localization example script which gives exact same result as C++ version

release/4.3a0
Varun Agrawal 2024-08-25 04:36:00 -04:00
parent 95da15a61a
commit b94ab31e1f
1 changed files with 68 additions and 0 deletions

View File

@ -0,0 +1,68 @@
"""
A simple 2D pose slam example with "GPS" measurements
- The robot moves forward 2 meter each iteration
- The robot initially faces along the X axis (horizontal, to the right in 2D)
- We have full odometry between pose
- We have "GPS-like" measurements implemented with a custom factor
"""
import numpy as np
import gtsam
from gtsam import BetweenFactorPose2, Pose2, noiseModel
from gtsam_unstable import PartialPriorFactorPose2
def main():
# 1. Create a factor graph container and add factors to it.
graph = gtsam.NonlinearFactorGraph()
# 2a. Add odometry factors
# For simplicity, we will use the same noise model for each odometry factor
odometryNoise = noiseModel.Diagonal.Sigmas(np.asarray([0.2, 0.2, 0.1]))
# Create odometry (Between) factors between consecutive poses
graph.push_back(
BetweenFactorPose2(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise))
graph.push_back(
BetweenFactorPose2(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise))
# 2b. Add "GPS-like" measurements
# We will use PartialPrior factor for this.
unaryNoise = noiseModel.Diagonal.Sigmas(np.array([0.1,
0.1])) # 10cm std on x,y
graph.push_back(
PartialPriorFactorPose2(1, [0, 1], np.asarray([0.0, 0.0]), unaryNoise))
graph.push_back(
PartialPriorFactorPose2(2, [0, 1], np.asarray([2.0, 0.0]), unaryNoise))
graph.push_back(
PartialPriorFactorPose2(3, [0, 1], np.asarray([4.0, 0.0]), unaryNoise))
graph.print("\nFactor Graph:\n")
# 3. Create the data structure to hold the initialEstimate estimate to the solution
# For illustrative purposes, these have been deliberately set to incorrect values
initialEstimate = gtsam.Values()
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2))
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2))
initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1))
initialEstimate.print("\nInitial Estimate:\n")
# 4. Optimize using Levenberg-Marquardt optimization. The optimizer
# accepts an optional set of configuration parameters, controlling
# things like convergence criteria, the type of linear system solver
# to use, and the amount of information displayed during optimization.
# Here we will use the default set of parameters. See the
# documentation for the full set of parameters.
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
result = optimizer.optimize()
result.print("Final Result:\n")
# 5. Calculate and print marginal covariances for all variables
marginals = gtsam.Marginals(graph, result)
print("x1 covariance:\n", marginals.marginalCovariance(1))
print("x2 covariance:\n", marginals.marginalCovariance(2))
print("x3 covariance:\n", marginals.marginalCovariance(3))
if __name__ == "__main__":
main()