gtsam/tests/testGaussianBayesNetObsolet...

190 lines
5.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianBayesNet.cpp
* @brief Unit tests for GaussianBayesNet
* @author Frank Dellaert
*/
// STL/C++
#include <iostream>
#include <sstream>
#include <CppUnitLite/TestHarness.h>
#include <boost/tuple/tuple.hpp>
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <gtsam/base/Testable.h>
#include <gtsam/inference/BayesNet.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianSequentialSolver.h>
#include <tests/smallExample.h>
using namespace std;
using namespace gtsam;
using namespace example;
static const Index _x_=0, _y_=1, _z_=2;
/* ************************************************************************* */
TEST( GaussianBayesNet, constructor )
{
// small Bayes Net x <- y
// x y d
// 1 1 9
// 1 5
Matrix R11 = Matrix_(1,1,1.0), S12 = Matrix_(1,1,1.0);
Matrix R22 = Matrix_(1,1,1.0);
Vector d1(1), d2(1);
d1(0) = 9; d2(0) = 5;
Vector sigmas(1);
sigmas(0) = 1.;
// define nodes and specify in reverse topological sort (i.e. parents last)
GaussianConditional x(_x_,d1,R11,_y_,S12, sigmas), y(_y_,d2,R22, sigmas);
// check small example which uses constructor
GaussianBayesNet cbn = createSmallGaussianBayesNet();
EXPECT( x.equals(*cbn[_x_]) );
EXPECT( y.equals(*cbn[_y_]) );
}
/* ************************************************************************* */
TEST( GaussianBayesNet, matrix )
{
// Create a test graph
GaussianBayesNet cbn = createSmallGaussianBayesNet();
Matrix R; Vector d;
boost::tie(R,d) = matrix(cbn); // find matrix and RHS
Matrix R1 = Matrix_(2,2,
1.0, 1.0,
0.0, 1.0
);
Vector d1 = Vector_(2, 9.0, 5.0);
EXPECT(assert_equal(R,R1));
EXPECT(assert_equal(d,d1));
}
/* ************************************************************************* */
TEST( GaussianBayesNet, optimize )
{
GaussianBayesNet cbn = createSmallGaussianBayesNet();
VectorValues actual = optimize(cbn);
VectorValues expected(vector<size_t>(2,1));
expected[_x_] = Vector_(1,4.);
expected[_y_] = Vector_(1,5.);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( GaussianBayesNet, optimize2 )
{
// Create empty graph
GaussianFactorGraph fg;
SharedDiagonal noise = noiseModel::Unit::Create(1);
fg.add(_y_, eye(1), 2*ones(1), noise);
fg.add(_x_, eye(1),_y_, -eye(1), -ones(1), noise);
fg.add(_y_, eye(1),_z_, -eye(1), -ones(1), noise);
fg.add(_x_, -eye(1), _z_, eye(1), 2*ones(1), noise);
VectorValues actual = *GaussianSequentialSolver(fg).optimize();
VectorValues expected(vector<size_t>(3,1));
expected[_x_] = Vector_(1,1.);
expected[_y_] = Vector_(1,2.);
expected[_z_] = Vector_(1,3.);
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( GaussianBayesNet, optimize3 )
{
// y=R*x, x=inv(R)*y
// 9 = 1 1 4
// 5 1 5
// NOTE: we are supplying a new RHS here
GaussianBayesNet cbn = createSmallGaussianBayesNet();
VectorValues expected(vector<size_t>(2,1)), x(vector<size_t>(2,1));
expected[_x_] = Vector_(1, 4.);
expected[_y_] = Vector_(1, 5.);
// test functional version
VectorValues actual = optimize(cbn);
EXPECT(assert_equal(expected,actual));
// test imperative version
optimizeInPlace(cbn,x);
EXPECT(assert_equal(expected,x));
}
/* ************************************************************************* */
TEST( GaussianBayesNet, backSubstituteTranspose )
{
// x=R'*y, y=inv(R')*x
// 2 = 1 2
// 5 1 1 3
GaussianBayesNet cbn = createSmallGaussianBayesNet();
VectorValues y(vector<size_t>(2,1)), x(vector<size_t>(2,1));
x[_x_] = Vector_(1,2.);
x[_y_] = Vector_(1,5.);
y[_x_] = Vector_(1,2.);
y[_y_] = Vector_(1,3.);
// test functional version
VectorValues actual = backSubstituteTranspose(cbn,x);
EXPECT(assert_equal(y,actual));
}
/* ************************************************************************* */
// Tests computing Determinant
TEST( GaussianBayesNet, DeterminantTest )
{
GaussianBayesNet cbn;
cbn += boost::shared_ptr<GaussianConditional>(new GaussianConditional(
0, Vector_( 2, 3.0, 4.0 ), Matrix_(2, 2, 1.0, 3.0, 0.0, 4.0 ),
1, Matrix_(2, 2, 2.0, 1.0, 2.0, 3.0),
ones(2)));
cbn += boost::shared_ptr<GaussianConditional>(new GaussianConditional(
1, Vector_( 2, 5.0, 6.0 ), Matrix_(2, 2, 1.0, 1.0, 0.0, 3.0 ),
2, Matrix_(2, 2, 1.0, 0.0, 5.0, 2.0),
ones(2)));
cbn += boost::shared_ptr<GaussianConditional>(new GaussianConditional(
3, Vector_( 2, 7.0, 8.0 ), Matrix_(2, 2, 1.0, 1.0, 0.0, 5.0 ),
ones(2)));
double expectedDeterminant = 60;
double actualDeterminant = determinant(cbn);
EXPECT_DOUBLES_EQUAL( expectedDeterminant, actualDeterminant, 1e-9);
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */