diff --git a/gtsam/hybrid/HybridBayesNet.cpp b/gtsam/hybrid/HybridBayesNet.cpp index 0e2bfd740..5e0d185e8 100644 --- a/gtsam/hybrid/HybridBayesNet.cpp +++ b/gtsam/hybrid/HybridBayesNet.cpp @@ -236,8 +236,7 @@ VectorValues HybridBayesNet::optimize(const DiscreteValues &assignment) const { } /* ************************************************************************* */ -HybridValues HybridBayesNet::sample(VectorValues given, std::mt19937_64 *rng, - SharedDiagonal model) const { +HybridValues HybridBayesNet::sample(VectorValues given, std::mt19937_64 *rng) const { DiscreteBayesNet dbn; for (size_t idx = 0; idx < size(); idx++) { if (factors_.at(idx)->isDiscrete()) { @@ -250,26 +249,24 @@ HybridValues HybridBayesNet::sample(VectorValues given, std::mt19937_64 *rng, // Select the continuous bayes net corresponding to the assignment. GaussianBayesNet gbn = this->choose(assignment); // Sample from the gaussian bayes net. - VectorValues sample = gbn.sample(given, rng, model); + VectorValues sample = gbn.sample(given, rng); return HybridValues(assignment, sample); } /* ************************************************************************* */ -HybridValues HybridBayesNet::sample(std::mt19937_64 *rng, - SharedDiagonal model) const { +HybridValues HybridBayesNet::sample(std::mt19937_64 *rng) const { VectorValues given; - return sample(given, rng, model); + return sample(given, rng); } /* ************************************************************************* */ -HybridValues HybridBayesNet::sample(VectorValues given, - SharedDiagonal model) const { - return sample(given, &kRandomNumberGenerator, model); +HybridValues HybridBayesNet::sample(VectorValues given) const { + return sample(given, &kRandomNumberGenerator); } /* ************************************************************************* */ -HybridValues HybridBayesNet::sample(SharedDiagonal model) const { - return sample(&kRandomNumberGenerator, model); +HybridValues HybridBayesNet::sample() const { + return sample(&kRandomNumberGenerator); } /* ************************************************************************* */ diff --git a/gtsam/hybrid/HybridBayesNet.h b/gtsam/hybrid/HybridBayesNet.h index d6809e036..4b39ace25 100644 --- a/gtsam/hybrid/HybridBayesNet.h +++ b/gtsam/hybrid/HybridBayesNet.h @@ -130,11 +130,9 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet { * * @param given Values of missing variables. * @param rng The pseudo-random number generator. - * @param model Optional diagonal noise model to use in sampling. * @return HybridValues */ - HybridValues sample(VectorValues given, std::mt19937_64 *rng, - SharedDiagonal model = nullptr) const; + HybridValues sample(VectorValues given, std::mt19937_64 *rng) const; /** * @brief Sample using ancestral sampling. @@ -144,28 +142,24 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet { * auto sample = bn.sample(&rng); * * @param rng The pseudo-random number generator. - * @param model Optional diagonal noise model to use in sampling. * @return HybridValues */ - HybridValues sample(std::mt19937_64 *rng, - SharedDiagonal model = nullptr) const; + HybridValues sample(std::mt19937_64 *rng) const; /** * @brief Sample from an incomplete BayesNet, use default rng. * * @param given Values of missing variables. - * @param model Optional diagonal noise model to use in sampling. * @return HybridValues */ - HybridValues sample(VectorValues given, SharedDiagonal model = nullptr) const; + HybridValues sample(VectorValues given) const; /** * @brief Sample using ancestral sampling, use default rng. * - * @param model Optional diagonal noise model to use in sampling. * @return HybridValues */ - HybridValues sample(SharedDiagonal model = nullptr) const; + HybridValues sample() const; /// Prune the Hybrid Bayes Net such that we have at most maxNrLeaves leaves. HybridBayesNet prune(size_t maxNrLeaves);