gtsam/gtsam/basis/Chebyshev2.h

140 lines
4.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Chebyshev2.h
* @brief Pseudo-spectral parameterization for Chebyshev polynomials of the
* second kind.
*
* In a pseudo-spectral case, rather than the parameters acting as
* weights for the bases polynomials (as in Chebyshev2Basis), here the
* parameters are the *values* at a specific set of points in the interval, the
* "Chebyshev points". These values uniquely determine the polynomial that
* interpolates them at the Chebyshev points.
*
* This is different from Chebyshev.h since it leverage ideas from
* pseudo-spectral optimization, i.e. we don't decompose into basis functions,
* rather estimate function values at the Chebyshev points.
*
* Please refer to Agrawal21icra for more details.
*
* @author Varun Agrawal, Jing Dong, Frank Dellaert
* @date July 4, 2020
*/
#pragma once
#include <gtsam/base/Manifold.h>
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/basis/Basis.h>
namespace gtsam {
/**
* Chebyshev Interpolation on Chebyshev points of the second kind
* Note that N here, the number of points, is one less than N from
* 'Approximation Theory and Approximation Practice by L. N. Trefethen (pg.42)'.
*/
class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
using Base = Basis<Chebyshev2>;
using Parameters = Eigen::Matrix<double, /*Nx1*/ -1, 1>;
using DiffMatrix = Eigen::Matrix<double, /*NxN*/ -1, -1>;
/**
* @brief Specific Chebyshev point, within [-1,1] interval.
*
* @param N The degree of the polynomial
* @param j The index of the Chebyshev point
* @return double
*/
static double Point(size_t N, int j);
/**
* @brief Specific Chebyshev point, within [a,b] interval.
*
* @param N The degree of the polynomial
* @param j The index of the Chebyshev point
* @param a Lower bound of interval (default: -1)
* @param b Upper bound of interval (default: 1)
* @return double
*/
static double Point(size_t N, int j, double a, double b);
/// All Chebyshev points
static Vector Points(size_t N);
/// All Chebyshev points, within [a,b] interval
static Vector Points(size_t N, double a, double b);
/**
* Evaluate Chebyshev Weights on [-1,1] at any x up to order N-1 (N values)
* These weights implement barycentric interpolation at a specific x.
* More precisely, f(x) ~ [w0;...;wN] * [f0;...;fN], where the fj are the
* values of the function f at the Chebyshev points. As such, for a given x we
* obtain a linear map from parameter vectors f to interpolated values f(x).
* Optional [a,b] interval can be specified as well.
*/
static Weights CalculateWeights(size_t N, double x, double a = -1,
double b = 1);
/**
* Evaluate derivative of barycentric weights.
* This is easy and efficient via the DifferentiationMatrix.
*/
static Weights DerivativeWeights(size_t N, double x, double a = -1,
double b = 1);
/// compute D = differentiation matrix, Trefethen00book p.53
/// when given a parameter vector f of function values at the Chebyshev
/// points, D*f are the values of f'.
/// https://people.maths.ox.ac.uk/trefethen/8all.pdf Theorem 8.4
static DiffMatrix DifferentiationMatrix(size_t N, double a = -1,
double b = 1);
/**
* Evaluate Clenshaw-Curtis integration weights.
* Trefethen00book, pg 128, clencurt.m
* Note that N in clencurt.m is 1 less than our N
* K = N-1;
theta = pi*(0:K)'/K;
w = zeros(1,N); ii = 2:K; v = ones(K-1, 1);
if mod(K,2) == 0
w(1) = 1/(K^2-1); w(N) = w(1);
for k=1:K/2-1, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
v = v - cos(K*theta(ii))/(K^2-1);
else
w(1) = 1/K^2; w(N) = w(1);
for k=1:K/2, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
end
w(ii) = 2*v/K;
*/
static Weights IntegrationWeights(size_t N, double a = -1, double b = 1);
/**
* Create matrix of values at Chebyshev points given vector-valued function.
*/
template <size_t M>
static Matrix matrix(std::function<Eigen::Matrix<double, M, 1>(double)> f,
size_t N, double a = -1, double b = 1) {
Matrix Xmat(M, N);
for (size_t j = 0; j < N; j++) {
Xmat.col(j) = f(Point(N, j, a, b));
}
return Xmat;
}
}; // \ Chebyshev2
} // namespace gtsam