still challenging to parse extrinsics
							parent
							
								
									7b399a363a
								
							
						
					
					
						commit
						b523623277
					
				|  | @ -51,7 +51,6 @@ class SmartProjectionFactorP : public SmartProjectionFactor<CAMERA> { | |||
|  private: | ||||
|   typedef SmartProjectionFactor<CAMERA> Base; | ||||
|   typedef SmartProjectionFactorP<CAMERA> This; | ||||
|   typedef CAMERA Camera; | ||||
|   typedef typename CAMERA::CalibrationType CALIBRATION; | ||||
| 
 | ||||
|  protected: | ||||
|  | @ -63,6 +62,8 @@ class SmartProjectionFactorP : public SmartProjectionFactor<CAMERA> { | |||
|   std::vector<Pose3> body_P_sensors_; | ||||
| 
 | ||||
|  public: | ||||
|   typedef CAMERA Camera; | ||||
|   typedef CameraSet<CAMERA> Cameras; | ||||
| 
 | ||||
|   /// shorthand for a smart pointer to a factor
 | ||||
|   typedef boost::shared_ptr<This> shared_ptr; | ||||
|  |  | |||
|  | @ -182,92 +182,98 @@ TEST( SmartProjectionFactorP, noisy ) { | |||
|   sharedKs.push_back(sharedK); | ||||
|   sharedKs.push_back(sharedK); | ||||
| 
 | ||||
|   std::vector<Pose3> body_P_sensors; | ||||
|   body_P_sensors.push_back(Pose3::identity()); | ||||
|   body_P_sensors.push_back(Pose3::identity()); | ||||
| 
 | ||||
|   KeyVector views {x1, x2}; | ||||
| 
 | ||||
|   factor2->add(measurements, views, sharedKs, body_P_sensors); | ||||
|   factor2->add(measurements, views, sharedKs); | ||||
|   double actualError2 = factor2->error(values); | ||||
|   DOUBLES_EQUAL(actualError1, actualError2, 1e-7); | ||||
| } | ||||
| 
 | ||||
| ///* *************************************************************************/
 | ||||
| //TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
 | ||||
| //  using namespace vanillaPose;
 | ||||
| //
 | ||||
| //  // create arbitrary body_T_sensor (transforms from sensor to body)
 | ||||
| //  Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
 | ||||
| //
 | ||||
| //  // These are the poses we want to estimate, from camera measurements
 | ||||
| //  const Pose3 sensor_T_body = body_T_sensor.inverse();
 | ||||
| //  Pose3 wTb1 = cam1.pose() * sensor_T_body;
 | ||||
| //  Pose3 wTb2 = cam2.pose() * sensor_T_body;
 | ||||
| //  Pose3 wTb3 = cam3.pose() * sensor_T_body;
 | ||||
| //
 | ||||
| //  // three landmarks ~5 meters infront of camera
 | ||||
| //  Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
 | ||||
| //
 | ||||
| //  Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
 | ||||
| //
 | ||||
| //  // Project three landmarks into three cameras
 | ||||
| //  projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | ||||
| //  projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | ||||
| //  projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | ||||
| //
 | ||||
| //  // Create smart factors
 | ||||
| //  KeyVector views {x1, x2, x3};
 | ||||
| //
 | ||||
| //  SmartProjectionParams params;
 | ||||
| //  params.setRankTolerance(1.0);
 | ||||
| //  params.setDegeneracyMode(IGNORE_DEGENERACY);
 | ||||
| //  params.setEnableEPI(false);
 | ||||
| //
 | ||||
| //  SmartFactorP smartFactor1(model, sharedK, body_T_sensor, params);
 | ||||
| //  smartFactor1.add(measurements_cam1, views);
 | ||||
| //
 | ||||
| //  SmartFactorP smartFactor2(model, sharedK, body_T_sensor, params);
 | ||||
| //  smartFactor2.add(measurements_cam2, views);
 | ||||
| //
 | ||||
| //  SmartFactorP smartFactor3(model, sharedK, body_T_sensor, params);
 | ||||
| //  smartFactor3.add(measurements_cam3, views);
 | ||||
| //
 | ||||
| //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | ||||
| //
 | ||||
| //  // Put all factors in factor graph, adding priors
 | ||||
| //  NonlinearFactorGraph graph;
 | ||||
| //  graph.push_back(smartFactor1);
 | ||||
| //  graph.push_back(smartFactor2);
 | ||||
| //  graph.push_back(smartFactor3);
 | ||||
| //  graph.addPrior(x1, wTb1, noisePrior);
 | ||||
| //  graph.addPrior(x2, wTb2, noisePrior);
 | ||||
| //
 | ||||
| //  // Check errors at ground truth poses
 | ||||
| //  Values gtValues;
 | ||||
| //  gtValues.insert(x1, wTb1);
 | ||||
| //  gtValues.insert(x2, wTb2);
 | ||||
| //  gtValues.insert(x3, wTb3);
 | ||||
| //  double actualError = graph.error(gtValues);
 | ||||
| //  double expectedError = 0.0;
 | ||||
| //  DOUBLES_EQUAL(expectedError, actualError, 1e-7)
 | ||||
| //
 | ||||
| //  Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | ||||
| //                           Point3(0.1, 0.1, 0.1));
 | ||||
| //  Values values;
 | ||||
| //  values.insert(x1, wTb1);
 | ||||
| //  values.insert(x2, wTb2);
 | ||||
| //  // initialize third pose with some noise, we expect it to move back to
 | ||||
| //  // original pose3
 | ||||
| //  values.insert(x3, wTb3 * noise_pose);
 | ||||
| //
 | ||||
| //  LevenbergMarquardtParams lmParams;
 | ||||
| //  Values result;
 | ||||
| //  LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | ||||
| //  result = optimizer.optimize();
 | ||||
| //  EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
 | ||||
| //}
 | ||||
| //
 | ||||
| /* *************************************************************************/ | ||||
| TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) { | ||||
|   using namespace vanillaPose; | ||||
| 
 | ||||
|   // create arbitrary body_T_sensor (transforms from sensor to body)
 | ||||
|   Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1)); | ||||
| 
 | ||||
|   // These are the poses we want to estimate, from camera measurements
 | ||||
|   const Pose3 sensor_T_body = body_T_sensor.inverse(); | ||||
|   Pose3 wTb1 = cam1.pose() * sensor_T_body; | ||||
|   Pose3 wTb2 = cam2.pose() * sensor_T_body; | ||||
|   Pose3 wTb3 = cam3.pose() * sensor_T_body; | ||||
| 
 | ||||
|   // three landmarks ~5 meters infront of camera
 | ||||
|   Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0); | ||||
| 
 | ||||
|   Point2Vector measurements_cam1, measurements_cam2, measurements_cam3; | ||||
| 
 | ||||
|   // Project three landmarks into three cameras
 | ||||
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1); | ||||
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2); | ||||
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3); | ||||
| 
 | ||||
|   // Create smart factors
 | ||||
|   KeyVector views {x1, x2, x3}; | ||||
| 
 | ||||
|   SmartProjectionParams params; | ||||
|   params.setRankTolerance(1.0); | ||||
|   params.setDegeneracyMode(IGNORE_DEGENERACY); | ||||
|   params.setEnableEPI(false); | ||||
| 
 | ||||
|   std::vector<boost::shared_ptr<Cal3_S2>> sharedKs; | ||||
|   sharedKs.push_back(sharedK); | ||||
|   sharedKs.push_back(sharedK); | ||||
|   sharedKs.push_back(sharedK); | ||||
| 
 | ||||
|   std::vector<Pose3> body_T_sensors; | ||||
|   body_T_sensors.push_back(body_T_sensor); | ||||
|   body_T_sensors.push_back(body_T_sensor); | ||||
|   body_T_sensors.push_back(body_T_sensor); | ||||
| 
 | ||||
|   SmartFactorP smartFactor1(model, params); | ||||
|   smartFactor1.add(measurements_cam1, views, sharedKs, body_T_sensors); | ||||
| 
 | ||||
|   SmartFactorP smartFactor2(model, params); | ||||
|   smartFactor2.add(measurements_cam2, views, sharedKs, body_T_sensors); | ||||
| 
 | ||||
|   SmartFactorP smartFactor3(model, params); | ||||
|   smartFactor3.add(measurements_cam3, views, sharedKs, body_T_sensors);; | ||||
| 
 | ||||
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); | ||||
| 
 | ||||
|   // Put all factors in factor graph, adding priors
 | ||||
|   NonlinearFactorGraph graph; | ||||
|   graph.push_back(smartFactor1); | ||||
|   graph.push_back(smartFactor2); | ||||
|   graph.push_back(smartFactor3); | ||||
|   graph.addPrior(x1, wTb1, noisePrior); | ||||
|   graph.addPrior(x2, wTb2, noisePrior); | ||||
| 
 | ||||
|   // Check errors at ground truth poses
 | ||||
|   Values gtValues; | ||||
|   gtValues.insert(x1, wTb1); | ||||
|   gtValues.insert(x2, wTb2); | ||||
|   gtValues.insert(x3, wTb3); | ||||
|   double actualError = graph.error(gtValues); | ||||
|   double expectedError = 0.0; | ||||
|   DOUBLES_EQUAL(expectedError, actualError, 1e-7) | ||||
| 
 | ||||
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), | ||||
|                            Point3(0.1, 0.1, 0.1)); | ||||
|   Values values; | ||||
|   values.insert(x1, wTb1); | ||||
|   values.insert(x2, wTb2); | ||||
|   // initialize third pose with some noise, we expect it to move back to
 | ||||
|   // original pose3
 | ||||
|   values.insert(x3, wTb3 * noise_pose); | ||||
| 
 | ||||
|   LevenbergMarquardtParams lmParams; | ||||
|   Values result; | ||||
|   LevenbergMarquardtOptimizer optimizer(graph, values, lmParams); | ||||
|   result = optimizer.optimize(); | ||||
|   EXPECT(assert_equal(wTb3, result.at<Pose3>(x3))); | ||||
| } | ||||
| 
 | ||||
| ///* *************************************************************************/
 | ||||
| //TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
 | ||||
| //
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue