Switch to general F

release/4.3a0
Frank Dellaert 2024-10-24 17:04:24 -07:00
parent 7d95505d11
commit ca199f9c08
2 changed files with 34 additions and 18 deletions

View File

@ -39,7 +39,7 @@
// Finally, once all of the factors have been added to our factor graph, we will want to // Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values. // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
// trust-region method known as Powell's Degleg // trust-region method known as Powell's Dogleg
#include <gtsam/nonlinear/DoglegOptimizer.h> #include <gtsam/nonlinear/DoglegOptimizer.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
@ -57,7 +57,7 @@ using namespace gtsam;
/* ************************************************************************* */ /* ************************************************************************* */
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
// Define the camera calibration parameters // Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); auto K = std::make_shared<Cal3_S2>(50.0, 50.0, 0.0, 50.0, 50.0);
// Define the camera observation noise model // Define the camera observation noise model
auto measurementNoise = auto measurementNoise =

View File

@ -30,7 +30,6 @@
#include <vector> #include <vector>
#include "SFMdata.h" #include "SFMdata.h"
#include "gtsam/geometry/EssentialMatrix.h"
#include "gtsam/inference/Key.h" #include "gtsam/inference/Key.h"
using namespace std; using namespace std;
@ -39,7 +38,7 @@ using namespace gtsam;
/* ************************************************************************* */ /* ************************************************************************* */
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
// Define the camera calibration parameters // Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
// Create the set of 8 ground-truth landmarks // Create the set of 8 ground-truth landmarks
vector<Point3> points = createPoints(); vector<Point3> points = createPoints();
@ -47,25 +46,36 @@ int main(int argc, char* argv[]) {
// Create the set of 4 ground-truth poses // Create the set of 4 ground-truth poses
vector<Pose3> poses = posesOnCircle(4, 30); vector<Pose3> poses = posesOnCircle(4, 30);
// Calculate ground truth fundamental matrices, 1 and 2 poses apart
auto F1 = GeneralFundamentalMatrix(K, poses[0].between(poses[1]), K);
auto F2 = GeneralFundamentalMatrix(K, poses[0].between(poses[2]), K);
// Simulate measurements from each camera pose // Simulate measurements from each camera pose
std::array<std::array<Point2, 8>, 4> p; std::array<std::array<Point2, 8>, 4> p;
for (size_t i = 0; i < 4; ++i) { for (size_t i = 0; i < 4; ++i) {
GTSAM_PRINT(poses[i]); PinholeCamera<Cal3_S2> camera(poses[i], K);
PinholeCamera<Cal3_S2> camera(poses[i], *K);
for (size_t j = 0; j < 8; ++j) { for (size_t j = 0; j < 8; ++j) {
cout << "Camera index: " << i << ", Landmark index: " << j << endl;
p[i][j] = camera.project(points[j]); p[i][j] = camera.project(points[j]);
} }
} }
// Create a factor graph // This section of the code is inspired by the work of Sweeney et al.
// [link](sites.cs.ucsb.edu/~holl/pubs/Sweeney-2015-ICCV.pdf) on view-graph
// calibration. The graph is made up of transfer factors that enforce the
// epipolar constraint between corresponding points across three views, as
// described in the paper. Rather than adding one ternary error term per point
// in a triplet, we add three binary factors for sparsity during optimization.
// In this version, we only include triplets between 3 successive cameras.
NonlinearFactorGraph graph; NonlinearFactorGraph graph;
using Factor = TransferFactor<GeneralFundamentalMatrix>;
using Factor = TransferFactor<SimpleFundamentalMatrix>;
for (size_t a = 0; a < 4; ++a) { for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next size_t c = (a + 2) % 4; // Camera after next
for (size_t j = 0; j < 4; ++j) { for (size_t j = 0; j < 4; ++j) {
// Add transfer factors between views a, b, and c. Note that the EdgeKeys
// are crucial in performing the transfer in the right direction. We use
// exactly 8 unique EdgeKeys, corresponding to 8 unknown fundamental
// matrices we will optimize for.
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(b, c), p[a][j], graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(b, c), p[a][j],
p[b][j], p[c][j]); p[b][j], p[c][j]);
graph.emplace_shared<Factor>(EdgeKey(a, b), EdgeKey(b, c), p[a][j], graph.emplace_shared<Factor>(EdgeKey(a, b), EdgeKey(b, c), p[a][j],
@ -82,18 +92,19 @@ int main(int argc, char* argv[]) {
graph.print("Factor Graph:\n", formatter); graph.print("Factor Graph:\n", formatter);
// Create a delta vector to perturb the ground truth
// We can't really go far before convergence becomes problematic :-(
Vector7 delta;
delta << 1, 2, 3, 4, 5, 6, 7;
delta *= 5e-5;
// Create the data structure to hold the initial estimate to the solution // Create the data structure to hold the initial estimate to the solution
Values initialEstimate; Values initialEstimate;
const Point2 center(50, 50);
auto E1 = EssentialMatrix::FromPose3(poses[0].between(poses[1]));
auto E2 = EssentialMatrix::FromPose3(poses[0].between(poses[2]));
for (size_t a = 0; a < 4; ++a) { for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next size_t c = (a + 2) % 4; // Camera after next
initialEstimate.insert(EdgeKey(a, b), initialEstimate.insert(EdgeKey(a, b), F1.retract(delta));
SimpleFundamentalMatrix(E1, 50, 50, center, center)); initialEstimate.insert(EdgeKey(a, c), F2.retract(delta));
initialEstimate.insert(EdgeKey(a, c),
SimpleFundamentalMatrix(E2, 50, 50, center, center));
} }
initialEstimate.print("Initial Estimates:\n", formatter); initialEstimate.print("Initial Estimates:\n", formatter);
// graph.printErrors(initialEstimate, "errors: ", formatter); // graph.printErrors(initialEstimate, "errors: ", formatter);
@ -104,10 +115,15 @@ int main(int argc, char* argv[]) {
params.setVerbosityLM("SUMMARY"); params.setVerbosityLM("SUMMARY");
Values result = Values result =
LevenbergMarquardtOptimizer(graph, initialEstimate, params).optimize(); LevenbergMarquardtOptimizer(graph, initialEstimate, params).optimize();
result.print("Final results:\n", formatter);
cout << "initial error = " << graph.error(initialEstimate) << endl; cout << "initial error = " << graph.error(initialEstimate) << endl;
cout << "final error = " << graph.error(result) << endl; cout << "final error = " << graph.error(result) << endl;
result.print("Final results:\n", formatter);
cout << "Ground Truth F1:\n" << F1.matrix() << endl;
cout << "Ground Truth F2:\n" << F2.matrix() << endl;
return 0; return 0;
} }
/* ************************************************************************* */ /* ************************************************************************* */