Save half the cos() evals for Points
parent
fae071d603
commit
ac4959d1fe
|
@ -21,12 +21,42 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
double Chebyshev2::Point(size_t N, int j, double a, double b) {
|
||||
double Chebyshev2::Point(size_t N, int j) {
|
||||
if (N == 1) return 0.0;
|
||||
assert(j >= 0 && size_t(j) < N);
|
||||
const double dtheta = M_PI / (N > 1 ? (N - 1) : 1);
|
||||
// We add -PI so that we get values ordered from -1 to +1
|
||||
// sin(-M_PI_2 + dtheta*j); also works
|
||||
return a + (b - a) * (1. + cos(-M_PI + dtheta * j)) / 2;
|
||||
const double dtheta = M_PI / (N - 1);
|
||||
return -cos(dtheta * j);
|
||||
}
|
||||
|
||||
double Chebyshev2::Point(size_t N, int j, double a, double b) {
|
||||
if (N == 1) return (a + b) / 2;
|
||||
return a + (b - a) * (Point(N, j) + 1.0) / 2.0;
|
||||
}
|
||||
|
||||
Vector Chebyshev2::Points(size_t N) {
|
||||
Vector points(N);
|
||||
if (N == 1) {
|
||||
points(0) = 0.0;
|
||||
return points;
|
||||
}
|
||||
size_t half = N / 2;
|
||||
const double dtheta = M_PI / (N - 1);
|
||||
for (size_t j = 0; j < half; ++j) {
|
||||
double c = cos(j * dtheta);
|
||||
points(j) = -c;
|
||||
points(N - 1 - j) = c;
|
||||
}
|
||||
if (N % 2 == 1) {
|
||||
points(half) = 0.0;
|
||||
}
|
||||
return points;
|
||||
}
|
||||
|
||||
Vector Chebyshev2::Points(size_t N, double a, double b) {
|
||||
Vector points = Points(N);
|
||||
const double T1 = (a + b) / 2, T2 = (b - a) / 2;
|
||||
points = T1 + (T2 * points).array();
|
||||
return points;
|
||||
}
|
||||
|
||||
Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
|
||||
|
|
|
@ -51,9 +51,17 @@ class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
|
|||
using Parameters = Eigen::Matrix<double, /*Nx1*/ -1, 1>;
|
||||
using DiffMatrix = Eigen::Matrix<double, /*NxN*/ -1, -1>;
|
||||
|
||||
/**
|
||||
* @brief Specific Chebyshev point, within [-1,1] interval.
|
||||
*
|
||||
* @param N The degree of the polynomial
|
||||
* @param j The index of the Chebyshev point
|
||||
* @return double
|
||||
*/
|
||||
static double Point(size_t N, int j);
|
||||
|
||||
/**
|
||||
* @brief Specific Chebyshev point, within [a,b] interval.
|
||||
* Default interval is [-1, 1]
|
||||
*
|
||||
* @param N The degree of the polynomial
|
||||
* @param j The index of the Chebyshev point
|
||||
|
@ -61,24 +69,13 @@ class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
|
|||
* @param b Upper bound of interval (default: 1)
|
||||
* @return double
|
||||
*/
|
||||
static double Point(size_t N, int j, double a = -1, double b = 1);
|
||||
static double Point(size_t N, int j, double a, double b);
|
||||
|
||||
/// All Chebyshev points
|
||||
static Vector Points(size_t N) {
|
||||
Vector points(N);
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
points(j) = Point(N, j);
|
||||
}
|
||||
return points;
|
||||
}
|
||||
static Vector Points(size_t N);
|
||||
|
||||
/// All Chebyshev points, within [a,b] interval
|
||||
static Vector Points(size_t N, double a, double b) {
|
||||
Vector points = Points(N);
|
||||
const double T1 = (a + b) / 2, T2 = (b - a) / 2;
|
||||
points = T1 + (T2 * points).array();
|
||||
return points;
|
||||
}
|
||||
static Vector Points(size_t N, double a, double b);
|
||||
|
||||
/**
|
||||
* Evaluate Chebyshev Weights on [-1,1] at any x up to order N-1 (N values)
|
||||
|
|
Loading…
Reference in New Issue