remove model
parent
789b5d2eb6
commit
c245264388
|
|
@ -236,8 +236,7 @@ VectorValues HybridBayesNet::optimize(const DiscreteValues &assignment) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesNet::sample(VectorValues given, std::mt19937_64 *rng,
|
||||
SharedDiagonal model) const {
|
||||
HybridValues HybridBayesNet::sample(VectorValues given, std::mt19937_64 *rng) const {
|
||||
DiscreteBayesNet dbn;
|
||||
for (size_t idx = 0; idx < size(); idx++) {
|
||||
if (factors_.at(idx)->isDiscrete()) {
|
||||
|
|
@ -250,26 +249,24 @@ HybridValues HybridBayesNet::sample(VectorValues given, std::mt19937_64 *rng,
|
|||
// Select the continuous bayes net corresponding to the assignment.
|
||||
GaussianBayesNet gbn = this->choose(assignment);
|
||||
// Sample from the gaussian bayes net.
|
||||
VectorValues sample = gbn.sample(given, rng, model);
|
||||
VectorValues sample = gbn.sample(given, rng);
|
||||
return HybridValues(assignment, sample);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesNet::sample(std::mt19937_64 *rng,
|
||||
SharedDiagonal model) const {
|
||||
HybridValues HybridBayesNet::sample(std::mt19937_64 *rng) const {
|
||||
VectorValues given;
|
||||
return sample(given, rng, model);
|
||||
return sample(given, rng);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesNet::sample(VectorValues given,
|
||||
SharedDiagonal model) const {
|
||||
return sample(given, &kRandomNumberGenerator, model);
|
||||
HybridValues HybridBayesNet::sample(VectorValues given) const {
|
||||
return sample(given, &kRandomNumberGenerator);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesNet::sample(SharedDiagonal model) const {
|
||||
return sample(&kRandomNumberGenerator, model);
|
||||
HybridValues HybridBayesNet::sample() const {
|
||||
return sample(&kRandomNumberGenerator);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -130,11 +130,9 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
*
|
||||
* @param given Values of missing variables.
|
||||
* @param rng The pseudo-random number generator.
|
||||
* @param model Optional diagonal noise model to use in sampling.
|
||||
* @return HybridValues
|
||||
*/
|
||||
HybridValues sample(VectorValues given, std::mt19937_64 *rng,
|
||||
SharedDiagonal model = nullptr) const;
|
||||
HybridValues sample(VectorValues given, std::mt19937_64 *rng) const;
|
||||
|
||||
/**
|
||||
* @brief Sample using ancestral sampling.
|
||||
|
|
@ -144,28 +142,24 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
* auto sample = bn.sample(&rng);
|
||||
*
|
||||
* @param rng The pseudo-random number generator.
|
||||
* @param model Optional diagonal noise model to use in sampling.
|
||||
* @return HybridValues
|
||||
*/
|
||||
HybridValues sample(std::mt19937_64 *rng,
|
||||
SharedDiagonal model = nullptr) const;
|
||||
HybridValues sample(std::mt19937_64 *rng) const;
|
||||
|
||||
/**
|
||||
* @brief Sample from an incomplete BayesNet, use default rng.
|
||||
*
|
||||
* @param given Values of missing variables.
|
||||
* @param model Optional diagonal noise model to use in sampling.
|
||||
* @return HybridValues
|
||||
*/
|
||||
HybridValues sample(VectorValues given, SharedDiagonal model = nullptr) const;
|
||||
HybridValues sample(VectorValues given) const;
|
||||
|
||||
/**
|
||||
* @brief Sample using ancestral sampling, use default rng.
|
||||
*
|
||||
* @param model Optional diagonal noise model to use in sampling.
|
||||
* @return HybridValues
|
||||
*/
|
||||
HybridValues sample(SharedDiagonal model = nullptr) const;
|
||||
HybridValues sample() const;
|
||||
|
||||
/// Prune the Hybrid Bayes Net such that we have at most maxNrLeaves leaves.
|
||||
HybridBayesNet prune(size_t maxNrLeaves);
|
||||
|
|
|
|||
Loading…
Reference in New Issue