C"<< "=[" << C << "];" << std::endl;
}
}
}
}
@ -232,29 +234,39 @@ namespace gtsam {
if (i2 == i1){
Gs.at(GsCount) = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2);
std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl;
std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl;
std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl;
if (debug) {
std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl;
std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl;
std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl;
}
GsCount++;
}
if (i2 > i1) {
Gs.at(GsCount) = - Hxl[i1][i2] * Hx.at(i2);
std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl;
std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl;
std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl;
if (debug) {
std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl;
std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl;
std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl;
}
GsCount++;
}
}
}
if (debug) {
// Copy result for later comparison
BOOST_FOREACH(const Matrix& m, Gs) {
Gs1.push_back(m);
}
// Copy result for later comparison
BOOST_FOREACH(const Matrix& m, gs) {
gs1.push_back(m);
}
}
}
// std::cout << "GsCount " << GsCount << std::endl;
// }
// debug only
std::vector<Matrix> Gs2(keys_.size()*(keys_.size()+1)/2);
std::vector<Vector> gs2(keys_.size());
// { // version with full matrix multiplication
if (blockwise == false || debug){ // version with full matrix multiplication
// ==========================================================================================================
Matrix Hx2 = zeros(2*keys_.size(), 6*keys_.size());
Matrix Hl2 = zeros(2*keys_.size(), 3);
@ -267,18 +279,14 @@ namespace gtsam {
Vector bi = ( camera.project(*point,Hxi,Hli) - measured_.at(i) ).vector();
Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
Hl2.block( 2*i, 0, 2, 3 ) = Hli;
// std::cout << "Hxi= \n" << Hxi << std::endl;
// std::cout << "Hxi.transpose() * Hxi= \n" << Hxi.transpose() * Hxi << std::endl;
// std::cout << "Hxl.transpose() * Hxl= \n" << Hli.transpose() * Hli << std::endl;
if (debug) {
std::cout << "Hxi= \n" << Hxi << std::endl;
std::cout << "Hxi.transpose() * Hxi= \n" << Hxi.transpose() * Hxi << std::endl;
std::cout << "Hxl.transpose() * Hxl= \n" << Hli.transpose() * Hli << std::endl;
}
subInsert(b2,bi,2*i);
// std::cout << "================= measurement " << i << std::endl;
// std::cout << "Hx " << Hx2 << std::endl;
// std::cout << "Hl " << Hl2 << std::endl;
// std::cout << "b " << b2.transpose() << std::endl;
// std::cout << "b.at(i) " << b.at(i) << std::endl;
// std::cout << "Hxi - Hx.at(i) " << Hxi - Hx.at(i) << std::endl;
// std::cout << "Hli - Hl.at(i) " << Hli - Hl.at(i) << std::endl;
}
// Shur complement trick
@ -286,54 +294,54 @@ namespace gtsam {
Matrix3 C2 = (Hl2.transpose() * Hl2).inverse();
H = Hx2.transpose() * Hx2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * Hx2;
std::cout << "Hx2" << "=[" << Hx2 << "];" << std::endl;
std::cout << "Hl2" << "=[" << Hl2 << "];" << std::endl;
std::cout << "H" << "=[" << H << "];" << std::endl;
if (debug) {
std::cout << "Hx2" << "=[" << Hx2 << "];" << std::endl;
std::cout << "Hl2" << "=[" << Hl2 << "];" << std::endl;
std::cout << "H" << "=[" << H << "];" << std::endl;
std::cout << "Cnoinv2"<< "=[" << Hl2.transpose() * Hl2 << "];" << std::endl;
std::cout << "C2"<< "=[" << C2 << "];" << std::endl;
std::cout << "================================================================================" << std::endl;
}
std::cout << "Cnoinv2"<< "=[" << Hl2.transpose() * Hl2 << "];" << std::endl;
std::cout << "C2"<< "=[" << C2 << "];" << std::endl;
Vector gs_vector = Hx2.transpose() * b2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * b2;
// std::cout << "Hx2= \n" << Hx2 << std::endl;
// std::cout << "Hx2.transpose() * Hx2= \n" << Hx2.transpose() * Hx2 << std::endl;
Vector gs2_vector = Hx2.transpose() * b2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * b2;
std::cout << "================================================================================" << std::endl;
// Populate Gs and gs
int GsCount2 = 0;
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
gs2.at(i1) = sub(gs2_vector, 6*i1, 6*i1 + 6);
gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6);
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
if (i2 >= i1) {
Gs2.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6);
Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6);
GsCount2++;
}
}
}
// }
//
// Compare blockwise and full version
bool gs2_equal_gs = true;
for(size_t i = 0; i < measured_.size(); i++) {
std::cout << "gs.at(i) " << gs.at(i).transpose() << std::endl;
std::cout << "gs2.at(i) " << gs2.at(i).transpose() << std::endl;
std::cout << "gs.error " << (gs.at(i)- gs2.at(i)).transpose() << std::endl;
if( !equal(gs.at(i), gs2.at(i)), 1e-7) {
gs2_equal_gs = false;
}
if (debug) {
// Compare blockwise and full version
bool gs1_equal_gs = true;
for(size_t i = 0; i < measured_.size(); i++) {
std::cout << "gs.at(i) " << gs.at(i).transpose() << std::endl;
std::cout << "gs1.at(i) " << gs1.at(i).transpose() << std::endl;
std::cout << "gs.error " << (gs.at(i)- gs1.at(i)).transpose() << std::endl;
if( !equal(gs.at(i), gs1.at(i)), 1e-7) {
gs1_equal_gs = false;
}
}
}
std::cout << "gs2_equal_gs " << gs2_equal_gs << std::endl;
std::cout << "gs1_equal_gs " << gs1_equal_gs << std::endl;
for(size_t i = 0; i < keys_.size()*(keys_.size()+1)/2; i++) {
std::cout << "Gs.at(i) " << Gs.at(i).transpose() << std::endl;
std::cout << "Gs2.at(i) " << Gs2.at(i).transpose() << std::endl;
std::cout << "Gs.error " << (Gs.at(i)- Gs2.at(i)).transpose() << std::endl;
for(size_t i = 0; i < keys_.size()*(keys_.size()+1)/2; i++) {
std::cout << "Gs.at(i) " << Gs.at(i).transpose() << std::endl;
std::cout << "Gs1.at(i) " << Gs1.at(i).transpose() << std::endl;
std::cout << "Gs.error " << (Gs.at(i)- Gs1.at(i)).transpose() << std::endl;
}
std::cout << "Gs1_equal_Gs " << gs1_equal_gs << std::endl;
}
std::cout << "Gs2_equal_Gs " << gs2_equal_gs << std::endl;
// ==========================================================================================================
return HessianFactor::shared_ptr(new HessianFactor(js, Gs, gs, f));