Revived document about manifold geometry of the sphere, deleted by Can a while ago :-(

release/4.3a0
Frank Dellaert 2013-12-15 21:29:20 +00:00
parent af18d11df6
commit bad1c38fe6
1 changed files with 422 additions and 0 deletions

422
doc/sphere.lyx Normal file
View File

@ -0,0 +1,422 @@
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 11
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 3cm
\topmargin 3cm
\rightmargin 3cm
\bottommargin 3cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Retraction on a Sphere
\end_layout
\begin_layout Author
Frank, Can, and Manohar
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\xihat}{\hat{\xi}}
{\hat{\xi}}
\end_inset
\end_layout
\begin_layout Subsubsection*
Retraction
\end_layout
\begin_layout Standard
Suppose we have a point
\begin_inset Formula $p\in S^{2}$
\end_inset
and a 3-vector
\begin_inset Formula $\xihat$
\end_inset
, Absil
\begin_inset CommandInset citation
LatexCommand cite
key "Absil07book"
\end_inset
tells us we can simply add
\begin_inset Formula $\xihat$
\end_inset
to
\begin_inset Formula $p$
\end_inset
and renormalize to get a new point
\begin_inset Formula $q$
\end_inset
on the sphere.
This is what he calls a
\series bold
retraction
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $R_{p}(\xihat)$
\end_inset
,
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\uuline default
\uwave default
\noun default
\color inherit
\begin_inset Formula
\[
q=R_{p}(\xihat)=\frac{p+\xihat}{\left|p+\xihat\right|}=\frac{p+\xihat}{\alpha}
\]
\end_inset
with
\begin_inset Formula $\alpha$
\end_inset
the norm of
\begin_inset Formula $p+\xihat$
\end_inset
.
The only restriction on
\begin_inset Formula $\xihat$
\end_inset
is that it is in the tangent space
\begin_inset Formula $T_{p}S^{2}$
\end_inset
at
\begin_inset Formula $p$
\end_inset
, i.e.,
\begin_inset Formula $p^{T}\xihat=0$
\end_inset
.
Multiplying with
\begin_inset Formula $p^{T}$
\end_inset
on both sides we have
\begin_inset Formula
\[
\alpha p^{T}q=p^{T}p+p^{T}\xihat
\]
\end_inset
and (since
\begin_inset Formula $p^{T}p=1$
\end_inset
and
\begin_inset Formula $p^{T}\xihat=0$
\end_inset
) we have
\begin_inset Formula $\alpha=1/(p^{T}q)$
\end_inset
.
\end_layout
\begin_layout Subsubsection*
Inverse
\end_layout
\begin_layout Standard
Suppose we are given points
\begin_inset Formula $p$
\end_inset
and
\begin_inset Formula $q$
\end_inset
on the sphere, what is the tangent vector
\begin_inset Formula $\xihat$
\end_inset
that takes
\begin_inset Formula $p$
\end_inset
to
\begin_inset Formula $q$
\end_inset
? We can find a basis
\begin_inset Formula $B$
\end_inset
for the tangent space, with
\begin_inset Formula $B=\left[b_{1}|b_{2}\right]$
\end_inset
a
\begin_inset Formula $3\times2$
\end_inset
matrix, by either
\end_layout
\begin_layout Enumerate
Decompose
\begin_inset Formula $p=QR$
\end_inset
, with
\begin_inset Formula $Q$
\end_inset
orthonormal and
\begin_inset Formula $R$
\end_inset
of the form
\begin_inset Formula $[1\,0\,0]^{T}$
\end_inset
, and hence
\begin_inset Formula $p=Q_{1}$
\end_inset
.
The basis
\begin_inset Formula $B=\left[Q_{2}|Q_{3}\right]$
\end_inset
, i.e., the last two columns of
\begin_inset Formula $Q$
\end_inset
.
\end_layout
\begin_layout Enumerate
Form
\begin_inset Formula $b_{1}=p\times a$
\end_inset
, with
\begin_inset Formula $a$
\end_inset
(consistently) chosen to be non-parallel to
\begin_inset Formula $p$
\end_inset
, and
\begin_inset Formula $b_{2}=p\times b_{1}$
\end_inset
.
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
To choose
\begin_inset Formula $a$
\end_inset
, one way is to divide the sphere into regions, e.g., pick the axis
\begin_inset Formula $e_{i}$
\end_inset
such that
\begin_inset Formula $e_{i}^{T}p$
\end_inset
is smallest.
However, that leads to discontinuous boundaries.
Since
\begin_inset Formula $0\leq\left|e_{i}^{T}p\right|\leq1$
\end_inset
for all
\begin_inset Formula $p\in S^{2}$
\end_inset
, a better idea might be to use a mixture, e.g.,
\begin_inset Formula
\[
a=\frac{1}{2(x^{2}+y^{2}+z^{2})}\left[\begin{array}{c}
y^{2}+z^{2}\\
x^{2}+z^{2}\\
x^{2}+y^{2}
\end{array}\right]
\]
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Now, if
\begin_inset Formula $\xihat=B\xi$
\end_inset
with
\begin_inset Formula $\xi\in R^{2}$
\end_inset
the 2D coordinate in the tangent plane basis
\begin_inset Formula $B$
\end_inset
, we have
\begin_inset Formula
\[
\alpha q=p+\xihat=p+B\xi
\]
\end_inset
If we multiply both sides with
\begin_inset Formula $B^{T}$
\end_inset
(project on the basis
\begin_inset Formula $B$
\end_inset
) we obtain
\begin_inset Formula
\[
\alpha B^{T}q=B^{T}p+B^{T}B\xi
\]
\end_inset
and because
\begin_inset Formula $B^{T}p=0$
\end_inset
and
\begin_inset Formula $B^{T}B=I$
\end_inset
we trivially obtain
\begin_inset Formula $\xi$
\end_inset
as the scaled projection
\begin_inset Formula $B^{T}q$
\end_inset
:
\begin_inset Formula
\[
\xi=\alpha B^{T}q=\frac{B^{T}q}{p^{T}q}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset bibtex
LatexCommand bibtex
bibfiles "../../../papers/refs"
options "plain"
\end_inset
\end_layout
\end_body
\end_document