Renamed unit tests already converted to 'Obsolete'

release/4.3a0
Richard Roberts 2013-07-17 03:13:00 +00:00
parent 323d618c3e
commit b857dab6a9
21 changed files with 79 additions and 79 deletions

View File

@ -37,18 +37,18 @@ static SharedDiagonal
constraintModel = noiseModel::Constrained::All(2);
static GaussianFactorGraph createSimpleGaussianFactorGraph() {
GaussianFactorGraph fg;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
fg.add(2, 10*eye(2), -1.0*ones(2), unit2);
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
fg.add(2, -10*eye(2), 0, 10*eye(2), Vector_(2, 2.0, -1.0), unit2);
// measurement between x1 and l1: l1-x1=[0.0;0.2]
fg.add(2, -5*eye(2), 1, 5*eye(2), Vector_(2, 0.0, 1.0), unit2);
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
fg.add(0, -5*eye(2), 1, 5*eye(2), Vector_(2, -1.0, 1.5), unit2);
return fg;
}
GaussianFactorGraph fg;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
fg.add(2, 10*eye(2), -1.0*ones(2), unit2);
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
fg.add(2, -10*eye(2), 0, 10*eye(2), Vector_(2, 2.0, -1.0), unit2);
// measurement between x1 and l1: l1-x1=[0.0;0.2]
fg.add(2, -5*eye(2), 1, 5*eye(2), Vector_(2, 0.0, 1.0), unit2);
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
fg.add(0, -5*eye(2), 1, 5*eye(2), Vector_(2, -1.0, 1.5), unit2);
return fg;
}
/* ************************************************************************* */
@ -464,73 +464,73 @@ TEST(GaussianFactorGraph, matrices) {
EXPECT(assert_equal(expectedL, actualL));
EXPECT(assert_equal(expectedeta, actualeta));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, gradient )
{
GaussianFactorGraph fg = createSimpleGaussianFactorGraph();
// Construct expected gradient
VectorValues expected;
// 2*f(x) = 100*(x1+c[X(1)])^2 + 100*(x2-x1-[0.2;-0.1])^2 + 25*(l1-x1-[0.0;0.2])^2 + 25*(l1-x2-[-0.2;0.3])^2
// worked out: df/dx1 = 100*[0.1;0.1] + 100*[0.2;-0.1]) + 25*[0.0;0.2] = [10+20;10-10+5] = [30;5]
expected.insert(1,Vector_(2, 5.0,-12.5));
expected.insert(2,Vector_(2, 30.0, 5.0));
expected.insert(0,Vector_(2,-25.0, 17.5));
// Check the gradient at delta=0
VectorValues zero = VectorValues::Zero(expected);
VectorValues actual = gradient(fg, zero);
EXPECT(assert_equal(expected,actual));
// Check the gradient at the solution (should be zero)
VectorValues solution = *GaussianSequentialSolver(fg).optimize();
VectorValues actual2 = gradient(fg, solution);
EXPECT(assert_equal(VectorValues::Zero(solution), actual2));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, transposeMultiplication )
{
GaussianFactorGraph A = createSimpleGaussianFactorGraph();
VectorValues e;
e.insert(0, Vector_(2, 0.0, 0.0));
e.insert(1, Vector_(2,15.0, 0.0));
e.insert(2, Vector_(2, 0.0,-5.0));
e.insert(3, Vector_(2,-7.5,-5.0));
VectorValues expected;
expected.insert(1, Vector_(2, -37.5,-50.0));
expected.insert(2, Vector_(2,-150.0, 25.0));
expected.insert(0, Vector_(2, 187.5, 25.0));
VectorValues actual = VectorValues::SameStructure(expected);
transposeMultiply(A, e, actual);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminate_empty )
{
// eliminate an empty factor
GaussianFactorGraph gfg;
gfg.push_back(boost::make_shared<JacobianFactor>());
GaussianConditional::shared_ptr actualCG;
GaussianFactorGraph remainingGFG;
boost::tie(actualCG, remainingGFG) = gfg.eliminateOne(0);
// expected Conditional Gaussian is just a parent-less node with P(x)=1
GaussianConditional expectedCG(0, Vector(), Matrix(), Vector());
// expected remaining graph should be the same as the original, still empty :-)
GaussianFactorGraph expectedLF = gfg;
// check if the result matches
EXPECT(actualCG->equals(expectedCG));
EXPECT(remainingGFG.equals(expectedLF));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, gradient )
{
GaussianFactorGraph fg = createSimpleGaussianFactorGraph();
// Construct expected gradient
VectorValues expected;
// 2*f(x) = 100*(x1+c[X(1)])^2 + 100*(x2-x1-[0.2;-0.1])^2 + 25*(l1-x1-[0.0;0.2])^2 + 25*(l1-x2-[-0.2;0.3])^2
// worked out: df/dx1 = 100*[0.1;0.1] + 100*[0.2;-0.1]) + 25*[0.0;0.2] = [10+20;10-10+5] = [30;5]
expected.insert(1,Vector_(2, 5.0,-12.5));
expected.insert(2,Vector_(2, 30.0, 5.0));
expected.insert(0,Vector_(2,-25.0, 17.5));
// Check the gradient at delta=0
VectorValues zero = VectorValues::Zero(expected);
VectorValues actual = gradient(fg, zero);
EXPECT(assert_equal(expected,actual));
// Check the gradient at the solution (should be zero)
VectorValues solution = *GaussianSequentialSolver(fg).optimize();
VectorValues actual2 = gradient(fg, solution);
EXPECT(assert_equal(VectorValues::Zero(solution), actual2));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, transposeMultiplication )
{
GaussianFactorGraph A = createSimpleGaussianFactorGraph();
VectorValues e;
e.insert(0, Vector_(2, 0.0, 0.0));
e.insert(1, Vector_(2,15.0, 0.0));
e.insert(2, Vector_(2, 0.0,-5.0));
e.insert(3, Vector_(2,-7.5,-5.0));
VectorValues expected;
expected.insert(1, Vector_(2, -37.5,-50.0));
expected.insert(2, Vector_(2,-150.0, 25.0));
expected.insert(0, Vector_(2, 187.5, 25.0));
VectorValues actual = VectorValues::SameStructure(expected);
transposeMultiply(A, e, actual);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminate_empty )
{
// eliminate an empty factor
GaussianFactorGraph gfg;
gfg.push_back(boost::make_shared<JacobianFactor>());
GaussianConditional::shared_ptr actualCG;
GaussianFactorGraph remainingGFG;
boost::tie(actualCG, remainingGFG) = gfg.eliminateOne(0);
// expected Conditional Gaussian is just a parent-less node with P(x)=1
GaussianConditional expectedCG(0, Vector(), Matrix(), Vector());
// expected remaining graph should be the same as the original, still empty :-)
GaussianFactorGraph expectedLF = gfg;
// check if the result matches
EXPECT(actualCG->equals(expectedCG));
EXPECT(remainingGFG.equals(expectedLF));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}