typos
parent
cf28e3ab04
commit
b726e8e5e2
|
@ -419,9 +419,9 @@ The solution to this trivial differential equation is, with
|
||||||
\begin_inset Formula $x$
|
\begin_inset Formula $x$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
-position f the robot,
|
-position of the robot,
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
x=x_{0}+v_{x}t\]
|
x_{t}=x_{0}+v_{x}t\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -431,13 +431,13 @@ A similar story holds for translation in the
|
||||||
|
|
||||||
direction, and in fact for translations in general:
|
direction, and in fact for translations in general:
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
(x,\, y,\,\theta)=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0})\]
|
(x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0})\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
Similarly for rotation we have
|
Similarly for rotation we have
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
(x,\, y,\,\theta)=(x_{0},\, y_{0},\,\theta_{0}+\omega t)\]
|
(x_{t},\, y_{t},\,\theta_{t})=(x_{0},\, y_{0},\,\theta_{0}+\omega t)\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -488,7 +488,7 @@ Robot moving along a circular trajectory.
|
||||||
However, if we combine translation and rotation, the story breaks down!
|
However, if we combine translation and rotation, the story breaks down!
|
||||||
We cannot write
|
We cannot write
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
(x,\, y,\,\theta)=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0}+\omega t)\]
|
(x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0}+\omega t)\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -499,7 +499,7 @@ The reason is that, if we move the robot a tiny bit according to the velocity
|
||||||
|
|
||||||
, we have (to first order)
|
, we have (to first order)
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
(x_{t+\delta},\, y_{t+\delta},\,\theta_{t+\delta})=(x_{0}+v_{x}\delta,\, y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)\]
|
(x_{\delta},\, y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\, y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -530,6 +530,43 @@ If rotation and translation commuted, we could do all rotations before leaving
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
\begin_inset Float figure
|
||||||
|
placement h
|
||||||
|
wide false
|
||||||
|
sideways false
|
||||||
|
status collapsed
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
\align center
|
||||||
|
\begin_inset Graphics
|
||||||
|
filename /Users/dellaert/borg/gtsam/doc/images/n-steps.pdf
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Caption
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "fig:n-step-program"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Approximating a circular trajectory with
|
||||||
|
\begin_inset Formula $n$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
steps.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
To make progress, we have to be more precise about how the robot behaves.
|
To make progress, we have to be more precise about how the robot behaves.
|
||||||
Specifically, let us define composition of two poses
|
Specifically, let us define composition of two poses
|
||||||
\begin_inset Formula $T_{1}$
|
\begin_inset Formula $T_{1}$
|
||||||
|
@ -574,52 +611,7 @@ R=\left[\begin{array}{cc}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
Now a
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
\begin_inset Float figure
|
|
||||||
placement h
|
|
||||||
wide false
|
|
||||||
sideways false
|
|
||||||
status open
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
\align center
|
|
||||||
\begin_inset Graphics
|
|
||||||
filename images/n-steps.pdf
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Caption
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
\begin_inset CommandInset label
|
|
||||||
LatexCommand label
|
|
||||||
name "fig:n-step-program"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
Approximating a circular trajectory with
|
|
||||||
\begin_inset Formula $n$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
steps.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
Now, a
|
|
||||||
\begin_inset Quotes eld
|
\begin_inset Quotes eld
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -638,7 +630,7 @@ T(\delta)=\left[\begin{array}{ccc}
|
||||||
0 & 0 & 1\end{array}\right]=I+\delta\left[\begin{array}{ccc}
|
0 & 0 & 1\end{array}\right]=I+\delta\left[\begin{array}{ccc}
|
||||||
0 & -\omega & v_{x}\\
|
0 & -\omega & v_{x}\\
|
||||||
\omega & 0 & v_{y}\\
|
\omega & 0 & v_{y}\\
|
||||||
0 & 0 & 1\end{array}\right]\]
|
0 & 0 & 0\end{array}\right]\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -655,7 +647,7 @@ Let us define the
|
||||||
\xihat\define\left[\begin{array}{ccc}
|
\xihat\define\left[\begin{array}{ccc}
|
||||||
0 & -\omega & v_{x}\\
|
0 & -\omega & v_{x}\\
|
||||||
\omega & 0 & v_{y}\\
|
\omega & 0 & v_{y}\\
|
||||||
0 & 0 & 1\end{array}\right]\]
|
0 & 0 & 0\end{array}\right]\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -715,13 +707,17 @@ The series can be similarly defined for square matrices,and the final result
|
||||||
\begin_inset Formula $ $
|
\begin_inset Formula $ $
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
as the matrix exponential of
|
as the
|
||||||
|
\emph on
|
||||||
|
matrix exponential
|
||||||
|
\emph default
|
||||||
|
of
|
||||||
\begin_inset Formula $\xihat$
|
\begin_inset Formula $\xihat$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
:
|
:
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{\left(t\xihat\right)^{k}}{k!}\]
|
T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}\xihat^{k}\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -746,8 +742,8 @@ special Euclidean group
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
It is called a Lie group because it is both a manifold, and its group operation
|
It is called a Lie group because it is both a manifold and a group, and
|
||||||
is smooth when operating on this manifold.
|
its group operation is smooth when operating on this manifold.
|
||||||
The space of 2D twists, together with a special binary operation to be
|
The space of 2D twists, together with a special binary operation to be
|
||||||
defined below, is called the Lie algebra
|
defined below, is called the Lie algebra
|
||||||
\begin_inset Formula $\setwo$
|
\begin_inset Formula $\setwo$
|
||||||
|
@ -813,7 +809,7 @@ logarithm
|
||||||
\begin_inset Quotes erd
|
\begin_inset Quotes erd
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
:
|
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
\log:G\rightarrow\gg\]
|
\log:G\rightarrow\gg\]
|
||||||
|
|
||||||
|
@ -855,8 +851,11 @@ The Lie Algebra
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
The relationship with the group operation is as follows: for commutative
|
\end_layout
|
||||||
Lie groups vector addition
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The relationship of the Lie bracket to the group operation is as follows:
|
||||||
|
for commutative Lie groups vector addition
|
||||||
\begin_inset Formula $X+Y$
|
\begin_inset Formula $X+Y$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -1460,7 +1459,7 @@ T=\left[\begin{array}{cc}
|
||||||
0 & t\\
|
0 & t\\
|
||||||
0 & 1\end{array}\right]\left[\begin{array}{cc}
|
0 & 1\end{array}\right]\left[\begin{array}{cc}
|
||||||
R & 0\\
|
R & 0\\
|
||||||
0 & k\end{array}\right]\]
|
0 & 1\end{array}\right]\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -1770,18 +1769,11 @@ where
|
||||||
|
|
||||||
.
|
.
|
||||||
Hence, a slightly more efficient variant is
|
Hence, a slightly more efficient variant is
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
e^{\what}=\cos\theta I+\what sin\theta+\omega\omega^{T}(1\text{−}cos\theta)\]
|
e^{\what}=\cos\theta I+\what sin\theta+\omega\omega^{T}(1\text{−}cos\theta)\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
Since
|
Since
|
||||||
\begin_inset Formula $\SOthree$
|
\begin_inset Formula $\SOthree$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -1935,7 +1927,7 @@ R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}\end{equation}
|
||||||
Hence, given property
|
Hence, given property
|
||||||
\begin_inset CommandInset ref
|
\begin_inset CommandInset ref
|
||||||
LatexCommand eqref
|
LatexCommand eqref
|
||||||
reference "proof1"
|
reference "eq:property1"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -2521,7 +2513,8 @@ From this it can be gleaned that the groups
|
||||||
\bar no
|
\bar no
|
||||||
\noun off
|
\noun off
|
||||||
\color none
|
\color none
|
||||||
By choosing the generators carefully we maintain this subgroup hierarchy.
|
By choosing the generators carefully we maintain this hierarchy among the
|
||||||
|
associated Lie algebras.
|
||||||
In particular,
|
In particular,
|
||||||
\begin_inset Formula $\setwo$
|
\begin_inset Formula $\setwo$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -2612,10 +2605,6 @@ a_{4}+a_{3} & -a_{5}-a_{6} & a_{2}\\
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
Note that
|
Note that
|
||||||
\begin_inset Formula $G_{5}$
|
\begin_inset Formula $G_{5}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -2634,10 +2623,10 @@ Note that
|
||||||
|
|
||||||
but without changing the determinant:
|
but without changing the determinant:
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
e^{xG_{5}}=\exp\left(\left[\begin{array}{ccc}
|
e^{xG_{5}}=\exp\left[\begin{array}{ccc}
|
||||||
x & 0 & 0\\
|
x & 0 & 0\\
|
||||||
0 & -x & 0\\
|
0 & -x & 0\\
|
||||||
0 & 0 & 0\end{array}\right]\right)=\left[\begin{array}{ccc}
|
0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}
|
||||||
e^{x} & 0 & 0\\
|
e^{x} & 0 & 0\\
|
||||||
0 & 1/e^{x} & 0\\
|
0 & 1/e^{x} & 0\\
|
||||||
0 & 0 & 1\end{array}\right]\]
|
0 & 0 & 1\end{array}\right]\]
|
||||||
|
@ -2646,10 +2635,10 @@ e^{x} & 0 & 0\\
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
e^{xG_{6}}=\exp\left(\left[\begin{array}{ccc}
|
e^{xG_{6}}=\exp\left[\begin{array}{ccc}
|
||||||
0 & 0 & 0\\
|
0 & 0 & 0\\
|
||||||
0 & -x & 0\\
|
0 & -x & 0\\
|
||||||
0 & 0 & x\end{array}\right]\right)=\left[\begin{array}{ccc}
|
0 & 0 & x\end{array}\right]=\left[\begin{array}{ccc}
|
||||||
1 & 0 & 0\\
|
1 & 0 & 0\\
|
||||||
0 & 1/e^{x} & 0\\
|
0 & 1/e^{x} & 0\\
|
||||||
0 & 0 & e^{x}\end{array}\right]\]
|
0 & 0 & e^{x}\end{array}\right]\]
|
||||||
|
@ -2696,10 +2685,10 @@ and hence
|
||||||
\color inherit
|
\color inherit
|
||||||
|
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
e^{xG_{5}}=\exp\left(\left[\begin{array}{ccc}
|
e^{xG_{5}}=\exp\left[\begin{array}{ccc}
|
||||||
x & 0 & 0\\
|
x & 0 & 0\\
|
||||||
0 & 0 & 0\\
|
0 & 0 & 0\\
|
||||||
0 & 0 & -x\end{array}\right]\right)=\left[\begin{array}{ccc}
|
0 & 0 & -x\end{array}\right]=\left[\begin{array}{ccc}
|
||||||
e^{x} & 0 & 0\\
|
e^{x} & 0 & 0\\
|
||||||
0 & 1 & 0\\
|
0 & 1 & 0\\
|
||||||
0 & 0 & 1/e^{x}\end{array}\right]\]
|
0 & 0 & 1/e^{x}\end{array}\right]\]
|
||||||
|
@ -2708,10 +2697,10 @@ e^{x} & 0 & 0\\
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula \[
|
\begin_inset Formula \[
|
||||||
e^{xG_{6}}=\exp\left(\left[\begin{array}{ccc}
|
e^{xG_{6}}=\exp\left[\begin{array}{ccc}
|
||||||
0 & 0 & 0\\
|
0 & 0 & 0\\
|
||||||
0 & x & 0\\
|
0 & x & 0\\
|
||||||
0 & 0 & -x\end{array}\right]\right)=\left[\begin{array}{ccc}
|
0 & 0 & -x\end{array}\right]=\left[\begin{array}{ccc}
|
||||||
1 & 0 & 0\\
|
1 & 0 & 0\\
|
||||||
0 & e^{x} & 0\\
|
0 & e^{x} & 0\\
|
||||||
0 & 0 & 1/e^{x}\end{array}\right]\]
|
0 & 0 & 1/e^{x}\end{array}\right]\]
|
||||||
|
|
Loading…
Reference in New Issue