From bad1c38fe68ea427f421d4eafad6d18de540af52 Mon Sep 17 00:00:00 2001 From: Frank Dellaert Date: Sun, 15 Dec 2013 21:29:20 +0000 Subject: [PATCH] Revived document about manifold geometry of the sphere, deleted by Can a while ago :-( --- doc/sphere.lyx | 422 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 422 insertions(+) create mode 100644 doc/sphere.lyx diff --git a/doc/sphere.lyx b/doc/sphere.lyx new file mode 100644 index 000000000..35d6a47fb --- /dev/null +++ b/doc/sphere.lyx @@ -0,0 +1,422 @@ +#LyX 2.0 created this file. For more info see http://www.lyx.org/ +\lyxformat 413 +\begin_document +\begin_header +\textclass article +\use_default_options true +\maintain_unincluded_children false +\language english +\language_package default +\inputencoding auto +\fontencoding global +\font_roman default +\font_sans default +\font_typewriter default +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 +\font_tt_scale 100 + +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 11 +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_amsmath 1 +\use_esint 1 +\use_mhchem 1 +\use_mathdots 1 +\cite_engine basic +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\use_refstyle 1 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 3cm +\topmargin 3cm +\rightmargin 3cm +\bottommargin 3cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\quotes_language english +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Retraction on a Sphere +\end_layout + +\begin_layout Author +Frank, Can, and Manohar +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\xihat}{\hat{\xi}} +{\hat{\xi}} +\end_inset + + +\end_layout + +\begin_layout Subsubsection* +Retraction +\end_layout + +\begin_layout Standard +Suppose we have a point +\begin_inset Formula $p\in S^{2}$ +\end_inset + + and a 3-vector +\begin_inset Formula $\xihat$ +\end_inset + +, Absil +\begin_inset CommandInset citation +LatexCommand cite +key "Absil07book" + +\end_inset + + tells us we can simply add +\begin_inset Formula $\xihat$ +\end_inset + + to +\begin_inset Formula $p$ +\end_inset + + and renormalize to get a new point +\begin_inset Formula $q$ +\end_inset + + on the sphere. + This is what he calls a +\series bold +retraction +\family roman +\series medium +\shape up +\size normal +\emph off +\bar no +\strikeout off +\uuline off +\uwave off +\noun off +\color none + +\begin_inset Formula $R_{p}(\xihat)$ +\end_inset + +, +\family default +\series default +\shape default +\size default +\emph default +\bar default +\strikeout default +\uuline default +\uwave default +\noun default +\color inherit + +\begin_inset Formula +\[ +q=R_{p}(\xihat)=\frac{p+\xihat}{\left|p+\xihat\right|}=\frac{p+\xihat}{\alpha} +\] + +\end_inset + +with +\begin_inset Formula $\alpha$ +\end_inset + + the norm of +\begin_inset Formula $p+\xihat$ +\end_inset + +. + The only restriction on +\begin_inset Formula $\xihat$ +\end_inset + + is that it is in the tangent space +\begin_inset Formula $T_{p}S^{2}$ +\end_inset + + at +\begin_inset Formula $p$ +\end_inset + +, i.e., +\begin_inset Formula $p^{T}\xihat=0$ +\end_inset + +. + Multiplying with +\begin_inset Formula $p^{T}$ +\end_inset + + on both sides we have +\begin_inset Formula +\[ +\alpha p^{T}q=p^{T}p+p^{T}\xihat +\] + +\end_inset + +and (since +\begin_inset Formula $p^{T}p=1$ +\end_inset + + and +\begin_inset Formula $p^{T}\xihat=0$ +\end_inset + +) we have +\begin_inset Formula $\alpha=1/(p^{T}q)$ +\end_inset + +. +\end_layout + +\begin_layout Subsubsection* +Inverse +\end_layout + +\begin_layout Standard +Suppose we are given points +\begin_inset Formula $p$ +\end_inset + + and +\begin_inset Formula $q$ +\end_inset + + on the sphere, what is the tangent vector +\begin_inset Formula $\xihat$ +\end_inset + + that takes +\begin_inset Formula $p$ +\end_inset + + to +\begin_inset Formula $q$ +\end_inset + +? We can find a basis +\begin_inset Formula $B$ +\end_inset + + for the tangent space, with +\begin_inset Formula $B=\left[b_{1}|b_{2}\right]$ +\end_inset + + a +\begin_inset Formula $3\times2$ +\end_inset + + matrix, by either +\end_layout + +\begin_layout Enumerate +Decompose +\begin_inset Formula $p=QR$ +\end_inset + +, with +\begin_inset Formula $Q$ +\end_inset + + orthonormal and +\begin_inset Formula $R$ +\end_inset + + of the form +\begin_inset Formula $[1\,0\,0]^{T}$ +\end_inset + +, and hence +\begin_inset Formula $p=Q_{1}$ +\end_inset + +. + The basis +\begin_inset Formula $B=\left[Q_{2}|Q_{3}\right]$ +\end_inset + +, i.e., the last two columns of +\begin_inset Formula $Q$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Form +\begin_inset Formula $b_{1}=p\times a$ +\end_inset + +, with +\begin_inset Formula $a$ +\end_inset + + (consistently) chosen to be non-parallel to +\begin_inset Formula $p$ +\end_inset + +, and +\begin_inset Formula $b_{2}=p\times b_{1}$ +\end_inset + +. + +\begin_inset Note Note +status collapsed + +\begin_layout Plain Layout +To choose +\begin_inset Formula $a$ +\end_inset + +, one way is to divide the sphere into regions, e.g., pick the axis +\begin_inset Formula $e_{i}$ +\end_inset + + such that +\begin_inset Formula $e_{i}^{T}p$ +\end_inset + + is smallest. + However, that leads to discontinuous boundaries. + Since +\begin_inset Formula $0\leq\left|e_{i}^{T}p\right|\leq1$ +\end_inset + + for all +\begin_inset Formula $p\in S^{2}$ +\end_inset + +, a better idea might be to use a mixture, e.g., +\begin_inset Formula +\[ +a=\frac{1}{2(x^{2}+y^{2}+z^{2})}\left[\begin{array}{c} +y^{2}+z^{2}\\ +x^{2}+z^{2}\\ +x^{2}+y^{2} +\end{array}\right] +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Now, if +\begin_inset Formula $\xihat=B\xi$ +\end_inset + + with +\begin_inset Formula $\xi\in R^{2}$ +\end_inset + + the 2D coordinate in the tangent plane basis +\begin_inset Formula $B$ +\end_inset + +, we have +\begin_inset Formula +\[ +\alpha q=p+\xihat=p+B\xi +\] + +\end_inset + +If we multiply both sides with +\begin_inset Formula $B^{T}$ +\end_inset + + (project on the basis +\begin_inset Formula $B$ +\end_inset + +) we obtain +\begin_inset Formula +\[ +\alpha B^{T}q=B^{T}p+B^{T}B\xi +\] + +\end_inset + +and because +\begin_inset Formula $B^{T}p=0$ +\end_inset + + and +\begin_inset Formula $B^{T}B=I$ +\end_inset + + we trivially obtain +\begin_inset Formula $\xi$ +\end_inset + + as the scaled projection +\begin_inset Formula $B^{T}q$ +\end_inset + +: +\begin_inset Formula +\[ +\xi=\alpha B^{T}q=\frac{B^{T}q}{p^{T}q} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset bibtex +LatexCommand bibtex +bibfiles "../../../papers/refs" +options "plain" + +\end_inset + + +\end_layout + +\end_body +\end_document