Add files via upload
parent
693a08990e
commit
c521dbc459
|
@ -0,0 +1,176 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file LIEKF.h
|
||||||
|
* @brief Base and classes for Left Invariant Extended Kalman Filters
|
||||||
|
*
|
||||||
|
* Templates are implemented for a Left Invariant Extended Kalman Filter operating on Lie Groups.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* @date April 24, 2025
|
||||||
|
* @author Scott Baker
|
||||||
|
* @author Matt Kielo
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include <functional>
|
||||||
|
#include <gtsam/base/Matrix.h>
|
||||||
|
#include <gtsam/base/Vector.h>
|
||||||
|
#include <gtsam/base/OptionalJacobian.h>
|
||||||
|
#include <Eigen/Dense>
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Base class for Left Invariant Extended Kalman Filter (LIEKF)
|
||||||
|
*
|
||||||
|
* This class provides the prediction and update structure based on control inputs and a measurement function.
|
||||||
|
*
|
||||||
|
* @tparam LieGroup Lie group used for state representation (e.g., Pose2, Pose3, NavState)
|
||||||
|
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement for 3D position)
|
||||||
|
*/
|
||||||
|
|
||||||
|
template <typename LieGroup, typename Measurement>
|
||||||
|
class LIEKF {
|
||||||
|
|
||||||
|
public:
|
||||||
|
static constexpr int n = traits<LieGroup>::dimension; ///< Dimension of the state.
|
||||||
|
static constexpr int m = traits<Measurement>::dimension; ///< Dimension of the measurement.
|
||||||
|
|
||||||
|
using MeasurementFunction = std::function<Measurement(const LieGroup&, OptionalJacobian<m, n>)>; ///< Typedef for the measurement function.
|
||||||
|
using MatrixN = Eigen::Matrix<double, n, n>; ///< Typedef for the identity matrix.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Construct with a measurement function
|
||||||
|
* @param X0 Initial State
|
||||||
|
* @param P0 Initial Covariance
|
||||||
|
* @param h Measurement function
|
||||||
|
*/
|
||||||
|
LIEKF(const LieGroup& X0, const Matrix& P0, MeasurementFunction& h) // X_ P_
|
||||||
|
: X(X0), P(P0), h_(h) {}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Get current state estimate.
|
||||||
|
* @return Const reference to the state estiamte.
|
||||||
|
*/
|
||||||
|
const LieGroup& getState() const { return X; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Get current covariance estimate.
|
||||||
|
* @return Const reference to the covariance estimate.
|
||||||
|
*/
|
||||||
|
const Matrix& getCovariance() const { return P; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Prediction stage with a Lie group element U.
|
||||||
|
* @param U Lie group control input
|
||||||
|
* @param Q Process noise covariance matrix.
|
||||||
|
*/
|
||||||
|
void predict(const LieGroup& U, const Matrix& Q) {
|
||||||
|
LieGroup::Jacobian A;
|
||||||
|
X = X.compose(U, A);
|
||||||
|
P = A * P * A.transpose() + Q;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Prediction stage with a control vector u and a time interval dt.
|
||||||
|
* @param u Control vector element
|
||||||
|
* @param dt Time interval
|
||||||
|
* @param Q Process noise covariance matrix.
|
||||||
|
*/
|
||||||
|
void predict(const Vector& u, double dt, const Matrix& Q) {
|
||||||
|
predict(LieGroup::Expmap(u*dt), Q);d
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Update stage using a measurement and measurement covariance.
|
||||||
|
* @param z Measurement
|
||||||
|
* @param R Measurement noise covariance matrix.
|
||||||
|
*/
|
||||||
|
void update(const Measurement& z, const Matrix& R) {
|
||||||
|
Matrix H(m, n);
|
||||||
|
Vector y = h_(X, H)-z;
|
||||||
|
Matrix S = H * P * H.transpose() + R;
|
||||||
|
Matrix K = P * H.transpose() * S.inverse();
|
||||||
|
X = X.expmap(-K * y);
|
||||||
|
P = (I_n - K * H) * P; // move Identity to be a constant.
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
LieGroup X; ///< Current state estimate.
|
||||||
|
Matrix P; ///< Current covariance estimate.
|
||||||
|
|
||||||
|
private:
|
||||||
|
MeasurementFunction h_; ///< Measurement function
|
||||||
|
static const MatrixN I_n; ///< A nxn identity matrix used in the update stage of the LIEKF.
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Create the static identity matrix I_n of size nxn for use in the update stage.
|
||||||
|
* @tparam LieGroup Lie group used for state representation (e.g., Pose2, Pose3, NavState)
|
||||||
|
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement for 3D position)
|
||||||
|
*/
|
||||||
|
template <typename LieGroup, typename Measurement>
|
||||||
|
const typename LIEKF<LieGroup, Measurement>::MatrixN LIEKF<LieGroup, Measurement>::I_n
|
||||||
|
= typename LIEKF<LieGroup, Measurement>::MatrixN::Identity();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief General Left Invariant Extended Kalman Filter with dynamics function.
|
||||||
|
*
|
||||||
|
* This class extends the LIEKF class to include a dynamics function f. The dynamics maps
|
||||||
|
* a state and control vector to a tangent vector xi.
|
||||||
|
*
|
||||||
|
* @tparam LieGroup The Lie group type for the state.
|
||||||
|
* @tparam Measurement The type of the measurement.
|
||||||
|
* @tparam _p The dimension of the control vector.
|
||||||
|
*/
|
||||||
|
template <typename LieGroup, typename Measurement, size_t _p>
|
||||||
|
class GeneralLIEKF:public LIEKF<LieGroup, Measurement> {
|
||||||
|
public:
|
||||||
|
using Control = Eigen::Matrix<double, _p, 1>; ///< Typedef for the control vector.
|
||||||
|
using TangentVector = typename traits<LieGroup>::TangentVector; ///< Typedef for the tangent vector.
|
||||||
|
using Dynamics = std::function<TangentVector(const LieGroup&, const Control&, ///< Typedef for the dynamics function.
|
||||||
|
OptionalJacobian<n, n>)>;
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Construct with general dynamics
|
||||||
|
* @param X0 Initial State
|
||||||
|
* @param P0 Initial Covariance
|
||||||
|
* @param f Dynamics function that depends on state and control vector
|
||||||
|
* @param h Measurement function
|
||||||
|
*/
|
||||||
|
GeneralLIEKF(const LieGroup& X0, const Matrix& P0, Dynamics& f, MeasurementFunction&
|
||||||
|
h) : LIEKF(X0, P0, h), f_(f) {}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Prediction stage with a dynamics function that calculates the tangent vector xi in the tangent space.
|
||||||
|
* @param u Control vector element
|
||||||
|
* @param dt Time interval
|
||||||
|
* @param Q Process noise covariance matrix.
|
||||||
|
*/
|
||||||
|
void predict(const Control& u, double dt, const Matrix& Q) {
|
||||||
|
LieGroup::Jacobian H;
|
||||||
|
const TangentVector xi = f_(X, u, H);
|
||||||
|
LieGroup U = LieGroup::Expmap(xi * dt);
|
||||||
|
auto A = U.inverse().AdjointMap() * H;
|
||||||
|
X = X.compose(U);
|
||||||
|
P = A * P * A.transpose() + Q;
|
||||||
|
}
|
||||||
|
private:
|
||||||
|
Dynamics f_; ///< Dynamics function.
|
||||||
|
};
|
||||||
|
|
||||||
|
}// ends namespace
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue