cannot retrieve p attribute
							parent
							
								
									0d19859f82
								
							
						
					
					
						commit
						afa74c4f57
					
				| 
						 | 
				
			
			@ -4,7 +4,6 @@
 | 
			
		|||
  All Rights Reserved
 | 
			
		||||
  Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
  Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
 | 
			
		||||
| 
						 | 
				
			
			@ -21,20 +20,12 @@ import numpy as np
 | 
			
		|||
from gtsam import symbol_shorthand
 | 
			
		||||
from gtsam import readBal
 | 
			
		||||
 | 
			
		||||
L = symbol_shorthand.L
 | 
			
		||||
X = symbol_shorthand.X
 | 
			
		||||
C = symbol_shorthand.C
 | 
			
		||||
P = symbol_shorthand.P
 | 
			
		||||
 | 
			
		||||
import pdb
 | 
			
		||||
 | 
			
		||||
#include <gtsam/inference/Symbol.h>
 | 
			
		||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
			
		||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
			
		||||
#include <gtsam/slam/GeneralSFMFactor.h>
 | 
			
		||||
#include <gtsam/slam/dataset.h> // for loading BAL datasets !
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# using symbol_shorthand::C;
 | 
			
		||||
# using symbol_shorthand::P;
 | 
			
		||||
 | 
			
		||||
# We will be using a projection factor that ties a SFM_Camera to a 3D point.
 | 
			
		||||
# An SFM_Camera is defined in datase.h as a camera with unknown Cal3Bundler calibration
 | 
			
		||||
| 
						 | 
				
			
			@ -65,8 +56,8 @@ def run(args):
 | 
			
		|||
    pdb.set_trace()
 | 
			
		||||
    for t_idx in range(mydata.number_tracks()):
 | 
			
		||||
        track = mydata.track(t_idx) # SfmTrack
 | 
			
		||||
        # retrieve the SfmMeasurement objects
 | 
			
		||||
        for m_idx in range(track.number_measurements()):
 | 
			
		||||
            # retrieve the SfmMeasurement
 | 
			
		||||
            # i represents the camera index, and uv is the 2d measurement
 | 
			
		||||
            i, uv = track.measurement(0) # 
 | 
			
		||||
            #graph.emplace_shared<MyFactor>(uv, noise, C(i), P(j)) # note use of shorthand symbols C and P
 | 
			
		||||
| 
						 | 
				
			
			@ -76,18 +67,33 @@ def run(args):
 | 
			
		|||
 | 
			
		||||
    # # Add a prior on pose x1. This indirectly specifies where the origin is.
 | 
			
		||||
    # # and a prior on the position of the first landmark to fix the scale
 | 
			
		||||
    # graph.addPrior(C(0), mydata.cameras[0],  gtsam.noiseModel.Isotropic.Sigma(9, 0.1))
 | 
			
		||||
    # graph.addPrior(P(0), mydata.tracks[0].p, gtsam.noiseModel.Isotropic.Sigma(3, 0.1))
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    graph.push_back(gtsam.PriorFactorVector(
 | 
			
		||||
            C(0), mydata.camera(0), gtsam.noiseModel.Isotropic.Sigma(9, 0.1)))
 | 
			
		||||
    # # graph.addPrior(P(0), mydata.track(0).p, 
 | 
			
		||||
    # equivalent of addPrior
 | 
			
		||||
    graph.push_back(gtsam.PriorFactorVector(
 | 
			
		||||
            P(0), mydata.track(0)[1], gtsam.noiseModel.Isotropic.Sigma(3, 0.1)))
 | 
			
		||||
 | 
			
		||||
    # # Create initial estimate
 | 
			
		||||
    initial = gtsam.Values()
 | 
			
		||||
    
 | 
			
		||||
    i = 0
 | 
			
		||||
    # add each SfmCamera
 | 
			
		||||
    for cam_idx in range(mydata.number_cameras()):
 | 
			
		||||
        camera = mydata.camera(0)
 | 
			
		||||
        initial.insert(C(i), camera)
 | 
			
		||||
        i += 1
 | 
			
		||||
 | 
			
		||||
    j = 0
 | 
			
		||||
    # for(const SfmCamera& camera: mydata.cameras) initial.insert(C(i++), camera)
 | 
			
		||||
    # for(const SfmTrack& track: mydata.tracks)    initial.insert(P(j++), track.p)
 | 
			
		||||
    # add each SfmTrack
 | 
			
		||||
    for t_idx in range(mydata.number_tracks()):
 | 
			
		||||
        track = mydata.track(0)  
 | 
			
		||||
        initial.insert(P(j), track.p)
 | 
			
		||||
        j += 1
 | 
			
		||||
 | 
			
		||||
    # Optimize the graph and print results
 | 
			
		||||
    # Values result;
 | 
			
		||||
    try:
 | 
			
		||||
        params = gtsam.LevenbergMarquardtParams()
 | 
			
		||||
        params.setVerbosityLM("ERROR")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue