still challenging to parse extrinsics

release/4.3a0
lcarlone 2021-08-25 22:22:53 -04:00
parent 7b399a363a
commit b523623277
2 changed files with 88 additions and 81 deletions

View File

@ -51,7 +51,6 @@ class SmartProjectionFactorP : public SmartProjectionFactor<CAMERA> {
private:
typedef SmartProjectionFactor<CAMERA> Base;
typedef SmartProjectionFactorP<CAMERA> This;
typedef CAMERA Camera;
typedef typename CAMERA::CalibrationType CALIBRATION;
protected:
@ -63,6 +62,8 @@ class SmartProjectionFactorP : public SmartProjectionFactor<CAMERA> {
std::vector<Pose3> body_P_sensors_;
public:
typedef CAMERA Camera;
typedef CameraSet<CAMERA> Cameras;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;

View File

@ -182,92 +182,98 @@ TEST( SmartProjectionFactorP, noisy ) {
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
std::vector<Pose3> body_P_sensors;
body_P_sensors.push_back(Pose3::identity());
body_P_sensors.push_back(Pose3::identity());
KeyVector views {x1, x2};
factor2->add(measurements, views, sharedKs, body_P_sensors);
factor2->add(measurements, views, sharedKs);
double actualError2 = factor2->error(values);
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
}
///* *************************************************************************/
//TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
// using namespace vanillaPose;
//
// // create arbitrary body_T_sensor (transforms from sensor to body)
// Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
//
// // These are the poses we want to estimate, from camera measurements
// const Pose3 sensor_T_body = body_T_sensor.inverse();
// Pose3 wTb1 = cam1.pose() * sensor_T_body;
// Pose3 wTb2 = cam2.pose() * sensor_T_body;
// Pose3 wTb3 = cam3.pose() * sensor_T_body;
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
//
// Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
//
// // Project three landmarks into three cameras
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
// projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
// projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
//
// // Create smart factors
// KeyVector views {x1, x2, x3};
//
// SmartProjectionParams params;
// params.setRankTolerance(1.0);
// params.setDegeneracyMode(IGNORE_DEGENERACY);
// params.setEnableEPI(false);
//
// SmartFactorP smartFactor1(model, sharedK, body_T_sensor, params);
// smartFactor1.add(measurements_cam1, views);
//
// SmartFactorP smartFactor2(model, sharedK, body_T_sensor, params);
// smartFactor2.add(measurements_cam2, views);
//
// SmartFactorP smartFactor3(model, sharedK, body_T_sensor, params);
// smartFactor3.add(measurements_cam3, views);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// // Put all factors in factor graph, adding priors
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, wTb1, noisePrior);
// graph.addPrior(x2, wTb2, noisePrior);
//
// // Check errors at ground truth poses
// Values gtValues;
// gtValues.insert(x1, wTb1);
// gtValues.insert(x2, wTb2);
// gtValues.insert(x3, wTb3);
// double actualError = graph.error(gtValues);
// double expectedError = 0.0;
// DOUBLES_EQUAL(expectedError, actualError, 1e-7)
//
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1));
// Values values;
// values.insert(x1, wTb1);
// values.insert(x2, wTb2);
// // initialize third pose with some noise, we expect it to move back to
// // original pose3
// values.insert(x3, wTb3 * noise_pose);
//
// LevenbergMarquardtParams lmParams;
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
// result = optimizer.optimize();
// EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
//}
//
/* *************************************************************************/
TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
using namespace vanillaPose;
// create arbitrary body_T_sensor (transforms from sensor to body)
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
// These are the poses we want to estimate, from camera measurements
const Pose3 sensor_T_body = body_T_sensor.inverse();
Pose3 wTb1 = cam1.pose() * sensor_T_body;
Pose3 wTb2 = cam2.pose() * sensor_T_body;
Pose3 wTb3 = cam3.pose() * sensor_T_body;
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
// Create smart factors
KeyVector views {x1, x2, x3};
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setDegeneracyMode(IGNORE_DEGENERACY);
params.setEnableEPI(false);
std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
std::vector<Pose3> body_T_sensors;
body_T_sensors.push_back(body_T_sensor);
body_T_sensors.push_back(body_T_sensor);
body_T_sensors.push_back(body_T_sensor);
SmartFactorP smartFactor1(model, params);
smartFactor1.add(measurements_cam1, views, sharedKs, body_T_sensors);
SmartFactorP smartFactor2(model, params);
smartFactor2.add(measurements_cam2, views, sharedKs, body_T_sensors);
SmartFactorP smartFactor3(model, params);
smartFactor3.add(measurements_cam3, views, sharedKs, body_T_sensors);;
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// Put all factors in factor graph, adding priors
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, wTb1, noisePrior);
graph.addPrior(x2, wTb2, noisePrior);
// Check errors at ground truth poses
Values gtValues;
gtValues.insert(x1, wTb1);
gtValues.insert(x2, wTb2);
gtValues.insert(x3, wTb3);
double actualError = graph.error(gtValues);
double expectedError = 0.0;
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1));
Values values;
values.insert(x1, wTb1);
values.insert(x2, wTb2);
// initialize third pose with some noise, we expect it to move back to
// original pose3
values.insert(x3, wTb3 * noise_pose);
LevenbergMarquardtParams lmParams;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
}
///* *************************************************************************/
//TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
//