Removed make_shared & x variables

release/4.3a0
mkielo3 2025-02-20 23:25:00 +00:00
parent 2e194501d5
commit b6a1af03e8
1 changed files with 51 additions and 88 deletions

View File

@ -55,25 +55,20 @@ int main() {
// i.e., we should get 0,0 0,1 0,2 if there is no noise // i.e., we should get 0,0 0,1 0,2 if there is no noise
// Create new state variable // Create new state variable
Key x0 = X(0); ordering->push_back(X(0));
ordering->push_back(x0);
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0) // Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
// This is equivalent to x_0 and P_0 // This is equivalent to x_0 and P_0
Point2 x_initial(0,0); Point2 x_initial(0,0);
SharedDiagonal P_initial = noiseModel::Isotropic::Sigma(2, 0.1); SharedDiagonal P_initial = noiseModel::Isotropic::Sigma(2, 0.1);
// Create a JacobianFactor directly - this represents the prior constraint on x0 // Linearize the factor and add it to the linear factor graph
auto factor1 = std::make_shared<JacobianFactor>( linearizationPoints.insert(X(0), x_initial);
x0, linearFactorGraph->add(X(0),
P_initial->R(), P_initial->R(),
Vector::Zero(2), Vector::Zero(2),
noiseModel::Unit::Create(2)); noiseModel::Unit::Create(2));
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x0, x_initial);
linearFactorGraph->push_back(factor1);
// Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0) // Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
// In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t} // In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
// For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t) // For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
@ -94,14 +89,13 @@ int main() {
// so, difference = x_{t+1} - x_{t} = F*x_{t} + B*u_{t} - I*x_{t} // so, difference = x_{t+1} - x_{t} = F*x_{t} + B*u_{t} - I*x_{t}
// = (F - I)*x_{t} + B*u_{t} // = (F - I)*x_{t} + B*u_{t}
// = B*u_{t} (for our example) // = B*u_{t} (for our example)
Key x1 = X(1); ordering->push_back(X(1));
ordering->push_back(x1);
Point2 difference(1,0); Point2 difference(1,0);
SharedDiagonal Q = noiseModel::Isotropic::Sigma(2, 0.1); SharedDiagonal Q = noiseModel::Isotropic::Sigma(2, 0.1);
BetweenFactor<Point2> factor2(x0, x1, difference, Q); BetweenFactor<Point2> factor2(X(0), X(1), difference, Q);
// Linearize the factor and add it to the linear factor graph // Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x1, x_initial); linearizationPoints.insert(X(1), x_initial);
linearFactorGraph->push_back(factor2.linearize(linearizationPoints)); linearFactorGraph->push_back(factor2.linearize(linearizationPoints));
// We have now made the small factor graph f1-(x0)-f2-(x1) // We have now made the small factor graph f1-(x0)-f2-(x1)
@ -122,11 +116,11 @@ int main() {
// Extract the current estimate of x1,P1 from the Bayes Network // Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = bayesNet->optimize(); VectorValues result = bayesNet->optimize();
Point2 x1_predict = linearizationPoints.at<Point2>(x1) + result[x1]; Point2 x1_predict = linearizationPoints.at<Point2>(X(1)) + result[X(1)];
traits<Point2>::Print(x1_predict, "X1 Predict"); traits<Point2>::Print(x1_predict, "X1 Predict");
// Update the new linearization point to the new estimate // Update the new linearization point to the new estimate
linearizationPoints.update(x1, x1_predict); linearizationPoints.update(X(1), x1_predict);
@ -146,24 +140,18 @@ int main() {
// -> b'' = b' - F(dx1' - dx1'') // -> b'' = b' - F(dx1' - dx1'')
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2 // = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2 // = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
auto newPrior = std::make_shared<JacobianFactor>(
x1,
x1Conditional->R(),
x1Conditional->d() - x1Conditional->R() * result[x1],
x1Conditional->get_model());
// Ensure correct number of rows, that there is one variable, and that variable is x1
assert(newPrior->rows() == x1Conditional->R().rows());
assert(newPrior->size() == 1);
assert(*newPrior->begin() == x1);
// Create a new, empty graph and add the new prior // Create a new, empty graph and add the new prior
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph); linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
linearFactorGraph->push_back(newPrior); linearFactorGraph->add(
X(1),
x1Conditional->R(),
x1Conditional->d() - x1Conditional->R() * result[X(1)],
x1Conditional->get_model());
// Reset ordering for the next step // Reset ordering for the next step
ordering = Ordering::shared_ptr(new Ordering); ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x1); ordering->push_back(X(1));
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected" // Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1) // This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1)
@ -187,7 +175,7 @@ int main() {
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R. // This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
Point2 z1(1.0, 0.0); Point2 z1(1.0, 0.0);
SharedDiagonal R1 = noiseModel::Isotropic::Sigma(2, 0.25); SharedDiagonal R1 = noiseModel::Isotropic::Sigma(2, 0.25);
PriorFactor<Point2> factor4(x1, z1, R1); PriorFactor<Point2> factor4(X(1), z1, R1);
// Linearize the factor and add it to the linear factor graph // Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor4.linearize(linearizationPoints)); linearFactorGraph->push_back(factor4.linearize(linearizationPoints));
@ -204,11 +192,11 @@ int main() {
// Extract the current estimate of x1 from the Bayes Network // Extract the current estimate of x1 from the Bayes Network
VectorValues updatedResult = updatedBayesNet->optimize(); VectorValues updatedResult = updatedBayesNet->optimize();
Point2 x1_update = linearizationPoints.at<Point2>(x1) + updatedResult[x1]; Point2 x1_update = linearizationPoints.at<Point2>(X(1)) + updatedResult[X(1)];
traits<Point2>::Print(x1_update, "X1 Update"); traits<Point2>::Print(x1_update, "X1 Update");
// Update the linearization point to the new estimate // Update the linearization point to the new estimate
linearizationPoints.update(x1, x1_update); linearizationPoints.update(X(1), x1_update);
@ -222,34 +210,24 @@ int main() {
// Convert the root conditional, P(x1) in this case, into a Prior for the next step // Convert the root conditional, P(x1) in this case, into a Prior for the next step
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0, // The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration // the first key in the next iteration
auto updatedPrior = std::make_shared<JacobianFactor>( linearFactorGraph->add(
x1, X(1),
updatedConditional->R(), updatedConditional->R(),
updatedConditional->d() - updatedConditional->R() * updatedResult[x1], updatedConditional->d() - updatedConditional->R() * updatedResult[X(1)],
updatedConditional->get_model()); updatedConditional->get_model());
// Ensure correct number of rows, that there is one variable, and that variable is x1
assert(updatedPrior->rows() == updatedConditional->R().rows());
assert(updatedPrior->size() == 1);
assert(*updatedPrior->begin() == x1);
linearFactorGraph->push_back(updatedPrior);
// Create a key for the new state
Key x2 = X(2);
// Create the desired ordering // Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering); ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x1); ordering->push_back(X(1));
ordering->push_back(x2); ordering->push_back(X(2));
// Create a nonlinear factor describing the motion model (moving right again) // Create a nonlinear factor describing the motion model (moving right again)
Point2 difference2(1,0); Point2 difference2(1,0);
SharedDiagonal Q2 = noiseModel::Isotropic::Sigma(2, 0.1); SharedDiagonal Q2 = noiseModel::Isotropic::Sigma(2, 0.1);
BetweenFactor<Point2> factor6(x1, x2, difference2, Q2); BetweenFactor<Point2> factor6(X(1), X(2), difference2, Q2);
// Linearize the factor and add it to the linear factor graph // Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x2, x1_update); linearizationPoints.insert(X(2), x1_update);
linearFactorGraph->push_back(factor6.linearize(linearizationPoints)); linearFactorGraph->push_back(factor6.linearize(linearizationPoints));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) ) // Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
@ -258,37 +236,31 @@ int main() {
// Extract the predicted state // Extract the predicted state
VectorValues prediction2Result = predictionBayesNet2->optimize(); VectorValues prediction2Result = predictionBayesNet2->optimize();
Point2 x2_predict = linearizationPoints.at<Point2>(x2) + prediction2Result[x2]; Point2 x2_predict = linearizationPoints.at<Point2>(X(2)) + prediction2Result[X(2)];
traits<Point2>::Print(x2_predict, "X2 Predict"); traits<Point2>::Print(x2_predict, "X2 Predict");
// Update the linearization point to the new estimate // Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_predict); linearizationPoints.update(X(2), x2_predict);
// Now add the next measurement // Now add the next measurement
// Create a new, empty graph and add the prior from the previous step // Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph); linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step // Convert the root conditional, P(x1) in this case, into a Prior for the next step
auto prior2 = std::make_shared<JacobianFactor>( linearFactorGraph->add(
x2, X(2),
x2Conditional->R(), x2Conditional->R(),
x2Conditional->d() - x2Conditional->R() * prediction2Result[x2], x2Conditional->d() - x2Conditional->R() * prediction2Result[X(2)],
x2Conditional->get_model()); x2Conditional->get_model());
assert(prior2->rows() == x2Conditional->R().rows());
assert(prior2->size() == 1);
assert(*prior2->begin() == x2);
linearFactorGraph->push_back(prior2);
// Create the desired ordering // Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering); ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x2); ordering->push_back(X(2));
// And update using z2 ... // And update using z2 ...
Point2 z2(2.0, 0.0); Point2 z2(2.0, 0.0);
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished()); SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
PriorFactor<Point2> factor8(x2, z2, R2); PriorFactor<Point2> factor8(X(2), z2, R2);
// Linearize the factor and add it to the linear factor graph // Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor8.linearize(linearizationPoints)); linearFactorGraph->push_back(factor8.linearize(linearizationPoints));
@ -306,11 +278,11 @@ int main() {
// Extract the current estimate of x2 from the Bayes Network // Extract the current estimate of x2 from the Bayes Network
VectorValues updatedResult2 = updatedBayesNet2->optimize(); VectorValues updatedResult2 = updatedBayesNet2->optimize();
Point2 x2_update = linearizationPoints.at<Point2>(x2) + updatedResult2[x2]; Point2 x2_update = linearizationPoints.at<Point2>(X(2)) + updatedResult2[X(2)];
traits<Point2>::Print(x2_update, "X2 Update"); traits<Point2>::Print(x2_update, "X2 Update");
// Update the linearization point to the new estimate // Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_update); linearizationPoints.update(X(2), x2_update);
@ -322,31 +294,24 @@ int main() {
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph); linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step // Convert the root conditional, P(x1) in this case, into a Prior for the next step
Matrix updatedR2 = updatedConditional2->R(); linearFactorGraph->add(
Vector updatedD2 = updatedConditional2->d() - updatedR2 * updatedResult2[x2]; X(2),
auto updatedPrior2 = std::make_shared<JacobianFactor>( updatedConditional2->R(),
x2, updatedConditional2->d() - updatedConditional2->R() * updatedResult2[X(2)],
updatedR2,
updatedD2,
updatedConditional2->get_model()); updatedConditional2->get_model());
linearFactorGraph->push_back(updatedPrior2);
// Create a key for the new state
Key x3 = X(3);
// Create the desired ordering // Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering); ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x2); ordering->push_back(X(2));
ordering->push_back(x3); ordering->push_back(X(3));
// Create a nonlinear factor describing the motion model // Create a nonlinear factor describing the motion model
Point2 difference3(1,0); Point2 difference3(1,0);
SharedDiagonal Q3 = noiseModel::Isotropic::Sigma(2, 0.1); SharedDiagonal Q3 = noiseModel::Isotropic::Sigma(2, 0.1);
BetweenFactor<Point2> factor10(x2, x3, difference3, Q3); BetweenFactor<Point2> factor10(X(2), X(3), difference3, Q3);
// Linearize the factor and add it to the linear factor graph // Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x3, x2_update); linearizationPoints.insert(X(3), x2_update);
linearFactorGraph->push_back(factor10.linearize(linearizationPoints)); linearFactorGraph->push_back(factor10.linearize(linearizationPoints));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) ) // Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
@ -355,11 +320,11 @@ int main() {
// Extract the current estimate of x3 from the Bayes Network // Extract the current estimate of x3 from the Bayes Network
VectorValues prediction3Result = predictionBayesNet3->optimize(); VectorValues prediction3Result = predictionBayesNet3->optimize();
Point2 x3_predict = linearizationPoints.at<Point2>(x3) + prediction3Result[x3]; Point2 x3_predict = linearizationPoints.at<Point2>(X(3)) + prediction3Result[X(3)];
traits<Point2>::Print(x3_predict, "X3 Predict"); traits<Point2>::Print(x3_predict, "X3 Predict");
// Update the linearization point to the new estimate // Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_predict); linearizationPoints.update(X(3), x3_predict);
@ -368,22 +333,20 @@ int main() {
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph); linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step // Convert the root conditional, P(x1) in this case, into a Prior for the next step
auto prior3 = std::make_shared<JacobianFactor>( linearFactorGraph->add(
x3, X(3),
x3Conditional->R(), x3Conditional->R(),
x3Conditional->d() - x3Conditional->R() * prediction3Result[x3], x3Conditional->d() - x3Conditional->R() * prediction3Result[X(3)],
x3Conditional->get_model()); x3Conditional->get_model());
linearFactorGraph->push_back(prior3);
// Create the desired ordering // Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering); ordering = Ordering::shared_ptr(new Ordering);
ordering->push_back(x3); ordering->push_back(X(3));
// And update using z3 ... // And update using z3 ...
Point2 z3(3.0, 0.0); Point2 z3(3.0, 0.0);
SharedDiagonal R3 = noiseModel::Isotropic::Sigma(2, 0.25); SharedDiagonal R3 = noiseModel::Isotropic::Sigma(2, 0.25);
PriorFactor<Point2> factor12(x3, z3, R3); PriorFactor<Point2> factor12(X(3), z3, R3);
// Linearize the factor and add it to the linear factor graph // Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor12.linearize(linearizationPoints)); linearFactorGraph->push_back(factor12.linearize(linearizationPoints));
@ -401,11 +364,11 @@ int main() {
// Extract the current estimate of x2 from the Bayes Network // Extract the current estimate of x2 from the Bayes Network
VectorValues updatedResult3 = updatedBayesNet3->optimize(); VectorValues updatedResult3 = updatedBayesNet3->optimize();
Point2 x3_update = linearizationPoints.at<Point2>(x3) + updatedResult3[x3]; Point2 x3_update = linearizationPoints.at<Point2>(X(3)) + updatedResult3[X(3)];
traits<Point2>::Print(x3_update, "X3 Update"); traits<Point2>::Print(x3_update, "X3 Update");
// Update the linearization point to the new estimate // Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_update); linearizationPoints.update(X(3), x3_update);