fix warnings on incorrect for range reference bindings
parent
85c576cc47
commit
ccbdb40c93
|
@ -137,7 +137,7 @@ TEST( GaussianBayesNet, optimize3 )
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianBayesNet, ordering)
|
||||
TEST(GaussianBayesNet, ordering)
|
||||
{
|
||||
Ordering expected;
|
||||
expected += _x_, _y_;
|
||||
|
@ -155,7 +155,7 @@ TEST( GaussianBayesNet, MatrixStress )
|
|||
bn.emplace_shared<GC>(_z_, Vector2(5, 6), 6 * I_2x2);
|
||||
|
||||
const VectorValues expected = bn.optimize();
|
||||
for (const auto keys :
|
||||
for (const auto& keys :
|
||||
{KeyVector({_x_, _y_, _z_}), KeyVector({_x_, _z_, _y_}),
|
||||
KeyVector({_y_, _x_, _z_}), KeyVector({_y_, _z_, _x_}),
|
||||
KeyVector({_z_, _x_, _y_}), KeyVector({_z_, _y_, _x_})}) {
|
||||
|
@ -183,7 +183,7 @@ TEST( GaussianBayesNet, backSubstituteTranspose )
|
|||
|
||||
VectorValues actual = smallBayesNet.backSubstituteTranspose(x);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
|
||||
const auto ordering = noisyBayesNet.ordering();
|
||||
const Matrix R = smallBayesNet.matrix(ordering).first;
|
||||
const Vector expected_vector = R.transpose().inverse() * x.vector(ordering);
|
||||
|
@ -206,7 +206,7 @@ TEST( GaussianBayesNet, backSubstituteTransposeNoisy )
|
|||
|
||||
VectorValues actual = noisyBayesNet.backSubstituteTranspose(x);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
|
||||
const auto ordering = noisyBayesNet.ordering();
|
||||
const Matrix R = noisyBayesNet.matrix(ordering).first;
|
||||
const Vector expected_vector = R.transpose().inverse() * x.vector(ordering);
|
||||
|
|
|
@ -244,7 +244,7 @@ TEST(Similarity3, GroupAction) {
|
|||
&Similarity3::transformFrom, _1, _2, boost::none, boost::none);
|
||||
|
||||
Point3 q(1, 2, 3);
|
||||
for (const auto T : { T1, T2, T3, T4, T5, T6 }) {
|
||||
for (const auto& T : { T1, T2, T3, T4, T5, T6 }) {
|
||||
Point3 q(1, 0, 0);
|
||||
Matrix H1 = numericalDerivative21<Point3, Similarity3, Point3>(f, T, q);
|
||||
Matrix H2 = numericalDerivative22<Point3, Similarity3, Point3>(f, T, q);
|
||||
|
|
Loading…
Reference in New Issue