typos
parent
cf28e3ab04
commit
b726e8e5e2
|
@ -419,9 +419,9 @@ The solution to this trivial differential equation is, with
|
|||
\begin_inset Formula $x$
|
||||
\end_inset
|
||||
|
||||
-position f the robot,
|
||||
-position of the robot,
|
||||
\begin_inset Formula \[
|
||||
x=x_{0}+v_{x}t\]
|
||||
x_{t}=x_{0}+v_{x}t\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -431,13 +431,13 @@ A similar story holds for translation in the
|
|||
|
||||
direction, and in fact for translations in general:
|
||||
\begin_inset Formula \[
|
||||
(x,\, y,\,\theta)=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0})\]
|
||||
(x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0})\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Similarly for rotation we have
|
||||
\begin_inset Formula \[
|
||||
(x,\, y,\,\theta)=(x_{0},\, y_{0},\,\theta_{0}+\omega t)\]
|
||||
(x_{t},\, y_{t},\,\theta_{t})=(x_{0},\, y_{0},\,\theta_{0}+\omega t)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -488,7 +488,7 @@ Robot moving along a circular trajectory.
|
|||
However, if we combine translation and rotation, the story breaks down!
|
||||
We cannot write
|
||||
\begin_inset Formula \[
|
||||
(x,\, y,\,\theta)=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0}+\omega t)\]
|
||||
(x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0}+\omega t)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -499,7 +499,7 @@ The reason is that, if we move the robot a tiny bit according to the velocity
|
|||
|
||||
, we have (to first order)
|
||||
\begin_inset Formula \[
|
||||
(x_{t+\delta},\, y_{t+\delta},\,\theta_{t+\delta})=(x_{0}+v_{x}\delta,\, y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)\]
|
||||
(x_{\delta},\, y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\, y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -530,6 +530,43 @@ If rotation and translation commuted, we could do all rotations before leaving
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement h
|
||||
wide false
|
||||
sideways false
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename /Users/dellaert/borg/gtsam/doc/images/n-steps.pdf
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:n-step-program"
|
||||
|
||||
\end_inset
|
||||
|
||||
Approximating a circular trajectory with
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
steps.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
To make progress, we have to be more precise about how the robot behaves.
|
||||
Specifically, let us define composition of two poses
|
||||
\begin_inset Formula $T_{1}$
|
||||
|
@ -574,52 +611,7 @@ R=\left[\begin{array}{cc}
|
|||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement h
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename images/n-steps.pdf
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:n-step-program"
|
||||
|
||||
\end_inset
|
||||
|
||||
Approximating a circular trajectory with
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
steps.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Now, a
|
||||
Now a
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
|
@ -638,7 +630,7 @@ T(\delta)=\left[\begin{array}{ccc}
|
|||
0 & 0 & 1\end{array}\right]=I+\delta\left[\begin{array}{ccc}
|
||||
0 & -\omega & v_{x}\\
|
||||
\omega & 0 & v_{y}\\
|
||||
0 & 0 & 1\end{array}\right]\]
|
||||
0 & 0 & 0\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -655,7 +647,7 @@ Let us define the
|
|||
\xihat\define\left[\begin{array}{ccc}
|
||||
0 & -\omega & v_{x}\\
|
||||
\omega & 0 & v_{y}\\
|
||||
0 & 0 & 1\end{array}\right]\]
|
||||
0 & 0 & 0\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -715,13 +707,17 @@ The series can be similarly defined for square matrices,and the final result
|
|||
\begin_inset Formula $ $
|
||||
\end_inset
|
||||
|
||||
as the matrix exponential of
|
||||
as the
|
||||
\emph on
|
||||
matrix exponential
|
||||
\emph default
|
||||
of
|
||||
\begin_inset Formula $\xihat$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula \[
|
||||
T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{\left(t\xihat\right)^{k}}{k!}\]
|
||||
T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}\xihat^{k}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -746,8 +742,8 @@ special Euclidean group
|
|||
\end_inset
|
||||
|
||||
.
|
||||
It is called a Lie group because it is both a manifold, and its group operation
|
||||
is smooth when operating on this manifold.
|
||||
It is called a Lie group because it is both a manifold and a group, and
|
||||
its group operation is smooth when operating on this manifold.
|
||||
The space of 2D twists, together with a special binary operation to be
|
||||
defined below, is called the Lie algebra
|
||||
\begin_inset Formula $\setwo$
|
||||
|
@ -813,7 +809,7 @@ logarithm
|
|||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
:
|
||||
|
||||
\begin_inset Formula \[
|
||||
\log:G\rightarrow\gg\]
|
||||
|
||||
|
@ -855,8 +851,11 @@ The Lie Algebra
|
|||
\end_inset
|
||||
|
||||
.
|
||||
The relationship with the group operation is as follows: for commutative
|
||||
Lie groups vector addition
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The relationship of the Lie bracket to the group operation is as follows:
|
||||
for commutative Lie groups vector addition
|
||||
\begin_inset Formula $X+Y$
|
||||
\end_inset
|
||||
|
||||
|
@ -1460,7 +1459,7 @@ T=\left[\begin{array}{cc}
|
|||
0 & t\\
|
||||
0 & 1\end{array}\right]\left[\begin{array}{cc}
|
||||
R & 0\\
|
||||
0 & k\end{array}\right]\]
|
||||
0 & 1\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -1770,18 +1769,11 @@ where
|
|||
|
||||
.
|
||||
Hence, a slightly more efficient variant is
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula \[
|
||||
e^{\what}=\cos\theta I+\what sin\theta+\omega\omega^{T}(1\text{−}cos\theta)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Since
|
||||
\begin_inset Formula $\SOthree$
|
||||
\end_inset
|
||||
|
@ -1935,7 +1927,7 @@ R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}\end{equation}
|
|||
Hence, given property
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "proof1"
|
||||
reference "eq:property1"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -2521,7 +2513,8 @@ From this it can be gleaned that the groups
|
|||
\bar no
|
||||
\noun off
|
||||
\color none
|
||||
By choosing the generators carefully we maintain this subgroup hierarchy.
|
||||
By choosing the generators carefully we maintain this hierarchy among the
|
||||
associated Lie algebras.
|
||||
In particular,
|
||||
\begin_inset Formula $\setwo$
|
||||
\end_inset
|
||||
|
@ -2612,10 +2605,6 @@ a_{4}+a_{3} & -a_{5}-a_{6} & a_{2}\\
|
|||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Note that
|
||||
\begin_inset Formula $G_{5}$
|
||||
\end_inset
|
||||
|
@ -2634,10 +2623,10 @@ Note that
|
|||
|
||||
but without changing the determinant:
|
||||
\begin_inset Formula \[
|
||||
e^{xG_{5}}=\exp\left(\left[\begin{array}{ccc}
|
||||
e^{xG_{5}}=\exp\left[\begin{array}{ccc}
|
||||
x & 0 & 0\\
|
||||
0 & -x & 0\\
|
||||
0 & 0 & 0\end{array}\right]\right)=\left[\begin{array}{ccc}
|
||||
0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}
|
||||
e^{x} & 0 & 0\\
|
||||
0 & 1/e^{x} & 0\\
|
||||
0 & 0 & 1\end{array}\right]\]
|
||||
|
@ -2646,10 +2635,10 @@ e^{x} & 0 & 0\\
|
|||
|
||||
|
||||
\begin_inset Formula \[
|
||||
e^{xG_{6}}=\exp\left(\left[\begin{array}{ccc}
|
||||
e^{xG_{6}}=\exp\left[\begin{array}{ccc}
|
||||
0 & 0 & 0\\
|
||||
0 & -x & 0\\
|
||||
0 & 0 & x\end{array}\right]\right)=\left[\begin{array}{ccc}
|
||||
0 & 0 & x\end{array}\right]=\left[\begin{array}{ccc}
|
||||
1 & 0 & 0\\
|
||||
0 & 1/e^{x} & 0\\
|
||||
0 & 0 & e^{x}\end{array}\right]\]
|
||||
|
@ -2696,10 +2685,10 @@ and hence
|
|||
\color inherit
|
||||
|
||||
\begin_inset Formula \[
|
||||
e^{xG_{5}}=\exp\left(\left[\begin{array}{ccc}
|
||||
e^{xG_{5}}=\exp\left[\begin{array}{ccc}
|
||||
x & 0 & 0\\
|
||||
0 & 0 & 0\\
|
||||
0 & 0 & -x\end{array}\right]\right)=\left[\begin{array}{ccc}
|
||||
0 & 0 & -x\end{array}\right]=\left[\begin{array}{ccc}
|
||||
e^{x} & 0 & 0\\
|
||||
0 & 1 & 0\\
|
||||
0 & 0 & 1/e^{x}\end{array}\right]\]
|
||||
|
@ -2708,10 +2697,10 @@ e^{x} & 0 & 0\\
|
|||
|
||||
|
||||
\begin_inset Formula \[
|
||||
e^{xG_{6}}=\exp\left(\left[\begin{array}{ccc}
|
||||
e^{xG_{6}}=\exp\left[\begin{array}{ccc}
|
||||
0 & 0 & 0\\
|
||||
0 & x & 0\\
|
||||
0 & 0 & -x\end{array}\right]\right)=\left[\begin{array}{ccc}
|
||||
0 & 0 & -x\end{array}\right]=\left[\begin{array}{ccc}
|
||||
1 & 0 & 0\\
|
||||
0 & e^{x} & 0\\
|
||||
0 & 0 & 1/e^{x}\end{array}\right]\]
|
||||
|
|
Loading…
Reference in New Issue