139 lines
5.0 KiB
C++
139 lines
5.0 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testLinearlyConstrainedNonlinearOptimizer.cpp
|
|
* @brief Unit tests for LinearlyConstrainedNonlinearOptimizer
|
|
* @author Krunal Chande
|
|
* @author Duy-Nguyen Ta
|
|
* @author Luca Carlone
|
|
* @date Dec 15, 2014
|
|
*/
|
|
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam_unstable/linear/QPSolver.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <iostream>
|
|
|
|
|
|
//namespace gtsam {
|
|
//struct LinearlyConstrainedNLP {
|
|
// NonlinearFactorGraph cost;
|
|
// LinearEqualityFactorGraph equalities;
|
|
// LinearInequalityFactorGraph inequalities;
|
|
//};
|
|
//
|
|
//struct LinearlyConstrainedNLPState {
|
|
// Values values;
|
|
// VectorValues duals;
|
|
// bool converged;
|
|
// LinearlyConstrainedNLPState(const Values& initialValues) :
|
|
// values(initialValues), duals(VectorValues()), converged(false) {
|
|
// }
|
|
//};
|
|
//class LinearlyConstrainedNonLinearOptimizer {
|
|
// LinearlyConstrainedNLP lcNLP_;
|
|
//public:
|
|
// LinearlyConstrainedNonLinearOptimizer(const LinearlyConstrainedNLP& lcNLP): lcNLP_(lcNLP) {}
|
|
//
|
|
// LinearlyConstrainedNLPState iterate(const LinearlyConstrainedNLPState& state) const {
|
|
// QP qp;
|
|
// qp.cost = lcNLP_.cost.linearize(state.values);
|
|
// qp.equalities = lcNLP_.equalities;
|
|
// qp.inequalities = lcNLP_.inequalities;
|
|
// QPSolver qpSolver(qp);
|
|
// VectorValues delta, duals;
|
|
// boost::tie(delta, duals) = qpSolver.optimize();
|
|
// LinearlyConstrainedNLPState newState;
|
|
// newState.values = state.values.retract(delta);
|
|
// newState.duals = duals;
|
|
// newState.converged = checkConvergence(newState.values, newState.duals);
|
|
// return newState;
|
|
// }
|
|
//
|
|
// /**
|
|
// * Main optimization function.
|
|
// */
|
|
// std::pair<Values, VectorValues> optimize(const Values& initialValues) const {
|
|
// LinearlyConstrainedNLPState state(initialValues);
|
|
// while(!state.converged){
|
|
// state = iterate(state);
|
|
// }
|
|
//
|
|
// return std::make_pair(initialValues, VectorValues());
|
|
// }
|
|
//};
|
|
//}
|
|
//
|
|
//using namespace std;
|
|
//using namespace gtsam::symbol_shorthand;
|
|
//using namespace gtsam;
|
|
//const double tol = 1e-10;
|
|
////******************************************************************************
|
|
//TEST(LinearlyConstrainedNonlinearOptimizer, Problem1 ) {
|
|
//
|
|
// // build a quadratic Objective function x1^2 - x1*x2 + x2^2 - 3*x1 + 5
|
|
// // Note the Hessian encodes:
|
|
// // 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
|
// // Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 10
|
|
// HessianFactor lf(X(1), X(2), 2.0 * ones(1, 1), -ones(1, 1), 3.0 * ones(1),
|
|
// 2.0 * ones(1, 1), zero(1), 10.0);
|
|
//
|
|
// // build linear inequalities
|
|
// LinearInequalityFactorGraph inequalities;
|
|
// inequalities.push_back(LinearInequality(X(1), ones(1,1), X(2), ones(1,1), 2, 0)); // x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
|
|
// inequalities.push_back(LinearInequality(X(1), -ones(1,1), 0, 1)); // -x1 <= 0
|
|
// inequalities.push_back(LinearInequality(X(2), -ones(1,1), 0, 2)); // -x2 <= 0
|
|
// inequalities.push_back(LinearInequality(X(1), ones(1,1), 1.5, 3)); // x1 <= 3/2
|
|
//
|
|
// // Instantiate LinearlyConstrainedNLP, pretending that the cost is not quadratic
|
|
// // (LinearContainerFactor makes a linear factor behave like a nonlinear one)
|
|
// LinearlyConstrainedNLP lcNLP;
|
|
// lcNLP.cost.add(LinearContainerFactor(lf));
|
|
// lcNLP.inequalities = inequalities;
|
|
//
|
|
// // Compare against a QP
|
|
// QP qp;
|
|
// qp.cost.add(lf);
|
|
// qp.inequalities = inequalities;
|
|
//
|
|
// // instantiate QPsolver
|
|
// QPSolver qpSolver(qp);
|
|
// // create initial values for optimization
|
|
// VectorValues initialVectorValues;
|
|
// initialVectorValues.insert(X(1), zero(1));
|
|
// initialVectorValues.insert(X(2), zero(1));
|
|
// VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first;
|
|
//
|
|
// // instantiate LinearlyConstrainedNonLinearOptimizer
|
|
// LinearlyConstrainedNonLinearOptimizer lcNLPSolver(lcNLP);
|
|
// // create initial values for optimization
|
|
// Values initialValues;
|
|
// initialValues.insert(X(1), 0.0);
|
|
// initialValues.insert(X(2), 0.0);
|
|
// Values actualSolution = lcNLPSolver.optimize(initialValues).first;
|
|
//
|
|
//
|
|
// DOUBLES_EQUAL(expectedSolution.at(X(1))[0], actualSolution.at<double>(X(1)), tol);
|
|
// DOUBLES_EQUAL(expectedSolution.at(X(2))[0], actualSolution.at<double>(X(2)), tol);
|
|
//}
|
|
//
|
|
//******************************************************************************
|
|
int main() {
|
|
std::cout<<"here"<<std::endl;
|
|
// TestResult tr;
|
|
// return TestRegistry::runAllTests(tr);
|
|
}
|
|
//******************************************************************************
|
|
//
|