Revived document about manifold geometry of the sphere, deleted by Can a while ago :-(
parent
af18d11df6
commit
bad1c38fe6
|
@ -0,0 +1,422 @@
|
|||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 413
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman default
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf false
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize 11
|
||||
\spacing single
|
||||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry true
|
||||
\use_amsmath 1
|
||||
\use_esint 1
|
||||
\use_mhchem 1
|
||||
\use_mathdots 1
|
||||
\cite_engine basic
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\use_refstyle 1
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\leftmargin 3cm
|
||||
\topmargin 3cm
|
||||
\rightmargin 3cm
|
||||
\bottommargin 3cm
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language english
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Title
|
||||
Retraction on a Sphere
|
||||
\end_layout
|
||||
|
||||
\begin_layout Author
|
||||
Frank, Can, and Manohar
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\xihat}{\hat{\xi}}
|
||||
{\hat{\xi}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection*
|
||||
Retraction
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Suppose we have a point
|
||||
\begin_inset Formula $p\in S^{2}$
|
||||
\end_inset
|
||||
|
||||
and a 3-vector
|
||||
\begin_inset Formula $\xihat$
|
||||
\end_inset
|
||||
|
||||
, Absil
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "Absil07book"
|
||||
|
||||
\end_inset
|
||||
|
||||
tells us we can simply add
|
||||
\begin_inset Formula $\xihat$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
and renormalize to get a new point
|
||||
\begin_inset Formula $q$
|
||||
\end_inset
|
||||
|
||||
on the sphere.
|
||||
This is what he calls a
|
||||
\series bold
|
||||
retraction
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $R_{p}(\xihat)$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
q=R_{p}(\xihat)=\frac{p+\xihat}{\left|p+\xihat\right|}=\frac{p+\xihat}{\alpha}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $\alpha$
|
||||
\end_inset
|
||||
|
||||
the norm of
|
||||
\begin_inset Formula $p+\xihat$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The only restriction on
|
||||
\begin_inset Formula $\xihat$
|
||||
\end_inset
|
||||
|
||||
is that it is in the tangent space
|
||||
\begin_inset Formula $T_{p}S^{2}$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
, i.e.,
|
||||
\begin_inset Formula $p^{T}\xihat=0$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Multiplying with
|
||||
\begin_inset Formula $p^{T}$
|
||||
\end_inset
|
||||
|
||||
on both sides we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\alpha p^{T}q=p^{T}p+p^{T}\xihat
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
and (since
|
||||
\begin_inset Formula $p^{T}p=1$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $p^{T}\xihat=0$
|
||||
\end_inset
|
||||
|
||||
) we have
|
||||
\begin_inset Formula $\alpha=1/(p^{T}q)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection*
|
||||
Inverse
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Suppose we are given points
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $q$
|
||||
\end_inset
|
||||
|
||||
on the sphere, what is the tangent vector
|
||||
\begin_inset Formula $\xihat$
|
||||
\end_inset
|
||||
|
||||
that takes
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $q$
|
||||
\end_inset
|
||||
|
||||
? We can find a basis
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
for the tangent space, with
|
||||
\begin_inset Formula $B=\left[b_{1}|b_{2}\right]$
|
||||
\end_inset
|
||||
|
||||
a
|
||||
\begin_inset Formula $3\times2$
|
||||
\end_inset
|
||||
|
||||
matrix, by either
|
||||
\end_layout
|
||||
|
||||
\begin_layout Enumerate
|
||||
Decompose
|
||||
\begin_inset Formula $p=QR$
|
||||
\end_inset
|
||||
|
||||
, with
|
||||
\begin_inset Formula $Q$
|
||||
\end_inset
|
||||
|
||||
orthonormal and
|
||||
\begin_inset Formula $R$
|
||||
\end_inset
|
||||
|
||||
of the form
|
||||
\begin_inset Formula $[1\,0\,0]^{T}$
|
||||
\end_inset
|
||||
|
||||
, and hence
|
||||
\begin_inset Formula $p=Q_{1}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The basis
|
||||
\begin_inset Formula $B=\left[Q_{2}|Q_{3}\right]$
|
||||
\end_inset
|
||||
|
||||
, i.e., the last two columns of
|
||||
\begin_inset Formula $Q$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Enumerate
|
||||
Form
|
||||
\begin_inset Formula $b_{1}=p\times a$
|
||||
\end_inset
|
||||
|
||||
, with
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
(consistently) chosen to be non-parallel to
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
, and
|
||||
\begin_inset Formula $b_{2}=p\times b_{1}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
To choose
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
, one way is to divide the sphere into regions, e.g., pick the axis
|
||||
\begin_inset Formula $e_{i}$
|
||||
\end_inset
|
||||
|
||||
such that
|
||||
\begin_inset Formula $e_{i}^{T}p$
|
||||
\end_inset
|
||||
|
||||
is smallest.
|
||||
However, that leads to discontinuous boundaries.
|
||||
Since
|
||||
\begin_inset Formula $0\leq\left|e_{i}^{T}p\right|\leq1$
|
||||
\end_inset
|
||||
|
||||
for all
|
||||
\begin_inset Formula $p\in S^{2}$
|
||||
\end_inset
|
||||
|
||||
, a better idea might be to use a mixture, e.g.,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
a=\frac{1}{2(x^{2}+y^{2}+z^{2})}\left[\begin{array}{c}
|
||||
y^{2}+z^{2}\\
|
||||
x^{2}+z^{2}\\
|
||||
x^{2}+y^{2}
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Now, if
|
||||
\begin_inset Formula $\xihat=B\xi$
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $\xi\in R^{2}$
|
||||
\end_inset
|
||||
|
||||
the 2D coordinate in the tangent plane basis
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
, we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\alpha q=p+\xihat=p+B\xi
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
If we multiply both sides with
|
||||
\begin_inset Formula $B^{T}$
|
||||
\end_inset
|
||||
|
||||
(project on the basis
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
) we obtain
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\alpha B^{T}q=B^{T}p+B^{T}B\xi
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
and because
|
||||
\begin_inset Formula $B^{T}p=0$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $B^{T}B=I$
|
||||
\end_inset
|
||||
|
||||
we trivially obtain
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
as the scaled projection
|
||||
\begin_inset Formula $B^{T}q$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\xi=\alpha B^{T}q=\frac{B^{T}q}{p^{T}q}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset bibtex
|
||||
LatexCommand bibtex
|
||||
bibfiles "../../../papers/refs"
|
||||
options "plain"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
Loading…
Reference in New Issue