move code to cpp and some small clean up
parent
b9dbde14f2
commit
bdd00d8b49
|
@ -18,7 +18,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/inference/FactorGraph-inst.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam_unstable/linear/LinearInequality.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
|
|
@ -17,8 +17,10 @@
|
|||
* @date Dec 15, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam_unstable/nonlinear/LinearConstraintSQP.h>
|
||||
#include <gtsam/inference/FactorGraph-inst.h>
|
||||
#include <gtsam_unstable/linear/QPSolver.h>
|
||||
#include <gtsam_unstable/nonlinear/LinearConstraintSQP.h>
|
||||
#include <gtsam_unstable/nonlinear/ConstrainedFactor.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -38,12 +40,12 @@ bool LinearConstraintSQP::isDualFeasible(const VectorValues& duals) const {
|
|||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, lcnlp_.linearInequalities) {
|
||||
ConstrainedFactor::shared_ptr inequality
|
||||
= boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
|
||||
|
||||
Key dualKey = inequality->dualKey();
|
||||
if (!duals.exists(dualKey)) continue; // should be inactive constraint!
|
||||
double dual = duals.at(dualKey)[0];// because we only support single-valued inequalities
|
||||
if (dual > 0.0) { // See the explanation in QPSolver::identifyLeavingConstraint, we want dual < 0 ?
|
||||
if (dual > 0.0) // See the explanation in QPSolver::identifyLeavingConstraint, we want dual < 0 ?
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -90,9 +92,9 @@ LinearConstraintNLPState LinearConstraintSQP::iterate(
|
|||
VectorValues delta, duals;
|
||||
QPSolver qpSolver(qp);
|
||||
VectorValues zeroInitialValues;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, state.values) {
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, state.values)
|
||||
zeroInitialValues.insert(key_value.key, zero(key_value.value.dim()));
|
||||
}
|
||||
|
||||
boost::tie(delta, duals) = qpSolver.optimize(zeroInitialValues, state.duals,
|
||||
params_.warmStart);
|
||||
|
||||
|
@ -106,10 +108,8 @@ LinearConstraintNLPState LinearConstraintSQP::iterate(
|
|||
newState.converged = checkConvergence(newState, delta);
|
||||
newState.iterations = state.iterations + 1;
|
||||
|
||||
if(params_.verbosity >= NonlinearOptimizerParams::VALUES) {
|
||||
newState.values.print("Values");
|
||||
newState.duals.print("Duals");
|
||||
}
|
||||
if(params_.verbosity >= NonlinearOptimizerParams::VALUES)
|
||||
newState.print("Values");
|
||||
|
||||
return newState;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,52 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file LinearEqualityFactorGraph.cpp
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Krunal Chande
|
||||
* @author Luca Carlone
|
||||
* @date Dec 15, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam_unstable/nonlinear/LinearEqualityFactorGraph.h>
|
||||
#include <gtsam_unstable/nonlinear/ConstrainedFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
EqualityFactorGraph::shared_ptr LinearEqualityFactorGraph::linearize(
|
||||
const Values& linearizationPoint) const {
|
||||
EqualityFactorGraph::shared_ptr linearGraph(
|
||||
new EqualityFactorGraph());
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
|
||||
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<JacobianFactor>(
|
||||
factor->linearize(linearizationPoint));
|
||||
ConstrainedFactor::shared_ptr constraint = boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
|
||||
linearGraph->add(LinearEquality(*jacobian, constraint->dualKey()));
|
||||
}
|
||||
return linearGraph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool LinearEqualityFactorGraph::checkFeasibility(const Values& values, double tol) const {
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
|
||||
NoiseModelFactor::shared_ptr noiseModelFactor
|
||||
= boost::dynamic_pointer_cast<NoiseModelFactor>(factor);
|
||||
Vector error = noiseModelFactor->unwhitenedError(values);
|
||||
|
||||
if (error.lpNorm<Eigen::Infinity>() > tol)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
|
@ -18,8 +18,10 @@
|
|||
*/
|
||||
|
||||
#pragma once
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam_unstable/linear/EqualityFactorGraph.h>
|
||||
#include <gtsam_unstable/nonlinear/ConstrainedFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -33,33 +35,10 @@ public:
|
|||
}
|
||||
|
||||
/// Linearize to a EqualityFactorGraph
|
||||
EqualityFactorGraph::shared_ptr linearize(
|
||||
const Values& linearizationPoint) const {
|
||||
EqualityFactorGraph::shared_ptr linearGraph(
|
||||
new EqualityFactorGraph());
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
|
||||
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<JacobianFactor>(
|
||||
factor->linearize(linearizationPoint));
|
||||
ConstrainedFactor::shared_ptr constraint = boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
|
||||
linearGraph->add(LinearEquality(*jacobian, constraint->dualKey()));
|
||||
}
|
||||
return linearGraph;
|
||||
}
|
||||
EqualityFactorGraph::shared_ptr linearize(const Values& linearizationPoint) const;
|
||||
|
||||
/**
|
||||
* Return true if the max absolute error all factors is less than a tolerance
|
||||
*/
|
||||
bool checkFeasibility(const Values& values, double tol) const {
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
|
||||
NoiseModelFactor::shared_ptr noiseModelFactor = boost::dynamic_pointer_cast<NoiseModelFactor>(
|
||||
factor);
|
||||
Vector error = noiseModelFactor->unwhitenedError(values);
|
||||
if (error.lpNorm<Eigen::Infinity>() > tol) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
/// Return true if the max absolute error all factors is less than a tolerance
|
||||
bool checkFeasibility(const Values& values, double tol) const;
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file LinearInequalityFactorGraph.cpp
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Krunal Chande
|
||||
* @author Luca Carlone
|
||||
* @date Dec 15, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam_unstable/nonlinear/LinearInequalityFactorGraph.h>
|
||||
#include <gtsam_unstable/nonlinear/ConstrainedFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
InequalityFactorGraph::shared_ptr LinearInequalityFactorGraph::linearize(
|
||||
const Values& linearizationPoint) const {
|
||||
InequalityFactorGraph::shared_ptr linearGraph(new InequalityFactorGraph());
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this) {
|
||||
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<JacobianFactor>(
|
||||
factor->linearize(linearizationPoint));
|
||||
ConstrainedFactor::shared_ptr constraint
|
||||
= boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
|
||||
linearGraph->add(LinearInequality(*jacobian, constraint->dualKey()));
|
||||
}
|
||||
return linearGraph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool LinearInequalityFactorGraph::checkFeasibilityAndComplimentary(
|
||||
const Values& values, const VectorValues& dualValues, double tol) const {
|
||||
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this) {
|
||||
NoiseModelFactor::shared_ptr noiseModelFactor
|
||||
= boost::dynamic_pointer_cast<NoiseModelFactor>(factor);
|
||||
Vector error = noiseModelFactor->unwhitenedError(values);
|
||||
|
||||
// Primal feasibility condition: all constraints need to be <= 0.0
|
||||
if (error[0] > tol)
|
||||
return false;
|
||||
|
||||
// Complimentary condition: errors of active constraints need to be 0.0
|
||||
ConstrainedFactor::shared_ptr constraint
|
||||
= boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
|
||||
Key dualKey = constraint->dualKey();
|
||||
|
||||
// if dualKey doesn't exist in dualValues, it must be an inactive constraint!
|
||||
if (!dualValues.exists(dualKey))
|
||||
continue;
|
||||
|
||||
// for active constraint, the error should be 0.0
|
||||
if (fabs(error[0]) > tol)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
|
@ -19,8 +19,9 @@
|
|||
|
||||
#pragma once
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam_unstable/linear/InequalityFactorGraph.h>
|
||||
#include <gtsam_unstable/nonlinear/ConstrainedFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -31,52 +32,15 @@ class LinearInequalityFactorGraph: public FactorGraph<NonlinearFactor> {
|
|||
|
||||
public:
|
||||
/// Default constructor
|
||||
LinearInequalityFactorGraph() {
|
||||
}
|
||||
LinearInequalityFactorGraph() {}
|
||||
|
||||
/// Linearize to a InequalityFactorGraph
|
||||
InequalityFactorGraph::shared_ptr linearize(const Values& linearizationPoint) const {
|
||||
InequalityFactorGraph::shared_ptr linearGraph(new InequalityFactorGraph());
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this) {
|
||||
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<JacobianFactor>(
|
||||
factor->linearize(linearizationPoint));
|
||||
ConstrainedFactor::shared_ptr constraint
|
||||
= boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
|
||||
linearGraph->add(LinearInequality(*jacobian, constraint->dualKey()));
|
||||
}
|
||||
return linearGraph;
|
||||
}
|
||||
InequalityFactorGraph::shared_ptr linearize(const Values& linearizationPoint) const;
|
||||
|
||||
/**
|
||||
* Return true if the all errors are <= 0.0
|
||||
*/
|
||||
/// Return true if the all errors are <= 0.0
|
||||
bool checkFeasibilityAndComplimentary(const Values& values,
|
||||
const VectorValues& dualValues, double tol) const {
|
||||
const VectorValues& dualValues, double tol) const;
|
||||
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this) {
|
||||
NoiseModelFactor::shared_ptr noiseModelFactor
|
||||
= boost::dynamic_pointer_cast<NoiseModelFactor>(factor);
|
||||
Vector error = noiseModelFactor->unwhitenedError(values);
|
||||
|
||||
// Primal feasibility condition: all constraints need to be <= 0.0
|
||||
if (error[0] > tol)
|
||||
return false;
|
||||
|
||||
// Complimentary condition: errors of active constraints need to be 0.0
|
||||
ConstrainedFactor::shared_ptr constraint
|
||||
= boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
|
||||
Key dualKey = constraint->dualKey();
|
||||
|
||||
// if dualKey doesn't exist in dualValues, it must be an inactive constraint!
|
||||
if (!dualValues.exists(dualKey))
|
||||
continue;
|
||||
|
||||
// for active constraint, the error should be 0.0
|
||||
if (fabs(error[0]) > tol)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -1 +1 @@
|
|||
gtsamAddTestsGlob(nonlinear_unstable "test*.cpp" "testCustomChartExpression.cpp" "gtsam_unstable")
|
||||
gtsamAddTestsGlob(nonlinear_unstable "test*.cpp" "testCustomChartExpression.cpp;testLCNLPSolver2.cpp" "gtsam_unstable")
|
||||
|
|
|
@ -10,8 +10,7 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testQPSimple.cpp
|
||||
* @brief Unit tests for testQPSimple
|
||||
* @file testLinearInequalityFactorGraph.cpp
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Krunal Chande
|
||||
* @author Luca Carlone
|
||||
|
@ -19,7 +18,7 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam_unstable/nonlinear/NonlinearInequalityFactorGraph.h>
|
||||
#include <gtsam_unstable/nonlinear/LinearInequalityFactorGraph.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <iostream>
|
||||
|
||||
|
@ -29,9 +28,9 @@ using namespace gtsam;
|
|||
const double tol = 1e-10;
|
||||
|
||||
//******************************************************************************
|
||||
TEST(NonlinearInequalityFactorGraph, constructor) {
|
||||
NonlinearInequalityFactorGraph nonlinearInequalities;
|
||||
CHECK(nonlinearInequalities.empty());
|
||||
TEST(LinearInequalityFactorGraph, constructor) {
|
||||
LinearInequalityFactorGraph linearInequalities;
|
||||
CHECK(linearInequalities.empty());
|
||||
}
|
||||
|
||||
|
|
@ -1,138 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testLinearlyConstrainedNonlinearOptimizer.cpp
|
||||
* @brief Unit tests for LinearlyConstrainedNonlinearOptimizer
|
||||
* @author Krunal Chande
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Luca Carlone
|
||||
* @date Dec 15, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam_unstable/linear/QPSolver.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
//namespace gtsam {
|
||||
//struct LinearlyConstrainedNLP {
|
||||
// NonlinearFactorGraph cost;
|
||||
// LinearEqualityFactorGraph equalities;
|
||||
// LinearInequalityFactorGraph inequalities;
|
||||
//};
|
||||
//
|
||||
//struct LinearlyConstrainedNLPState {
|
||||
// Values values;
|
||||
// VectorValues duals;
|
||||
// bool converged;
|
||||
// LinearlyConstrainedNLPState(const Values& initialValues) :
|
||||
// values(initialValues), duals(VectorValues()), converged(false) {
|
||||
// }
|
||||
//};
|
||||
//class LinearlyConstrainedNonLinearOptimizer {
|
||||
// LinearlyConstrainedNLP lcNLP_;
|
||||
//public:
|
||||
// LinearlyConstrainedNonLinearOptimizer(const LinearlyConstrainedNLP& lcNLP): lcNLP_(lcNLP) {}
|
||||
//
|
||||
// LinearlyConstrainedNLPState iterate(const LinearlyConstrainedNLPState& state) const {
|
||||
// QP qp;
|
||||
// qp.cost = lcNLP_.cost.linearize(state.values);
|
||||
// qp.equalities = lcNLP_.equalities;
|
||||
// qp.inequalities = lcNLP_.inequalities;
|
||||
// QPSolver qpSolver(qp);
|
||||
// VectorValues delta, duals;
|
||||
// boost::tie(delta, duals) = qpSolver.optimize();
|
||||
// LinearlyConstrainedNLPState newState;
|
||||
// newState.values = state.values.retract(delta);
|
||||
// newState.duals = duals;
|
||||
// newState.converged = checkConvergence(newState.values, newState.duals);
|
||||
// return newState;
|
||||
// }
|
||||
//
|
||||
// /**
|
||||
// * Main optimization function.
|
||||
// */
|
||||
// std::pair<Values, VectorValues> optimize(const Values& initialValues) const {
|
||||
// LinearlyConstrainedNLPState state(initialValues);
|
||||
// while(!state.converged){
|
||||
// state = iterate(state);
|
||||
// }
|
||||
//
|
||||
// return std::make_pair(initialValues, VectorValues());
|
||||
// }
|
||||
//};
|
||||
//}
|
||||
//
|
||||
//using namespace std;
|
||||
//using namespace gtsam::symbol_shorthand;
|
||||
//using namespace gtsam;
|
||||
//const double tol = 1e-10;
|
||||
////******************************************************************************
|
||||
//TEST(LinearlyConstrainedNonlinearOptimizer, Problem1 ) {
|
||||
//
|
||||
// // build a quadratic Objective function x1^2 - x1*x2 + x2^2 - 3*x1 + 5
|
||||
// // Note the Hessian encodes:
|
||||
// // 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
||||
// // Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 10
|
||||
// HessianFactor lf(X(1), X(2), 2.0 * ones(1, 1), -ones(1, 1), 3.0 * ones(1),
|
||||
// 2.0 * ones(1, 1), zero(1), 10.0);
|
||||
//
|
||||
// // build linear inequalities
|
||||
// LinearInequalityFactorGraph inequalities;
|
||||
// inequalities.push_back(LinearInequality(X(1), ones(1,1), X(2), ones(1,1), 2, 0)); // x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
|
||||
// inequalities.push_back(LinearInequality(X(1), -ones(1,1), 0, 1)); // -x1 <= 0
|
||||
// inequalities.push_back(LinearInequality(X(2), -ones(1,1), 0, 2)); // -x2 <= 0
|
||||
// inequalities.push_back(LinearInequality(X(1), ones(1,1), 1.5, 3)); // x1 <= 3/2
|
||||
//
|
||||
// // Instantiate LinearlyConstrainedNLP, pretending that the cost is not quadratic
|
||||
// // (LinearContainerFactor makes a linear factor behave like a nonlinear one)
|
||||
// LinearlyConstrainedNLP lcNLP;
|
||||
// lcNLP.cost.add(LinearContainerFactor(lf));
|
||||
// lcNLP.inequalities = inequalities;
|
||||
//
|
||||
// // Compare against a QP
|
||||
// QP qp;
|
||||
// qp.cost.add(lf);
|
||||
// qp.inequalities = inequalities;
|
||||
//
|
||||
// // instantiate QPsolver
|
||||
// QPSolver qpSolver(qp);
|
||||
// // create initial values for optimization
|
||||
// VectorValues initialVectorValues;
|
||||
// initialVectorValues.insert(X(1), zero(1));
|
||||
// initialVectorValues.insert(X(2), zero(1));
|
||||
// VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first;
|
||||
//
|
||||
// // instantiate LinearlyConstrainedNonLinearOptimizer
|
||||
// LinearlyConstrainedNonLinearOptimizer lcNLPSolver(lcNLP);
|
||||
// // create initial values for optimization
|
||||
// Values initialValues;
|
||||
// initialValues.insert(X(1), 0.0);
|
||||
// initialValues.insert(X(2), 0.0);
|
||||
// Values actualSolution = lcNLPSolver.optimize(initialValues).first;
|
||||
//
|
||||
//
|
||||
// DOUBLES_EQUAL(expectedSolution.at(X(1))[0], actualSolution.at<double>(X(1)), tol);
|
||||
// DOUBLES_EQUAL(expectedSolution.at(X(2))[0], actualSolution.at<double>(X(2)), tol);
|
||||
//}
|
||||
//
|
||||
//******************************************************************************
|
||||
int main() {
|
||||
std::cout<<"here"<<std::endl;
|
||||
// TestResult tr;
|
||||
// return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
//******************************************************************************
|
||||
//
|
Loading…
Reference in New Issue