gtsam/gtsam/nonlinear/LIEKF.h

177 lines
6.0 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file LIEKF.h
* @brief Base and classes for Left Invariant Extended Kalman Filters
*
* Templates are implemented for a Left Invariant Extended Kalman Filter operating on Lie Groups.
*
*
* @date April 24, 2025
* @author Scott Baker
* @author Matt Kielo
*/
#pragma once
#include <functional>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Vector.h>
#include <gtsam/base/OptionalJacobian.h>
#include <Eigen/Dense>
namespace gtsam {
/**
* @brief Base class for Left Invariant Extended Kalman Filter (LIEKF)
*
* This class provides the prediction and update structure based on control inputs and a measurement function.
*
* @tparam LieGroup Lie group used for state representation (e.g., Pose2, Pose3, NavState)
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement for 3D position)
*/
template <typename LieGroup, typename Measurement>
class LIEKF {
public:
static constexpr int n = traits<LieGroup>::dimension; ///< Dimension of the state.
static constexpr int m = traits<Measurement>::dimension; ///< Dimension of the measurement.
using MeasurementFunction = std::function<Measurement(const LieGroup&, OptionalJacobian<m, n>)>; ///< Typedef for the measurement function.
using MatrixN = Eigen::Matrix<double, n, n>; ///< Typedef for the identity matrix.
/**
* @brief Construct with a measurement function
* @param X0 Initial State
* @param P0 Initial Covariance
* @param h Measurement function
*/
LIEKF(const LieGroup& X0, const Matrix& P0, MeasurementFunction& h) // X_ P_
: X(X0), P(P0), h_(h) {}
/**
* @brief Get current state estimate.
* @return Const reference to the state estiamte.
*/
const LieGroup& getState() const { return X; }
/**
* @brief Get current covariance estimate.
* @return Const reference to the covariance estimate.
*/
const Matrix& getCovariance() const { return P; }
/**
* @brief Prediction stage with a Lie group element U.
* @param U Lie group control input
* @param Q Process noise covariance matrix.
*/
void predict(const LieGroup& U, const Matrix& Q) {
LieGroup::Jacobian A;
X = X.compose(U, A);
P = A * P * A.transpose() + Q;
}
/**
* @brief Prediction stage with a control vector u and a time interval dt.
* @param u Control vector element
* @param dt Time interval
* @param Q Process noise covariance matrix.
*/
void predict(const Vector& u, double dt, const Matrix& Q) {
predict(LieGroup::Expmap(u*dt), Q);d
}
/**
* @brief Update stage using a measurement and measurement covariance.
* @param z Measurement
* @param R Measurement noise covariance matrix.
*/
void update(const Measurement& z, const Matrix& R) {
Matrix H(m, n);
Vector y = h_(X, H)-z;
Matrix S = H * P * H.transpose() + R;
Matrix K = P * H.transpose() * S.inverse();
X = X.expmap(-K * y);
P = (I_n - K * H) * P; // move Identity to be a constant.
}
protected:
LieGroup X; ///< Current state estimate.
Matrix P; ///< Current covariance estimate.
private:
MeasurementFunction h_; ///< Measurement function
static const MatrixN I_n; ///< A nxn identity matrix used in the update stage of the LIEKF.
};
/**
* @brief Create the static identity matrix I_n of size nxn for use in the update stage.
* @tparam LieGroup Lie group used for state representation (e.g., Pose2, Pose3, NavState)
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement for 3D position)
*/
template <typename LieGroup, typename Measurement>
const typename LIEKF<LieGroup, Measurement>::MatrixN LIEKF<LieGroup, Measurement>::I_n
= typename LIEKF<LieGroup, Measurement>::MatrixN::Identity();
/**
* @brief General Left Invariant Extended Kalman Filter with dynamics function.
*
* This class extends the LIEKF class to include a dynamics function f. The dynamics maps
* a state and control vector to a tangent vector xi.
*
* @tparam LieGroup The Lie group type for the state.
* @tparam Measurement The type of the measurement.
* @tparam _p The dimension of the control vector.
*/
template <typename LieGroup, typename Measurement, size_t _p>
class GeneralLIEKF:public LIEKF<LieGroup, Measurement> {
public:
using Control = Eigen::Matrix<double, _p, 1>; ///< Typedef for the control vector.
using TangentVector = typename traits<LieGroup>::TangentVector; ///< Typedef for the tangent vector.
using Dynamics = std::function<TangentVector(const LieGroup&, const Control&, ///< Typedef for the dynamics function.
OptionalJacobian<n, n>)>;
/**
* @brief Construct with general dynamics
* @param X0 Initial State
* @param P0 Initial Covariance
* @param f Dynamics function that depends on state and control vector
* @param h Measurement function
*/
GeneralLIEKF(const LieGroup& X0, const Matrix& P0, Dynamics& f, MeasurementFunction&
h) : LIEKF(X0, P0, h), f_(f) {}
/**
* @brief Prediction stage with a dynamics function that calculates the tangent vector xi in the tangent space.
* @param u Control vector element
* @param dt Time interval
* @param Q Process noise covariance matrix.
*/
void predict(const Control& u, double dt, const Matrix& Q) {
LieGroup::Jacobian H;
const TangentVector xi = f_(X, u, H);
LieGroup U = LieGroup::Expmap(xi * dt);
auto A = U.inverse().AdjointMap() * H;
X = X.compose(U);
P = A * P * A.transpose() + Q;
}
private:
Dynamics f_; ///< Dynamics function.
};
}// ends namespace