diff --git a/gtsam/linear/tests/testGaussianBayesNet.cpp b/gtsam/linear/tests/testGaussianBayesNet.cpp index 488368c72..eafefb3cb 100644 --- a/gtsam/linear/tests/testGaussianBayesNet.cpp +++ b/gtsam/linear/tests/testGaussianBayesNet.cpp @@ -137,7 +137,7 @@ TEST( GaussianBayesNet, optimize3 ) } /* ************************************************************************* */ -TEST(GaussianBayesNet, ordering) +TEST(GaussianBayesNet, ordering) { Ordering expected; expected += _x_, _y_; @@ -155,7 +155,7 @@ TEST( GaussianBayesNet, MatrixStress ) bn.emplace_shared(_z_, Vector2(5, 6), 6 * I_2x2); const VectorValues expected = bn.optimize(); - for (const auto keys : + for (const auto& keys : {KeyVector({_x_, _y_, _z_}), KeyVector({_x_, _z_, _y_}), KeyVector({_y_, _x_, _z_}), KeyVector({_y_, _z_, _x_}), KeyVector({_z_, _x_, _y_}), KeyVector({_z_, _y_, _x_})}) { @@ -183,7 +183,7 @@ TEST( GaussianBayesNet, backSubstituteTranspose ) VectorValues actual = smallBayesNet.backSubstituteTranspose(x); EXPECT(assert_equal(expected, actual)); - + const auto ordering = noisyBayesNet.ordering(); const Matrix R = smallBayesNet.matrix(ordering).first; const Vector expected_vector = R.transpose().inverse() * x.vector(ordering); @@ -206,7 +206,7 @@ TEST( GaussianBayesNet, backSubstituteTransposeNoisy ) VectorValues actual = noisyBayesNet.backSubstituteTranspose(x); EXPECT(assert_equal(expected, actual)); - + const auto ordering = noisyBayesNet.ordering(); const Matrix R = noisyBayesNet.matrix(ordering).first; const Vector expected_vector = R.transpose().inverse() * x.vector(ordering); diff --git a/gtsam_unstable/geometry/tests/testSimilarity3.cpp b/gtsam_unstable/geometry/tests/testSimilarity3.cpp index b07b5acd6..d23346896 100644 --- a/gtsam_unstable/geometry/tests/testSimilarity3.cpp +++ b/gtsam_unstable/geometry/tests/testSimilarity3.cpp @@ -244,7 +244,7 @@ TEST(Similarity3, GroupAction) { &Similarity3::transformFrom, _1, _2, boost::none, boost::none); Point3 q(1, 2, 3); - for (const auto T : { T1, T2, T3, T4, T5, T6 }) { + for (const auto& T : { T1, T2, T3, T4, T5, T6 }) { Point3 q(1, 0, 0); Matrix H1 = numericalDerivative21(f, T, q); Matrix H2 = numericalDerivative22(f, T, q);