130 lines
4.8 KiB
C++
130 lines
4.8 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file ViewGraphExample.cpp
|
|
* @brief View-graph calibration on a simulated dataset, a la Sweeney 2015
|
|
* @author Frank Dellaert
|
|
* @author October 2024
|
|
*/
|
|
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <gtsam/geometry/Point3.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/inference/EdgeKey.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/sfm/TransferFactor.h>
|
|
|
|
#include <vector>
|
|
|
|
#include "SFMdata.h"
|
|
#include "gtsam/inference/Key.h"
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
int main(int argc, char* argv[]) {
|
|
// Define the camera calibration parameters
|
|
Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
|
|
|
|
// Create the set of 8 ground-truth landmarks
|
|
vector<Point3> points = createPoints();
|
|
|
|
// Create the set of 4 ground-truth poses
|
|
vector<Pose3> poses = posesOnCircle(4, 30);
|
|
|
|
// Calculate ground truth fundamental matrices, 1 and 2 poses apart
|
|
auto F1 = GeneralFundamentalMatrix(K, poses[0].between(poses[1]), K);
|
|
auto F2 = GeneralFundamentalMatrix(K, poses[0].between(poses[2]), K);
|
|
|
|
// Simulate measurements from each camera pose
|
|
std::array<std::array<Point2, 8>, 4> p;
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
PinholeCamera<Cal3_S2> camera(poses[i], K);
|
|
for (size_t j = 0; j < 8; ++j) {
|
|
p[i][j] = camera.project(points[j]);
|
|
}
|
|
}
|
|
|
|
// This section of the code is inspired by the work of Sweeney et al.
|
|
// [link](sites.cs.ucsb.edu/~holl/pubs/Sweeney-2015-ICCV.pdf) on view-graph
|
|
// calibration. The graph is made up of transfer factors that enforce the
|
|
// epipolar constraint between corresponding points across three views, as
|
|
// described in the paper. Rather than adding one ternary error term per point
|
|
// in a triplet, we add three binary factors for sparsity during optimization.
|
|
// In this version, we only include triplets between 3 successive cameras.
|
|
NonlinearFactorGraph graph;
|
|
using Factor = TransferFactor<GeneralFundamentalMatrix>;
|
|
for (size_t a = 0; a < 4; ++a) {
|
|
size_t b = (a + 1) % 4; // Next camera
|
|
size_t c = (a + 2) % 4; // Camera after next
|
|
for (size_t j = 0; j < 4; ++j) {
|
|
// Add transfer factors between views a, b, and c. Note that the EdgeKeys
|
|
// are crucial in performing the transfer in the right direction. We use
|
|
// exactly 8 unique EdgeKeys, corresponding to 8 unknown fundamental
|
|
// matrices we will optimize for.
|
|
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(b, c), p[a][j],
|
|
p[b][j], p[c][j]);
|
|
graph.emplace_shared<Factor>(EdgeKey(a, b), EdgeKey(b, c), p[a][j],
|
|
p[c][j], p[b][j]);
|
|
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(a, b), p[c][j],
|
|
p[b][j], p[a][j]);
|
|
}
|
|
}
|
|
|
|
auto formatter = [](Key key) {
|
|
EdgeKey edge(key);
|
|
return (std::string)edge;
|
|
};
|
|
|
|
graph.print("Factor Graph:\n", formatter);
|
|
|
|
// Create a delta vector to perturb the ground truth
|
|
// We can't really go far before convergence becomes problematic :-(
|
|
Vector7 delta;
|
|
delta << 1, 2, 3, 4, 5, 6, 7;
|
|
delta *= 5e-5;
|
|
|
|
// Create the data structure to hold the initial estimate to the solution
|
|
Values initialEstimate;
|
|
for (size_t a = 0; a < 4; ++a) {
|
|
size_t b = (a + 1) % 4; // Next camera
|
|
size_t c = (a + 2) % 4; // Camera after next
|
|
initialEstimate.insert(EdgeKey(a, b), F1.retract(delta));
|
|
initialEstimate.insert(EdgeKey(a, c), F2.retract(delta));
|
|
}
|
|
initialEstimate.print("Initial Estimates:\n", formatter);
|
|
// graph.printErrors(initialEstimate, "errors: ", formatter);
|
|
|
|
/* Optimize the graph and print results */
|
|
LevenbergMarquardtParams params;
|
|
params.setlambdaInitial(1000.0); // Initialize lambda to a high value
|
|
params.setVerbosityLM("SUMMARY");
|
|
Values result =
|
|
LevenbergMarquardtOptimizer(graph, initialEstimate, params).optimize();
|
|
|
|
cout << "initial error = " << graph.error(initialEstimate) << endl;
|
|
cout << "final error = " << graph.error(result) << endl;
|
|
|
|
result.print("Final results:\n", formatter);
|
|
|
|
cout << "Ground Truth F1:\n" << F1.matrix() << endl;
|
|
cout << "Ground Truth F2:\n" << F2.matrix() << endl;
|
|
|
|
return 0;
|
|
}
|
|
/* ************************************************************************* */
|