Merge remote-tracking branch 'origin/develop' into feature/BAD
Conflicts: .cproject gtsam/geometry/Cal3DS2.cpp gtsam/geometry/Cal3DS2.h gtsam/geometry/Cal3Unified.h gtsam/navigation/CombinedImuFactor.h gtsam/navigation/ImuFactor.h gtsam/nonlinear/NonlinearFactor.h gtsam/slam/tests/testPoseRotationPrior.cpp Modified: testGaussMarkov1stOrderFactor.cpp, testPoseRotationPrior.cpprelease/4.3a0
commit
a94835a2e4
20
.cproject
20
.cproject
|
@ -848,18 +848,26 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGaussianFactorGraph.run" path="build/gtsam/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<target name="testGaussMarkov1stOrderFactor.run" path="build/gtsam_unstable/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testGaussianFactorGraph.run</buildTarget>
|
||||
<buildTarget>testGaussMarkov1stOrderFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGaussianBayesNet.run" path="build/gtsam/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<target name="testGaussianFactorGraph.run" path="build/gtsam/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testGaussianBayesNet.run</buildTarget>
|
||||
<buildTarget>testGaussianFactorGraphUnordered.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGaussianBayesNetUnordered.run" path="build/gtsam/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testGaussianBayesNetUnordered.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
|
@ -2830,10 +2838,10 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testSmartProjectionPoseFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<target name="testImplicitSchurFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testSmartProjectionPoseFactor.run</buildTarget>
|
||||
<buildTarget>testImplicitSchurFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
|
|
|
@ -3,4 +3,5 @@
|
|||
*.pyc
|
||||
*.DS_Store
|
||||
/examples/Data/dubrovnik-3-7-pre-rewritten.txt
|
||||
/examples/Data/pose2example-rewritten.txt
|
||||
/examples/Data/pose2example-rewritten.txt
|
||||
/examples/Data/pose3example-rewritten.txt
|
||||
|
|
|
@ -2,6 +2,12 @@
|
|||
project(GTSAM CXX C)
|
||||
cmake_minimum_required(VERSION 2.6)
|
||||
|
||||
# new feature to Cmake Version > 2.8.12
|
||||
# Mac ONLY. Define Relative Path on Mac OS
|
||||
if(NOT DEFINED CMAKE_MACOSX_RPATH)
|
||||
set(CMAKE_MACOSX_RPATH 0)
|
||||
endif()
|
||||
|
||||
# Set the version number for the library
|
||||
set (GTSAM_VERSION_MAJOR 3)
|
||||
set (GTSAM_VERSION_MINOR 1)
|
||||
|
|
|
@ -137,13 +137,16 @@ ELSE() # UNIX and macOS
|
|||
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
|
||||
${MKL_ROOT_DIR}/lib/
|
||||
)
|
||||
|
||||
FIND_LIBRARY(MKL_GNUTHREAD_LIBRARY
|
||||
mkl_gnu_thread
|
||||
PATHS
|
||||
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
|
||||
${MKL_ROOT_DIR}/lib/
|
||||
)
|
||||
|
||||
# MKL on Mac OS doesn't ship with GNU thread versions, only Intel versions (see above)
|
||||
IF(NOT APPLE)
|
||||
FIND_LIBRARY(MKL_GNUTHREAD_LIBRARY
|
||||
mkl_gnu_thread
|
||||
PATHS
|
||||
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
|
||||
${MKL_ROOT_DIR}/lib/
|
||||
)
|
||||
ENDIF()
|
||||
|
||||
# Intel Libraries
|
||||
IF("${MKL_ARCH_DIR}" STREQUAL "32")
|
||||
|
@ -227,7 +230,12 @@ ELSE() # UNIX and macOS
|
|||
endforeach()
|
||||
endforeach()
|
||||
|
||||
SET(MKL_LIBRARIES ${MKL_LP_GNUTHREAD_LIBRARIES})
|
||||
IF(APPLE)
|
||||
SET(MKL_LIBRARIES ${MKL_LP_INTELTHREAD_LIBRARIES})
|
||||
ELSE()
|
||||
SET(MKL_LIBRARIES ${MKL_LP_GNUTHREAD_LIBRARIES})
|
||||
ENDIF()
|
||||
|
||||
MARK_AS_ADVANCED(MKL_CORE_LIBRARY MKL_LP_LIBRARY MKL_ILP_LIBRARY
|
||||
MKL_SEQUENTIAL_LIBRARY MKL_INTELTHREAD_LIBRARY MKL_GNUTHREAD_LIBRARY)
|
||||
ENDIF()
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
VERTEX_SE3:QUAT 0 0 0 0 0 0 0 1
|
||||
VERTEX_SE3:QUAT 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423
|
||||
VERTEX_SE3:QUAT 2 1.9935 0.023275 0.003793 0.351729 0.597838 -0.584174 -0.421446
|
||||
VERTEX_SE3:QUAT 2 1.9935 0.023275 0.003793 -0.351729 -0.597838 0.584174 0.421446
|
||||
VERTEX_SE3:QUAT 3 2.00429 1.02431 0.018047 0.331798 -0.200659 0.919323 0.067024
|
||||
VERTEX_SE3:QUAT 4 0.999908 1.05507 0.020212 -0.035697 -0.46249 0.445933 0.765488
|
||||
EDGE_SE3:QUAT 0 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 1 2 0.523923 0.776654 0.326659 -0.311512 -0.656877 0.678505 -0.105373 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 1 2 0.523923 0.776654 0.326659 0.311512 0.656877 -0.678505 0.105373 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 2 3 0.910927 0.055169 -0.411761 0.595795 -0.561677 0.079353 0.568551 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 3 4 0.775288 0.228798 -0.596923 -0.592076 0.30338 -0.513225 0.542222 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 3 4 0.775288 0.228798 -0.596923 -0.592077 0.30338 -0.513226 0.542221 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 1 4 -0.577841 0.628016 -0.543592 -0.12525 -0.534379 0.769122 0.327419 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 3 0 -0.623267 0.086928 0.773222 0.104639 0.627755 0.766795 0.083672 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
VERTEX_SE3:QUAT 0 0.000000 0.000000 0.000000 0.0008187 0.0011723 0.0895466 0.9959816
|
||||
VERTEX_SE3:QUAT 1 0.000000 -0.000000 0.000000 0.0010673 0.0015636 0.1606931 0.9870026
|
||||
VERTEX_SE3:QUAT 2 -0.388822 0.632954 0.001223 0.0029920 0.0014066 0.0258235 0.9996610
|
||||
VERTEX_SE3:QUAT 3 -1.143204 0.050638 0.006026 -0.0012800 -0.0002767 -0.2850291 0.9585180
|
||||
VERTEX_SE3:QUAT 4 -0.512416 0.486441 0.005171 0.0002681 0.0023574 0.0171476 0.9998502
|
||||
EDGE_SE3:QUAT 1 2 1.000000 2.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 2 3 -0.000000 1.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 3 4 1.000000 1.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 3 1 0.000001 2.000000 0.000000 0.0000000 0.0000000 1.0000000 0.0000002 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 1 4 -1.000000 1.000000 0.000000 0.0000000 0.0000000 -0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 0 1 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 1.0000000 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
|
@ -26,36 +26,72 @@
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// HOWTO: ./Pose2SLAMExample_g2o inputFile outputFile (maxIterations) (tukey/huber)
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("noisyToyGraph.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
string kernelType = "none";
|
||||
int maxIterations = 100; // default
|
||||
string g2oFile = findExampleDataFile("noisyToyGraph.txt"); // default
|
||||
|
||||
// Parse user's inputs
|
||||
if (argc > 1){
|
||||
g2oFile = argv[1]; // input dataset filename
|
||||
// outputFile = g2oFile = argv[2]; // done later
|
||||
}
|
||||
if (argc > 3){
|
||||
maxIterations = atoi(argv[3]); // user can specify either tukey or huber
|
||||
}
|
||||
if (argc > 4){
|
||||
kernelType = argv[4]; // user can specify either tukey or huber
|
||||
}
|
||||
|
||||
// reading file and creating factor graph
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile);
|
||||
bool is3D = false;
|
||||
if(kernelType.compare("none") == 0){
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D);
|
||||
}
|
||||
if(kernelType.compare("huber") == 0){
|
||||
std::cout << "Using robust kernel: huber " << std::endl;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D, KernelFunctionTypeHUBER);
|
||||
}
|
||||
if(kernelType.compare("tukey") == 0){
|
||||
std::cout << "Using robust kernel: tukey " << std::endl;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D, KernelFunctionTypeTUKEY);
|
||||
}
|
||||
|
||||
// Add prior on the pose having index (key) = 0
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
|
||||
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
|
||||
std::cout << "Adding prior on pose 0 " << std::endl;
|
||||
|
||||
GaussNewtonParams params;
|
||||
params.setVerbosity("TERMINATION");
|
||||
if (argc > 3) {
|
||||
params.maxIterations = maxIterations;
|
||||
std::cout << "User required to perform maximum " << params.maxIterations << " iterations "<< std::endl;
|
||||
}
|
||||
|
||||
std::cout << "Optimizing the factor graph" << std::endl;
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial);
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial, params);
|
||||
Values result = optimizer.optimize();
|
||||
std::cout << "Optimization complete" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "final error=" <<graph->error(result)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
result.print("result");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, result, outputFile);
|
||||
NonlinearFactorGraph::shared_ptr graphNoKernel;
|
||||
Values::shared_ptr initial2;
|
||||
boost::tie(graphNoKernel, initial2) = readG2o(g2oFile);
|
||||
writeG2o(*graphNoKernel, result, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_changeKeys input.g2o rewritted.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
bool add = false;
|
||||
Key firstKey = 8646911284551352320;
|
||||
|
||||
std::cout << "Using reference key: " << firstKey << std::endl;
|
||||
if(add)
|
||||
std::cout << "adding key " << std::endl;
|
||||
else
|
||||
std::cout << "subtracting key " << std::endl;
|
||||
|
||||
|
||||
if (argc < 3) {
|
||||
std::cout << "Please provide output file to write " << std::endl;
|
||||
} else {
|
||||
const string inputFileRewritten = argv[2];
|
||||
std::cout << "Rewriting input to file: " << inputFileRewritten << std::endl;
|
||||
// Additional: rewrite input with simplified keys 0,1,...
|
||||
Values simpleInitial;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
Key key;
|
||||
if(add)
|
||||
key = key_value.key + firstKey;
|
||||
else
|
||||
key = key_value.key - firstKey;
|
||||
|
||||
simpleInitial.insert(key, initial->at(key_value.key));
|
||||
}
|
||||
NonlinearFactorGraph simpleGraph;
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, *graph) {
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between){
|
||||
Key key1, key2;
|
||||
if(add){
|
||||
key1 = pose3Between->key1() + firstKey;
|
||||
key2 = pose3Between->key2() + firstKey;
|
||||
}else{
|
||||
key1 = pose3Between->key1() - firstKey;
|
||||
key2 = pose3Between->key2() - firstKey;
|
||||
}
|
||||
NonlinearFactor::shared_ptr simpleFactor(
|
||||
new BetweenFactor<Pose3>(key1, key2, pose3Between->measured(), pose3Between->get_noiseModel()));
|
||||
simpleGraph.add(simpleFactor);
|
||||
}
|
||||
}
|
||||
writeG2o(simpleGraph, simpleInitial, inputFileRewritten);
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,74 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Optimizing the factor graph" << std::endl;
|
||||
GaussNewtonParams params;
|
||||
params.setVerbosity("TERMINATION"); // this will show info about stopping conditions
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial, params);
|
||||
Values result = optimizer.optimize();
|
||||
std::cout << "Optimization complete" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "final error=" <<graph->error(result)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
result.print("result");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, result, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,68 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Initializing Pose3 - chordal relaxation" << std::endl;
|
||||
Values initialization = InitializePose3::initialize(graphWithPrior);
|
||||
std::cout << "done!" << std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
initialization.print("initialization");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, initialization, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,72 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Initializing Pose3 - Riemannian gradient" << std::endl;
|
||||
bool useGradient = true;
|
||||
Values initialization = InitializePose3::initialize(graphWithPrior, *initial, useGradient);
|
||||
std::cout << "done!" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "initialization error=" <<graph->error(initialization)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
initialization.print("initialization");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, initialization, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -157,7 +157,7 @@ struct LieMatrix : public Matrix {
|
|||
result.data(), p.rows(), p.cols()) = p;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
|
|
@ -36,9 +36,9 @@ namespace gtsam {
|
|||
* Values can operate generically on Value objects, retracting or computing
|
||||
* local coordinates for many Value objects of different types.
|
||||
*
|
||||
* Inhereting from the DerivedValue class templated provides a generic implementation of
|
||||
* Inheriting from the DerivedValue class templated provides a generic implementation of
|
||||
* the pure virtual functions retract_(), localCoordinates_(), and equals_(), eliminating
|
||||
* the need to implement these functions in your class. Note that you must inheret from
|
||||
* the need to implement these functions in your class. Note that you must inherit from
|
||||
* DerivedValue templated on the class you are defining. For example you cannot define
|
||||
* the following
|
||||
* \code
|
||||
|
|
|
@ -23,24 +23,9 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2::Cal3DS2(const Vector &v):
|
||||
fx_(v[0]), fy_(v[1]), s_(v[2]), u0_(v[3]), v0_(v[4]), k1_(v[5]), k2_(v[6]), p1_(v[7]), p2_(v[8]){}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::K() const {
|
||||
return (Matrix(3, 3) << fx_, s_, u0_, 0.0, fy_, v0_, 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Cal3DS2::vector() const {
|
||||
return (Vector(9) << fx_, fy_, s_, u0_, v0_, k1_, k2_, p1_, p2_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Cal3DS2::print(const std::string& s_) const {
|
||||
gtsam::print(K(), s_ + ".K");
|
||||
gtsam::print(Vector(k()), s_ + ".k");
|
||||
Base::print(s_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -52,135 +37,6 @@ bool Cal3DS2::equals(const Cal3DS2& K, double tol) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Matrix29 D2dcalibration(double x, double y, double xx,
|
||||
double yy, double xy, double rr, double r4, double pnx, double pny,
|
||||
const Matrix2& DK) {
|
||||
Matrix25 DR1;
|
||||
DR1 << pnx, 0.0, pny, 1.0, 0.0, 0.0, pny, 0.0, 0.0, 1.0;
|
||||
Matrix24 DR2;
|
||||
DR2 << x * rr, x * r4, 2 * xy, rr + 2 * xx, //
|
||||
y * rr, y * r4, rr + 2 * yy, 2 * xy;
|
||||
Matrix29 D;
|
||||
D << DR1, DK * DR2;
|
||||
return D;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Matrix2 D2dintrinsic(double x, double y, double rr,
|
||||
double g, double k1, double k2, double p1, double p2,
|
||||
const Matrix2& DK) {
|
||||
const double drdx = 2. * x;
|
||||
const double drdy = 2. * y;
|
||||
const double dgdx = k1 * drdx + k2 * 2. * rr * drdx;
|
||||
const double dgdy = k1 * drdy + k2 * 2. * rr * drdy;
|
||||
|
||||
// Dx = 2*p1*xy + p2*(rr+2*xx);
|
||||
// Dy = 2*p2*xy + p1*(rr+2*yy);
|
||||
const double dDxdx = 2. * p1 * y + p2 * (drdx + 4. * x);
|
||||
const double dDxdy = 2. * p1 * x + p2 * drdy;
|
||||
const double dDydx = 2. * p2 * y + p1 * drdx;
|
||||
const double dDydy = 2. * p2 * x + p1 * (drdy + 4. * y);
|
||||
|
||||
Matrix2 DR;
|
||||
DR << g + x * dgdx + dDxdx, x * dgdy + dDxdy, //
|
||||
y * dgdx + dDydx, g + y * dgdy + dDydy;
|
||||
|
||||
return DK * DR;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2::uncalibrate(const Point2& p, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2) const {
|
||||
|
||||
// rr = x^2 + y^2;
|
||||
// g = (1 + k(1)*rr + k(2)*rr^2);
|
||||
// dp = [2*k(3)*x*y + k(4)*(rr + 2*x^2); 2*k(4)*x*y + k(3)*(rr + 2*y^2)];
|
||||
// pi(:,i) = g * pn(:,i) + dp;
|
||||
const double x = p.x(), y = p.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = 1. + k1_ * rr + k2_ * r4; // scaling factor
|
||||
|
||||
// tangential component
|
||||
const double dx = 2. * p1_ * xy + p2_ * (rr + 2. * xx);
|
||||
const double dy = 2. * p2_ * xy + p1_ * (rr + 2. * yy);
|
||||
|
||||
// Radial and tangential distortion applied
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
|
||||
Matrix2 DK;
|
||||
if (H1 || H2) DK << fx_, s_, 0.0, fy_;
|
||||
|
||||
// Derivative for calibration
|
||||
if (H1)
|
||||
*H1 = D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
|
||||
// Derivative for points
|
||||
if (H2)
|
||||
*H2 = D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
|
||||
// Regular uncalibrate after distortion
|
||||
return Point2(fx_ * pnx + s_ * pny + u0_, fy_ * pny + v0_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2::calibrate(const Point2& pi, const double tol) const {
|
||||
// Use the following fixed point iteration to invert the radial distortion.
|
||||
// pn_{t+1} = (inv(K)*pi - dp(pn_{t})) / g(pn_{t})
|
||||
|
||||
const Point2 invKPi ((1 / fx_) * (pi.x() - u0_ - (s_ / fy_) * (pi.y() - v0_)),
|
||||
(1 / fy_) * (pi.y() - v0_));
|
||||
|
||||
// initialize by ignoring the distortion at all, might be problematic for pixels around boundary
|
||||
Point2 pn = invKPi;
|
||||
|
||||
// iterate until the uncalibrate is close to the actual pixel coordinate
|
||||
const int maxIterations = 10;
|
||||
int iteration;
|
||||
for (iteration = 0; iteration < maxIterations; ++iteration) {
|
||||
if (uncalibrate(pn).distance(pi) <= tol) break;
|
||||
const double x = pn.x(), y = pn.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double g = (1 + k1_ * rr + k2_ * rr * rr);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
pn = (invKPi - Point2(dx, dy)) / g;
|
||||
}
|
||||
|
||||
if ( iteration >= maxIterations )
|
||||
throw std::runtime_error("Cal3DS2::calibrate fails to converge. need a better initialization");
|
||||
|
||||
return pn;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::D2d_intrinsic(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
Matrix2 DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::D2d_calibration(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y, xy = x * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
Matrix2 DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2 Cal3DS2::retract(const Vector& d) const {
|
||||
return Cal3DS2(vector() + d);
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
/**
|
||||
* @file Cal3DS2.h
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @brief Calibration of a camera with radial distortion, calculations in base class Cal3DS2_Base
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
@ -19,7 +19,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -37,29 +37,21 @@ namespace gtsam {
|
|||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3DS2 {
|
||||
class GTSAM_EXPORT Cal3DS2 : public Cal3DS2_Base, public DerivedValue<Cal3DS2> {
|
||||
|
||||
protected:
|
||||
|
||||
double fx_, fy_, s_, u0_, v0_ ; // focal length, skew and principal point
|
||||
double k1_, k2_ ; // radial 2nd-order and 4th-order
|
||||
double p1_, p2_ ; // tangential distortion
|
||||
typedef Cal3DS2_Base Base;
|
||||
|
||||
public:
|
||||
|
||||
Matrix K() const ;
|
||||
Eigen::Vector4d k() const { return Eigen::Vector4d(k1_, k2_, p1_, p2_); }
|
||||
Vector vector() const ;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Default Constructor with only unit focal length
|
||||
Cal3DS2() : fx_(1), fy_(1), s_(0), u0_(0), v0_(0), k1_(0), k2_(0), p1_(0), p2_(0) {}
|
||||
Cal3DS2() : Base() {}
|
||||
|
||||
Cal3DS2(double fx, double fy, double s, double u0, double v0,
|
||||
double k1, double k2, double p1 = 0.0, double p2 = 0.0) :
|
||||
fx_(fx), fy_(fy), s_(s), u0_(u0), v0_(v0), k1_(k1), k2_(k2), p1_(p1), p2_(p2) {}
|
||||
Base(fx, fy, s, u0, v0, k1, k2, p1, p2) {}
|
||||
|
||||
virtual ~Cal3DS2() {}
|
||||
|
||||
|
@ -67,7 +59,7 @@ public:
|
|||
/// @name Advanced Constructors
|
||||
/// @{
|
||||
|
||||
Cal3DS2(const Vector &v) ;
|
||||
Cal3DS2(const Vector &v) : Base(v) {}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
|
@ -79,57 +71,6 @@ public:
|
|||
/// assert equality up to a tolerance
|
||||
bool equals(const Cal3DS2& K, double tol = 10e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/// focal length x
|
||||
inline double fx() const { return fx_;}
|
||||
|
||||
/// focal length x
|
||||
inline double fy() const { return fy_;}
|
||||
|
||||
/// skew
|
||||
inline double skew() const { return s_;}
|
||||
|
||||
/// image center in x
|
||||
inline double px() const { return u0_;}
|
||||
|
||||
/// image center in y
|
||||
inline double py() const { return v0_;}
|
||||
|
||||
/// First distortion coefficient
|
||||
inline double k1() const { return k1_;}
|
||||
|
||||
/// Second distortion coefficient
|
||||
inline double k2() const { return k2_;}
|
||||
|
||||
/// First tangential distortion coefficient
|
||||
inline double p1() const { return p1_;}
|
||||
|
||||
/// Second tangential distortion coefficient
|
||||
inline double p2() const { return p2_;}
|
||||
|
||||
/**
|
||||
* convert intrinsic coordinates xy to (distorted) image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in (distorted) image coordinates
|
||||
*/
|
||||
Point2 uncalibrate(const Point2& p,
|
||||
boost::optional<Matrix&> Dcal = boost::none,
|
||||
boost::optional<Matrix&> Dp = boost::none) const ;
|
||||
|
||||
/// Convert (distorted) image coordinates uv to intrinsic coordinates xy
|
||||
Point2 calibrate(const Point2& p, const double tol=1e-5) const;
|
||||
|
||||
/// Derivative of uncalibrate wrpt intrinsic coordinates
|
||||
Matrix D2d_intrinsic(const Point2& p) const ;
|
||||
|
||||
/// Derivative of uncalibrate wrpt the calibration parameters
|
||||
Matrix D2d_calibration(const Point2& p) const ;
|
||||
|
||||
/// @}
|
||||
/// @name Manifold
|
||||
/// @{
|
||||
|
@ -155,15 +96,10 @@ private:
|
|||
template<class Archive>
|
||||
void serialize(Archive & ar, const unsigned int version)
|
||||
{
|
||||
ar & BOOST_SERIALIZATION_NVP(fx_);
|
||||
ar & BOOST_SERIALIZATION_NVP(fy_);
|
||||
ar & BOOST_SERIALIZATION_NVP(s_);
|
||||
ar & BOOST_SERIALIZATION_NVP(u0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(v0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k2_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p2_);
|
||||
ar & boost::serialization::make_nvp("Cal3DS2",
|
||||
boost::serialization::base_object<Value>(*this));
|
||||
ar & boost::serialization::make_nvp("Cal3DS2",
|
||||
boost::serialization::base_object<Cal3DS2_Base>(*this));
|
||||
}
|
||||
|
||||
};
|
||||
|
|
|
@ -0,0 +1,187 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Cal3DS2_Base.cpp
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2_Base::Cal3DS2_Base(const Vector &v):
|
||||
fx_(v[0]), fy_(v[1]), s_(v[2]), u0_(v[3]), v0_(v[4]), k1_(v[5]), k2_(v[6]), p1_(v[7]), p2_(v[8]){}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::K() const {
|
||||
return (Matrix(3, 3) << fx_, s_, u0_, 0.0, fy_, v0_, 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Cal3DS2_Base::vector() const {
|
||||
return (Vector(9) << fx_, fy_, s_, u0_, v0_, k1_, k2_, p1_, p2_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Cal3DS2_Base::print(const std::string& s_) const {
|
||||
gtsam::print(K(), s_ + ".K");
|
||||
gtsam::print(Vector(k()), s_ + ".k");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Cal3DS2_Base::equals(const Cal3DS2_Base& K, double tol) const {
|
||||
if (fabs(fx_ - K.fx_) > tol || fabs(fy_ - K.fy_) > tol || fabs(s_ - K.s_) > tol ||
|
||||
fabs(u0_ - K.u0_) > tol || fabs(v0_ - K.v0_) > tol || fabs(k1_ - K.k1_) > tol ||
|
||||
fabs(k2_ - K.k2_) > tol || fabs(p1_ - K.p1_) > tol || fabs(p2_ - K.p2_) > tol)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Eigen::Matrix<double, 2, 9> D2dcalibration(double x, double y, double xx,
|
||||
double yy, double xy, double rr, double r4, double pnx, double pny,
|
||||
const Eigen::Matrix<double, 2, 2>& DK) {
|
||||
Eigen::Matrix<double, 2, 5> DR1;
|
||||
DR1 << pnx, 0.0, pny, 1.0, 0.0, 0.0, pny, 0.0, 0.0, 1.0;
|
||||
Eigen::Matrix<double, 2, 4> DR2;
|
||||
DR2 << x * rr, x * r4, 2 * xy, rr + 2 * xx, //
|
||||
y * rr, y * r4, rr + 2 * yy, 2 * xy;
|
||||
Eigen::Matrix<double, 2, 9> D;
|
||||
D << DR1, DK * DR2;
|
||||
return D;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Eigen::Matrix<double, 2, 2> D2dintrinsic(double x, double y, double rr,
|
||||
double g, double k1, double k2, double p1, double p2,
|
||||
const Eigen::Matrix<double, 2, 2>& DK) {
|
||||
const double drdx = 2. * x;
|
||||
const double drdy = 2. * y;
|
||||
const double dgdx = k1 * drdx + k2 * 2. * rr * drdx;
|
||||
const double dgdy = k1 * drdy + k2 * 2. * rr * drdy;
|
||||
|
||||
// Dx = 2*p1*xy + p2*(rr+2*xx);
|
||||
// Dy = 2*p2*xy + p1*(rr+2*yy);
|
||||
const double dDxdx = 2. * p1 * y + p2 * (drdx + 4. * x);
|
||||
const double dDxdy = 2. * p1 * x + p2 * drdy;
|
||||
const double dDydx = 2. * p2 * y + p1 * drdx;
|
||||
const double dDydy = 2. * p2 * x + p1 * (drdy + 4. * y);
|
||||
|
||||
Eigen::Matrix<double, 2, 2> DR;
|
||||
DR << g + x * dgdx + dDxdx, x * dgdy + dDxdy, //
|
||||
y * dgdx + dDydx, g + y * dgdy + dDydy;
|
||||
|
||||
return DK * DR;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2_Base::uncalibrate(const Point2& p, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2) const {
|
||||
|
||||
// rr = x^2 + y^2;
|
||||
// g = (1 + k(1)*rr + k(2)*rr^2);
|
||||
// dp = [2*k(3)*x*y + k(4)*(rr + 2*x^2); 2*k(4)*x*y + k(3)*(rr + 2*y^2)];
|
||||
// pi(:,i) = g * pn(:,i) + dp;
|
||||
const double x = p.x(), y = p.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = 1. + k1_ * rr + k2_ * r4; // scaling factor
|
||||
|
||||
// tangential component
|
||||
const double dx = 2. * p1_ * xy + p2_ * (rr + 2. * xx);
|
||||
const double dy = 2. * p2_ * xy + p1_ * (rr + 2. * yy);
|
||||
|
||||
// Radial and tangential distortion applied
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
if (H1 || H2) DK << fx_, s_, 0.0, fy_;
|
||||
|
||||
// Derivative for calibration
|
||||
if (H1)
|
||||
*H1 = D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
|
||||
// Derivative for points
|
||||
if (H2)
|
||||
*H2 = D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
|
||||
// Regular uncalibrate after distortion
|
||||
return Point2(fx_ * pnx + s_ * pny + u0_, fy_ * pny + v0_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2_Base::calibrate(const Point2& pi, const double tol) const {
|
||||
// Use the following fixed point iteration to invert the radial distortion.
|
||||
// pn_{t+1} = (inv(K)*pi - dp(pn_{t})) / g(pn_{t})
|
||||
|
||||
const Point2 invKPi ((1 / fx_) * (pi.x() - u0_ - (s_ / fy_) * (pi.y() - v0_)),
|
||||
(1 / fy_) * (pi.y() - v0_));
|
||||
|
||||
// initialize by ignoring the distortion at all, might be problematic for pixels around boundary
|
||||
Point2 pn = invKPi;
|
||||
|
||||
// iterate until the uncalibrate is close to the actual pixel coordinate
|
||||
const int maxIterations = 10;
|
||||
int iteration;
|
||||
for (iteration = 0; iteration < maxIterations; ++iteration) {
|
||||
if (uncalibrate(pn).distance(pi) <= tol) break;
|
||||
const double x = pn.x(), y = pn.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double g = (1 + k1_ * rr + k2_ * rr * rr);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
pn = (invKPi - Point2(dx, dy)) / g;
|
||||
}
|
||||
|
||||
if ( iteration >= maxIterations )
|
||||
throw std::runtime_error("Cal3DS2::calibrate fails to converge. need a better initialization");
|
||||
|
||||
return pn;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::D2d_intrinsic(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::D2d_calibration(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y, xy = x * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
}
|
||||
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -0,0 +1,158 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Cal3DS2.h
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @addtogroup geometry
|
||||
* \nosubgrouping
|
||||
*
|
||||
* Uses same distortionmodel as OpenCV, with
|
||||
* http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
|
||||
* but using only k1,k2,p1, and p2 coefficients.
|
||||
* K = [ fx s u0 ; 0 fy v0 ; 0 0 1 ]
|
||||
* rr = Pn.x^2 + Pn.y^2
|
||||
* \hat{pn} = (1 + k1*rr + k2*rr^2 ) pn + [ 2*k3 pn.x pn.y + k4 (rr + 2 Pn.x^2) ;
|
||||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3DS2_Base {
|
||||
|
||||
protected:
|
||||
|
||||
double fx_, fy_, s_, u0_, v0_ ; // focal length, skew and principal point
|
||||
double k1_, k2_ ; // radial 2nd-order and 4th-order
|
||||
double p1_, p2_ ; // tangential distortion
|
||||
|
||||
public:
|
||||
Matrix K() const ;
|
||||
Eigen::Vector4d k() const { return Eigen::Vector4d(k1_, k2_, p1_, p2_); }
|
||||
Vector vector() const ;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Default Constructor with only unit focal length
|
||||
Cal3DS2_Base() : fx_(1), fy_(1), s_(0), u0_(0), v0_(0), k1_(0), k2_(0), p1_(0), p2_(0) {}
|
||||
|
||||
Cal3DS2_Base(double fx, double fy, double s, double u0, double v0,
|
||||
double k1, double k2, double p1 = 0.0, double p2 = 0.0) :
|
||||
fx_(fx), fy_(fy), s_(s), u0_(u0), v0_(v0), k1_(k1), k2_(k2), p1_(p1), p2_(p2) {}
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Constructors
|
||||
/// @{
|
||||
|
||||
Cal3DS2_Base(const Vector &v) ;
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// print with optional string
|
||||
void print(const std::string& s = "") const ;
|
||||
|
||||
/// assert equality up to a tolerance
|
||||
bool equals(const Cal3DS2_Base& K, double tol = 10e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/// focal length x
|
||||
inline double fx() const { return fx_;}
|
||||
|
||||
/// focal length x
|
||||
inline double fy() const { return fy_;}
|
||||
|
||||
/// skew
|
||||
inline double skew() const { return s_;}
|
||||
|
||||
/// image center in x
|
||||
inline double px() const { return u0_;}
|
||||
|
||||
/// image center in y
|
||||
inline double py() const { return v0_;}
|
||||
|
||||
/// First distortion coefficient
|
||||
inline double k1() const { return k1_;}
|
||||
|
||||
/// Second distortion coefficient
|
||||
inline double k2() const { return k2_;}
|
||||
|
||||
/// First tangential distortion coefficient
|
||||
inline double p1() const { return p1_;}
|
||||
|
||||
/// Second tangential distortion coefficient
|
||||
inline double p2() const { return p2_;}
|
||||
|
||||
/**
|
||||
* convert intrinsic coordinates xy to (distorted) image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in (distorted) image coordinates
|
||||
*/
|
||||
Point2 uncalibrate(const Point2& p,
|
||||
boost::optional<Matrix&> Dcal = boost::none,
|
||||
boost::optional<Matrix&> Dp = boost::none) const ;
|
||||
|
||||
/// Convert (distorted) image coordinates uv to intrinsic coordinates xy
|
||||
Point2 calibrate(const Point2& p, const double tol=1e-5) const;
|
||||
|
||||
/// Derivative of uncalibrate wrpt intrinsic coordinates
|
||||
Matrix D2d_intrinsic(const Point2& p) const ;
|
||||
|
||||
/// Derivative of uncalibrate wrpt the calibration parameters
|
||||
Matrix D2d_calibration(const Point2& p) const ;
|
||||
|
||||
|
||||
private:
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class Archive>
|
||||
void serialize(Archive & ar, const unsigned int version)
|
||||
{
|
||||
ar & BOOST_SERIALIZATION_NVP(fx_);
|
||||
ar & BOOST_SERIALIZATION_NVP(fy_);
|
||||
ar & BOOST_SERIALIZATION_NVP(s_);
|
||||
ar & BOOST_SERIALIZATION_NVP(u0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(v0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k2_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p2_);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
|
@ -22,8 +22,8 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Cal3DS2.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -40,20 +40,18 @@ namespace gtsam {
|
|||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3Unified : public Cal3DS2 {
|
||||
class GTSAM_EXPORT Cal3Unified : public Cal3DS2_Base, public DerivedValue<Cal3Unified> {
|
||||
|
||||
typedef Cal3Unified This;
|
||||
typedef Cal3DS2 Base;
|
||||
typedef Cal3DS2_Base Base;
|
||||
|
||||
private:
|
||||
|
||||
double xi_; // mirror parameter
|
||||
|
||||
public:
|
||||
/// dimension of the variable - used to autodetect sizes
|
||||
static const size_t dimension = 10;
|
||||
|
||||
Vector vector() const ;
|
||||
Vector vector() const ;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
@ -91,7 +89,7 @@ public:
|
|||
/**
|
||||
* convert intrinsic coordinates xy to image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dcal optional 2*10 Jacobian wrpt Cal3Unified parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in image coordinates
|
||||
*/
|
||||
|
@ -131,6 +129,10 @@ private:
|
|||
template<class Archive>
|
||||
void serialize(Archive & ar, const unsigned int version)
|
||||
{
|
||||
ar & boost::serialization::make_nvp("Cal3Unified",
|
||||
boost::serialization::base_object<Value>(*this));
|
||||
ar & boost::serialization::make_nvp("Cal3Unified",
|
||||
boost::serialization::base_object<Cal3DS2_Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(xi_);
|
||||
}
|
||||
|
||||
|
|
|
@ -21,7 +21,16 @@
|
|||
#include <gtsam/geometry/Unit3.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
|
||||
#ifdef __clang__
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wunused-variable"
|
||||
#endif
|
||||
#include <boost/random/uniform_on_sphere.hpp>
|
||||
#ifdef __clang__
|
||||
# pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
#include <boost/random/variate_generator.hpp>
|
||||
#include <iostream>
|
||||
|
||||
|
@ -58,11 +67,11 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const Matrix& Unit3::basis() const {
|
||||
const Unit3::Matrix32& Unit3::basis() const {
|
||||
|
||||
// Return cached version if exists
|
||||
if (B_.rows() == 3)
|
||||
return B_;
|
||||
if (B_)
|
||||
return *B_;
|
||||
|
||||
// Get the axis of rotation with the minimum projected length of the point
|
||||
Point3 axis;
|
||||
|
@ -83,9 +92,9 @@ const Matrix& Unit3::basis() const {
|
|||
b2 = b2 / b2.norm();
|
||||
|
||||
// Create the basis matrix
|
||||
B_ = Matrix(3, 2);
|
||||
B_ << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
|
||||
return B_;
|
||||
B_.reset(Unit3::Matrix32());
|
||||
(*B_) << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
|
||||
return *B_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/optional.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -31,8 +32,10 @@ class GTSAM_EXPORT Unit3{
|
|||
|
||||
private:
|
||||
|
||||
typedef Eigen::Matrix<double,3,2> Matrix32;
|
||||
|
||||
Point3 p_; ///< The location of the point on the unit sphere
|
||||
mutable Matrix B_; ///< Cached basis
|
||||
mutable boost::optional<Matrix32> B_; ///< Cached basis
|
||||
|
||||
public:
|
||||
|
||||
|
@ -84,7 +87,7 @@ public:
|
|||
* It is a 3*2 matrix [b1 b2] composed of two orthogonal directions
|
||||
* tangent to the sphere at the current direction.
|
||||
*/
|
||||
const Matrix& basis() const;
|
||||
const Matrix32& basis() const;
|
||||
|
||||
/// Return skew-symmetric associated with 3D point on unit sphere
|
||||
Matrix skew() const;
|
||||
|
|
|
@ -19,6 +19,9 @@
|
|||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/geometry/Cal3Unified.h>
|
||||
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
GTSAM_CONCEPT_TESTABLE_INST(Cal3Unified)
|
||||
|
@ -97,6 +100,19 @@ TEST( Cal3Unified, retract)
|
|||
CHECK(assert_equal(d,K.localCoordinates(actual),1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Cal3Unified, DerivedValue)
|
||||
{
|
||||
Values values;
|
||||
Cal3Unified cal(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
|
||||
Key key = 1;
|
||||
values.insert(key, cal);
|
||||
|
||||
Cal3Unified calafter = values.at<Cal3Unified>(key);
|
||||
|
||||
CHECK(assert_equal(cal,calafter,1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -183,25 +183,30 @@ TEST( PinholeCamera, Dproject)
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
//static Point2 projectInfinity3(const Pose3& pose, const Point2& point2D, const Cal3_S2& cal) {
|
||||
// Point3 point(point2D.x(), point2D.y(), 1.0);
|
||||
// return Camera(pose,cal).projectPointAtInfinity(point);
|
||||
//}
|
||||
//
|
||||
//TEST( PinholeCamera, Dproject_Infinity)
|
||||
//{
|
||||
// Matrix Dpose, Dpoint, Dcal;
|
||||
// Point2 point2D(-0.08,-0.08);
|
||||
// Point3 point3D(point1.x(), point1.y(), 1.0);
|
||||
// Point2 result = camera.projectPointAtInfinity(point3D, Dpose, Dpoint, Dcal);
|
||||
// Matrix numerical_pose = numericalDerivative31(projectInfinity3, pose1, point2D, K);
|
||||
// Matrix numerical_point = numericalDerivative32(projectInfinity3, pose1, point2D, K);
|
||||
// Matrix numerical_cal = numericalDerivative33(projectInfinity3, pose1, point2D, K);
|
||||
// CHECK(assert_equal(numerical_pose, Dpose, 1e-7));
|
||||
// CHECK(assert_equal(numerical_point, Dpoint, 1e-7));
|
||||
// CHECK(assert_equal(numerical_cal, Dcal, 1e-7));
|
||||
//}
|
||||
//
|
||||
static Point2 projectInfinity3(const Pose3& pose, const Point3& point3D, const Cal3_S2& cal) {
|
||||
return Camera(pose,cal).projectPointAtInfinity(point3D);
|
||||
}
|
||||
|
||||
TEST( PinholeCamera, Dproject_Infinity)
|
||||
{
|
||||
Matrix Dpose, Dpoint, Dcal;
|
||||
Point3 point3D(point1.x(), point1.y(), -10.0); // a point in front of the camera
|
||||
|
||||
// test Projection
|
||||
Point2 actual = camera.projectPointAtInfinity(point3D, Dpose, Dpoint, Dcal);
|
||||
Point2 expected(-5.0, 5.0);
|
||||
CHECK(assert_equal(actual, expected, 1e-7));
|
||||
|
||||
// test Jacobians
|
||||
Matrix numerical_pose = numericalDerivative31(projectInfinity3, pose1, point3D, K);
|
||||
Matrix numerical_point = numericalDerivative32(projectInfinity3, pose1, point3D, K);
|
||||
Matrix numerical_point2x2 = numerical_point.block(0,0,2,2); // only the direction to the point matters
|
||||
Matrix numerical_cal = numericalDerivative33(projectInfinity3, pose1, point3D, K);
|
||||
CHECK(assert_equal(numerical_pose, Dpose, 1e-7));
|
||||
CHECK(assert_equal(numerical_point2x2, Dpoint, 1e-7));
|
||||
CHECK(assert_equal(numerical_cal, Dcal, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Point2 project4(const Camera& camera, const Point3& point) {
|
||||
return camera.project2(point);
|
||||
|
|
|
@ -184,7 +184,15 @@ TEST(Rot3, log)
|
|||
CHECK_OMEGA( PI, 0, 0)
|
||||
CHECK_OMEGA( 0, PI, 0)
|
||||
CHECK_OMEGA( 0, 0, PI)
|
||||
|
||||
// Windows and Linux have flipped sign in quaternion mode
|
||||
#if !defined(__APPLE__) && defined (GTSAM_USE_QUATERNIONS)
|
||||
w = (Vector(3) << x*PI, y*PI, z*PI);
|
||||
R = Rot3::rodriguez(w);
|
||||
EXPECT(assert_equal(Vector(-w), Rot3::Logmap(R),1e-12));
|
||||
#else
|
||||
CHECK_OMEGA(x*PI,y*PI,z*PI)
|
||||
#endif
|
||||
|
||||
// Check 360 degree rotations
|
||||
#define CHECK_OMEGA_ZERO(X,Y,Z) \
|
||||
|
|
|
@ -37,7 +37,6 @@ GTSAM_CONCEPT_LIE_INST(Rot3)
|
|||
|
||||
static Rot3 R = Rot3::rodriguez(0.1, 0.4, 0.2);
|
||||
static Point3 P(0.2, 0.7, -2.0);
|
||||
static double error = 1e-9, epsilon = 0.001;
|
||||
static const Matrix I3 = eye(3);
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/geometry/Cal3DS2.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
#include <gtsam/geometry/Cal3Unified.h>
|
||||
#include <gtsam/geometry/StereoCamera.h>
|
||||
#include <gtsam/geometry/StereoPoint2.h>
|
||||
|
||||
|
@ -46,6 +47,7 @@ static Cal3Bundler cal3(1.0, 2.0, 3.0);
|
|||
static Cal3_S2Stereo cal4(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
|
||||
static Cal3_S2Stereo::shared_ptr cal4ptr(new Cal3_S2Stereo(cal4));
|
||||
static CalibratedCamera cal5(Pose3(rt3, pt3));
|
||||
static Cal3Unified cal6(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0);
|
||||
|
||||
static PinholeCamera<Cal3_S2> cam1(pose3, cal1);
|
||||
static StereoCamera cam2(pose3, cal4ptr);
|
||||
|
@ -66,6 +68,7 @@ TEST (Serialization, text_geometry) {
|
|||
EXPECT(equalsObj(cal3));
|
||||
EXPECT(equalsObj(cal4));
|
||||
EXPECT(equalsObj(cal5));
|
||||
EXPECT(equalsObj(cal6));
|
||||
|
||||
EXPECT(equalsObj(cam1));
|
||||
EXPECT(equalsObj(cam2));
|
||||
|
|
|
@ -174,7 +174,7 @@ Point3 triangulateNonlinear(
|
|||
* @param poses A vector of camera poses
|
||||
* @param sharedCal shared pointer to single calibration object
|
||||
* @param measurements A vector of camera measurements
|
||||
* @param rank tolerance, default 1e-9
|
||||
* @param rank_tol rank tolerance, default 1e-9
|
||||
* @param optimize Flag to turn on nonlinear refinement of triangulation
|
||||
* @return Returns a Point3
|
||||
*/
|
||||
|
@ -222,7 +222,7 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
* no other checks to verify the quality of the triangulation.
|
||||
* @param cameras pinhole cameras
|
||||
* @param measurements A vector of camera measurements
|
||||
* @param rank tolerance, default 1e-9
|
||||
* @param rank_tol rank tolerance, default 1e-9
|
||||
* @param optimize Flag to turn on nonlinear refinement of triangulation
|
||||
* @return Returns a Point3
|
||||
*/
|
||||
|
|
|
@ -111,7 +111,7 @@ namespace gtsam {
|
|||
* assumed to have already been solved in and their values are read from \c x.
|
||||
* This function works for multiple frontal variables.
|
||||
*
|
||||
* Given the Gaussian conditional with log likelihood \f$ |R x_f - (d - S x_s)|^2,
|
||||
* Given the Gaussian conditional with log likelihood \f$ |R x_f - (d - S x_s)|^2 \f$,
|
||||
* where \f$ f \f$ are the frontal variables and \f$ s \f$ are the separator
|
||||
* variables of this conditional, this solve function computes
|
||||
* \f$ x_f = R^{-1} (d - S x_s) \f$ using back-substitution.
|
||||
|
|
|
@ -85,7 +85,7 @@ namespace gtsam {
|
|||
dims_accumulated.resize(dims.size()+1,0);
|
||||
dims_accumulated[0]=0;
|
||||
for (size_t i=1; i<dims_accumulated.size(); i++)
|
||||
dims_accumulated[i] = dims_accumulated[i-1]+dims[i-1];
|
||||
dims_accumulated[i] = dims_accumulated[i-1]+dims[i-1];
|
||||
return dims_accumulated;
|
||||
}
|
||||
|
||||
|
@ -358,8 +358,8 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
void GaussianFactorGraph::multiplyHessianAdd(double alpha,
|
||||
const double* x, double* y) const {
|
||||
vector<size_t> FactorKeys = getkeydim();
|
||||
BOOST_FOREACH(const GaussianFactor::shared_ptr& f, *this)
|
||||
vector<size_t> FactorKeys = getkeydim();
|
||||
BOOST_FOREACH(const GaussianFactor::shared_ptr& f, *this)
|
||||
f->multiplyHessianAdd(alpha, x, y, FactorKeys);
|
||||
|
||||
}
|
||||
|
|
|
@ -538,7 +538,7 @@ void HessianFactor::multiplyHessianAdd(double alpha, const VectorValues& x,
|
|||
|
||||
// copy to yvalues
|
||||
for(DenseIndex i = 0; i < (DenseIndex)size(); ++i) {
|
||||
bool didNotExist;
|
||||
bool didNotExist;
|
||||
VectorValues::iterator it;
|
||||
boost::tie(it, didNotExist) = yvalues.tryInsert(keys_[i], Vector());
|
||||
if (didNotExist)
|
||||
|
|
|
@ -344,12 +344,12 @@ namespace gtsam {
|
|||
|
||||
/** Constructor */
|
||||
CombinedImuFactor(
|
||||
Key pose_i, ///< previous pose key
|
||||
Key vel_i, ///< previous velocity key
|
||||
Key pose_j, ///< current pose key
|
||||
Key vel_j, ///< current velocity key
|
||||
Key bias_i, ///< previous bias key
|
||||
Key bias_j, ///< current bias key
|
||||
Key pose_i, ///< previous pose key
|
||||
Key vel_i, ///< previous velocity key
|
||||
Key pose_j, ///< current pose key
|
||||
Key vel_j, ///< current velocity key
|
||||
Key bias_i, ///< previous bias key
|
||||
Key bias_j, ///< current bias key
|
||||
const CombinedPreintegratedMeasurements& preintegratedMeasurements, ///< Preintegrated IMU measurements
|
||||
const Vector3& gravity, ///< gravity vector
|
||||
const Vector3& omegaCoriolis, ///< rotation rate of inertial frame
|
||||
|
@ -479,33 +479,33 @@ namespace gtsam {
|
|||
Matrix3 dfPdPi;
|
||||
Matrix3 dfVdPi;
|
||||
if(use2ndOrderCoriolis_){
|
||||
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
|
||||
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
|
||||
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
|
||||
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
|
||||
}
|
||||
else{
|
||||
dfPdPi = - Rot_i.matrix();
|
||||
dfVdPi = Matrix3::Zero();
|
||||
dfPdPi = - Rot_i.matrix();
|
||||
dfVdPi = Matrix3::Zero();
|
||||
}
|
||||
|
||||
(*H1) <<
|
||||
// dfP/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
|
||||
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
|
||||
// dfP/dPi
|
||||
dfPdPi,
|
||||
// dfV/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
|
||||
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
|
||||
// dfV/dPi
|
||||
dfVdPi,
|
||||
// dfR/dRi
|
||||
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
|
||||
// dfR/dPi
|
||||
Matrix3::Zero(),
|
||||
//dBiasAcc/dPi
|
||||
Matrix3::Zero(), Matrix3::Zero(),
|
||||
//dBiasOmega/dPi
|
||||
Matrix3::Zero(), Matrix3::Zero();
|
||||
(*H1) <<
|
||||
// dfP/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
|
||||
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
|
||||
// dfP/dPi
|
||||
dfPdPi,
|
||||
// dfV/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
|
||||
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
|
||||
// dfV/dPi
|
||||
dfVdPi,
|
||||
// dfR/dRi
|
||||
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
|
||||
// dfR/dPi
|
||||
Matrix3::Zero(),
|
||||
//dBiasAcc/dPi
|
||||
Matrix3::Zero(), Matrix3::Zero(),
|
||||
//dBiasOmega/dPi
|
||||
Matrix3::Zero(), Matrix3::Zero();
|
||||
}
|
||||
|
||||
if(H2) {
|
||||
|
@ -516,13 +516,13 @@ namespace gtsam {
|
|||
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
// dfV/dVi
|
||||
- Matrix3::Identity()
|
||||
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
|
||||
// dfR/dVi
|
||||
Matrix3::Zero(),
|
||||
//dBiasAcc/dVi
|
||||
Matrix3::Zero(),
|
||||
//dBiasOmega/dVi
|
||||
Matrix3::Zero();
|
||||
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
|
||||
// dfR/dVi
|
||||
Matrix3::Zero(),
|
||||
//dBiasAcc/dVi
|
||||
Matrix3::Zero(),
|
||||
//dBiasOmega/dVi
|
||||
Matrix3::Zero();
|
||||
}
|
||||
|
||||
if(H3) {
|
||||
|
@ -642,21 +642,21 @@ namespace gtsam {
|
|||
// Predict state at time j
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
|
||||
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
|
||||
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
|
||||
+ vel_i * deltaTij
|
||||
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
+ 0.5 * gravity * deltaTij*deltaTij;
|
||||
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
|
||||
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
|
||||
+ vel_i * deltaTij
|
||||
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
+ 0.5 * gravity * deltaTij*deltaTij;
|
||||
|
||||
vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
|
||||
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
|
||||
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
|
||||
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
|
||||
+ gravity * deltaTij);
|
||||
vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
|
||||
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
|
||||
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
|
||||
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
|
||||
+ gravity * deltaTij);
|
||||
|
||||
if(use2ndOrderCoriolis){
|
||||
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
|
||||
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
|
||||
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
|
||||
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
|
||||
}
|
||||
|
||||
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
|
||||
|
|
|
@ -307,11 +307,11 @@ namespace gtsam {
|
|||
|
||||
/** Constructor */
|
||||
ImuFactor(
|
||||
Key pose_i, ///< previous pose key
|
||||
Key vel_i, ///< previous velocity key
|
||||
Key pose_j, ///< current pose key
|
||||
Key vel_j, ///< current velocity key
|
||||
Key bias, ///< previous bias key
|
||||
Key pose_i, ///< previous pose key
|
||||
Key vel_i, ///< previous velocity key
|
||||
Key pose_j, ///< current pose key
|
||||
Key vel_j, ///< current velocity key
|
||||
Key bias, ///< previous bias key
|
||||
const PreintegratedMeasurements& preintegratedMeasurements, ///< preintegrated IMU measurements
|
||||
const Vector3& gravity, ///< gravity vector
|
||||
const Vector3& omegaCoriolis, ///< rotation rate of the inertial frame
|
||||
|
@ -418,29 +418,29 @@ namespace gtsam {
|
|||
Matrix3 dfPdPi;
|
||||
Matrix3 dfVdPi;
|
||||
if(use2ndOrderCoriolis_){
|
||||
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
|
||||
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
|
||||
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
|
||||
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
|
||||
}
|
||||
else{
|
||||
dfPdPi = - Rot_i.matrix();
|
||||
dfVdPi = Matrix3::Zero();
|
||||
dfPdPi = - Rot_i.matrix();
|
||||
dfVdPi = Matrix3::Zero();
|
||||
}
|
||||
|
||||
(*H1) <<
|
||||
// dfP/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
|
||||
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
|
||||
// dfP/dPi
|
||||
dfPdPi,
|
||||
// dfV/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
|
||||
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
|
||||
// dfV/dPi
|
||||
dfVdPi,
|
||||
// dfR/dRi
|
||||
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
|
||||
// dfR/dPi
|
||||
Matrix3::Zero();
|
||||
(*H1) <<
|
||||
// dfP/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
|
||||
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
|
||||
// dfP/dPi
|
||||
dfPdPi,
|
||||
// dfV/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
|
||||
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
|
||||
// dfV/dPi
|
||||
dfVdPi,
|
||||
// dfR/dRi
|
||||
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
|
||||
// dfR/dPi
|
||||
Matrix3::Zero();
|
||||
}
|
||||
|
||||
if(H2) {
|
||||
|
@ -539,22 +539,22 @@ namespace gtsam {
|
|||
|
||||
// Predict state at time j
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
|
||||
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
|
||||
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
|
||||
+ vel_i * deltaTij
|
||||
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
+ 0.5 * gravity * deltaTij*deltaTij;
|
||||
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
|
||||
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
|
||||
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
|
||||
+ vel_i * deltaTij
|
||||
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
+ 0.5 * gravity * deltaTij*deltaTij;
|
||||
|
||||
vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
|
||||
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
|
||||
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
|
||||
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
|
||||
+ gravity * deltaTij);
|
||||
vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
|
||||
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
|
||||
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
|
||||
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
|
||||
+ gravity * deltaTij);
|
||||
|
||||
if(use2ndOrderCoriolis){
|
||||
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
|
||||
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
|
||||
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
|
||||
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
|
||||
}
|
||||
|
||||
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
|
||||
|
|
|
@ -176,11 +176,11 @@ void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
|
|||
stm << "];\n";
|
||||
|
||||
if (firstTimePoses) {
|
||||
lastKey = key;
|
||||
firstTimePoses = false;
|
||||
lastKey = key;
|
||||
firstTimePoses = false;
|
||||
} else {
|
||||
stm << " var" << key << "--" << "var" << lastKey << ";\n";
|
||||
lastKey = key;
|
||||
stm << " var" << key << "--" << "var" << lastKey << ";\n";
|
||||
lastKey = key;
|
||||
}
|
||||
}
|
||||
stm << "\n";
|
||||
|
@ -219,37 +219,37 @@ void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
|
|||
// Create factors and variable connections
|
||||
for(size_t i = 0; i < this->size(); ++i) {
|
||||
if(graphvizFormatting.plotFactorPoints){
|
||||
// Make each factor a dot
|
||||
stm << " factor" << i << "[label=\"\", shape=point";
|
||||
{
|
||||
map<size_t, Point2>::const_iterator pos = graphvizFormatting.factorPositions.find(i);
|
||||
if(pos != graphvizFormatting.factorPositions.end())
|
||||
stm << ", pos=\"" << graphvizFormatting.scale*(pos->second.x() - minX) << "," << graphvizFormatting.scale*(pos->second.y() - minY) << "!\"";
|
||||
}
|
||||
stm << "];\n";
|
||||
// Make each factor a dot
|
||||
stm << " factor" << i << "[label=\"\", shape=point";
|
||||
{
|
||||
map<size_t, Point2>::const_iterator pos = graphvizFormatting.factorPositions.find(i);
|
||||
if(pos != graphvizFormatting.factorPositions.end())
|
||||
stm << ", pos=\"" << graphvizFormatting.scale*(pos->second.x() - minX) << "," << graphvizFormatting.scale*(pos->second.y() - minY) << "!\"";
|
||||
}
|
||||
stm << "];\n";
|
||||
|
||||
// Make factor-variable connections
|
||||
if(graphvizFormatting.connectKeysToFactor && this->at(i)) {
|
||||
BOOST_FOREACH(Key key, *this->at(i)) {
|
||||
stm << " var" << key << "--" << "factor" << i << ";\n";
|
||||
}
|
||||
}
|
||||
// Make factor-variable connections
|
||||
if(graphvizFormatting.connectKeysToFactor && this->at(i)) {
|
||||
BOOST_FOREACH(Key key, *this->at(i)) {
|
||||
stm << " var" << key << "--" << "factor" << i << ";\n";
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(this->at(i)) {
|
||||
Key k;
|
||||
bool firstTime = true;
|
||||
BOOST_FOREACH(Key key, *this->at(i)) {
|
||||
if(firstTime){
|
||||
k = key;
|
||||
firstTime = false;
|
||||
continue;
|
||||
}
|
||||
stm << " var" << key << "--" << "var" << k << ";\n";
|
||||
k = key;
|
||||
}
|
||||
}
|
||||
if(this->at(i)) {
|
||||
Key k;
|
||||
bool firstTime = true;
|
||||
BOOST_FOREACH(Key key, *this->at(i)) {
|
||||
if(firstTime){
|
||||
k = key;
|
||||
firstTime = false;
|
||||
continue;
|
||||
}
|
||||
stm << " var" << key << "--" << "var" << k << ";\n";
|
||||
k = key;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -77,9 +77,11 @@ void NonlinearOptimizer::defaultOptimize() {
|
|||
params.errorTol, currentError, this->error(), params.verbosity));
|
||||
|
||||
// Printing if verbose
|
||||
if (params.verbosity >= NonlinearOptimizerParams::TERMINATION &&
|
||||
this->iterations() >= params.maxIterations)
|
||||
cout << "Terminating because reached maximum iterations" << endl;
|
||||
if (params.verbosity >= NonlinearOptimizerParams::TERMINATION) {
|
||||
cout << "iterations: " << this->iterations() << " >? " << params.maxIterations << endl;
|
||||
if (this->iterations() >= params.maxIterations)
|
||||
cout << "Terminating because reached maximum iterations" << endl;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -28,6 +28,7 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key Essential Matrix variable key
|
||||
* @param pA point in first camera, in calibrated coordinates
|
||||
* @param pB point in second camera, in calibrated coordinates
|
||||
* @param model noise model is about dot product in ideal, homogeneous coordinates
|
||||
|
@ -41,6 +42,7 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key Essential Matrix variable key
|
||||
* @param pA point in first camera, in pixel coordinates
|
||||
* @param pB point in second camera, in pixel coordinates
|
||||
* @param model noise model is about dot product in ideal, homogeneous coordinates
|
||||
|
@ -97,6 +99,8 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key1 Essential Matrix variable key
|
||||
* @param key2 Inverse depth variable key
|
||||
* @param pA point in first camera, in calibrated coordinates
|
||||
* @param pB point in second camera, in calibrated coordinates
|
||||
* @param model noise model should be in pixels, as well
|
||||
|
@ -111,6 +115,8 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key1 Essential Matrix variable key
|
||||
* @param key2 Inverse depth variable key
|
||||
* @param pA point in first camera, in pixel coordinates
|
||||
* @param pB point in second camera, in pixel coordinates
|
||||
* @param K calibration object, will be used only in constructor
|
||||
|
@ -216,6 +222,8 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key1 Essential Matrix variable key
|
||||
* @param key2 Inverse depth variable key
|
||||
* @param pA point in first camera, in calibrated coordinates
|
||||
* @param pB point in second camera, in calibrated coordinates
|
||||
* @param bRc extra rotation between "body" and "camera" frame
|
||||
|
@ -228,6 +236,8 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key1 Essential Matrix variable key
|
||||
* @param key2 Inverse depth variable key
|
||||
* @param pA point in first camera, in pixel coordinates
|
||||
* @param pB point in second camera, in pixel coordinates
|
||||
* @param K calibration object, will be used only in constructor
|
||||
|
|
|
@ -80,7 +80,7 @@ public:
|
|||
}
|
||||
|
||||
/// Get matrix P
|
||||
inline const Matrix& getPointCovariance() const {
|
||||
inline const Matrix3& getPointCovariance() const {
|
||||
return PointCovariance_;
|
||||
}
|
||||
|
||||
|
@ -285,26 +285,27 @@ public:
|
|||
return 0.5 * (result + f);
|
||||
}
|
||||
|
||||
/// needed to be GaussianFactor - (I - E*P*E')*(F*x - b)
|
||||
// This is wrong and does not match the definition in Hessian
|
||||
// virtual double error(const VectorValues& x) const {
|
||||
//
|
||||
// // resize does not do malloc if correct size
|
||||
// e1.resize(size());
|
||||
// e2.resize(size());
|
||||
//
|
||||
// // e1 = F * x - b = (2m*dm)*dm
|
||||
// for (size_t k = 0; k < size(); ++k)
|
||||
// e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment < 2 > (k * 2);
|
||||
// projectError(e1, e2);
|
||||
//
|
||||
// double result = 0;
|
||||
// for (size_t k = 0; k < size(); ++k)
|
||||
// result += dot(e2[k], e2[k]);
|
||||
//
|
||||
// std::cout << "implicitFactor::error result " << result << std::endl;
|
||||
// return 0.5 * result;
|
||||
// }
|
||||
// needed to be GaussianFactor - (I - E*P*E')*(F*x - b)
|
||||
// This is wrong and does not match the definition in Hessian,
|
||||
// but it matches the definition of the Jacobian factor (JF)
|
||||
double errorJF(const VectorValues& x) const {
|
||||
|
||||
// resize does not do malloc if correct size
|
||||
e1.resize(size());
|
||||
e2.resize(size());
|
||||
|
||||
// e1 = F * x - b = (2m*dm)*dm
|
||||
for (size_t k = 0; k < size(); ++k)
|
||||
e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment < 2 > (k * 2);
|
||||
projectError(e1, e2);
|
||||
|
||||
double result = 0;
|
||||
for (size_t k = 0; k < size(); ++k)
|
||||
result += dot(e2[k], e2[k]);
|
||||
|
||||
// std::cout << "implicitFactor::error result " << result << std::endl;
|
||||
return 0.5 * result;
|
||||
}
|
||||
/**
|
||||
* @brief Calculate corrected error Q*e = (I - E*P*E')*e
|
||||
*/
|
||||
|
|
|
@ -0,0 +1,410 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file InitializePose3.h
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date August, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/timing.h>
|
||||
|
||||
#include <boost/math/special_functions.hpp>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
namespace InitializePose3 {
|
||||
|
||||
//static const Matrix I = eye(1);
|
||||
static const Matrix I9 = eye(9);
|
||||
static const Vector zero9 = Vector::Zero(9);
|
||||
static const Matrix zero33= Matrix::Zero(3,3);
|
||||
|
||||
static const Key keyAnchor = symbol('Z', 9999999);
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactorGraph buildLinearOrientationGraph(const NonlinearFactorGraph& g) {
|
||||
|
||||
GaussianFactorGraph linearGraph;
|
||||
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(9);
|
||||
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g) {
|
||||
Matrix3 Rij;
|
||||
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between)
|
||||
Rij = pose3Between->measured().rotation().matrix();
|
||||
else
|
||||
std::cout << "Error in buildLinearOrientationGraph" << std::endl;
|
||||
|
||||
// std::cout << "Rij \n" << Rij << std::endl;
|
||||
|
||||
const FastVector<Key>& keys = factor->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
Matrix M9 = Matrix::Zero(9,9);
|
||||
M9.block(0,0,3,3) = Rij;
|
||||
M9.block(3,3,3,3) = Rij;
|
||||
M9.block(6,6,3,3) = Rij;
|
||||
linearGraph.add(key1, -I9, key2, M9, zero9, model);
|
||||
}
|
||||
// prior on the anchor orientation
|
||||
linearGraph.add(keyAnchor, I9, (Vector(9) << 1.0, 0.0, 0.0,/* */ 0.0, 1.0, 0.0, /* */ 0.0, 0.0, 1.0), model);
|
||||
return linearGraph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Transform VectorValues into valid Rot3
|
||||
Values normalizeRelaxedRotations(const VectorValues& relaxedRot3) {
|
||||
gttic(InitializePose3_computeOrientationsChordal);
|
||||
|
||||
Matrix ppm = Matrix::Zero(3,3); // plus plus minus
|
||||
ppm(0,0) = 1; ppm(1,1) = 1; ppm(2,2) = -1;
|
||||
|
||||
Values validRot3;
|
||||
BOOST_FOREACH(const VectorValues::value_type& it, relaxedRot3) {
|
||||
Key key = it.first;
|
||||
if (key != keyAnchor) {
|
||||
const Vector& rotVector = it.second;
|
||||
Matrix3 rotMat;
|
||||
rotMat(0,0) = rotVector(0); rotMat(0,1) = rotVector(1); rotMat(0,2) = rotVector(2);
|
||||
rotMat(1,0) = rotVector(3); rotMat(1,1) = rotVector(4); rotMat(1,2) = rotVector(5);
|
||||
rotMat(2,0) = rotVector(6); rotMat(2,1) = rotVector(7); rotMat(2,2) = rotVector(8);
|
||||
|
||||
Matrix U, V; Vector s;
|
||||
svd(rotMat, U, s, V);
|
||||
Matrix3 normalizedRotMat = U * V.transpose();
|
||||
|
||||
// std::cout << "rotMat \n" << rotMat << std::endl;
|
||||
// std::cout << "U V' \n" << U * V.transpose() << std::endl;
|
||||
// std::cout << "V \n" << V << std::endl;
|
||||
|
||||
if(normalizedRotMat.determinant() < 0)
|
||||
normalizedRotMat = U * ppm * V.transpose();
|
||||
|
||||
Rot3 initRot = Rot3(normalizedRotMat);
|
||||
validRot3.insert(key, initRot);
|
||||
}
|
||||
}
|
||||
return validRot3;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Select the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
|
||||
NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph) {
|
||||
gttic(InitializePose3_buildPose3graph);
|
||||
NonlinearFactorGraph pose3Graph;
|
||||
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph) {
|
||||
|
||||
// recast to a between on Pose3
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between)
|
||||
pose3Graph.add(pose3Between);
|
||||
|
||||
// recast PriorFactor<Pose3> to BetweenFactor<Pose3>
|
||||
boost::shared_ptr<PriorFactor<Pose3> > pose3Prior =
|
||||
boost::dynamic_pointer_cast<PriorFactor<Pose3> >(factor);
|
||||
if (pose3Prior)
|
||||
pose3Graph.add(
|
||||
BetweenFactor<Pose3>(keyAnchor, pose3Prior->keys()[0],
|
||||
pose3Prior->prior(), pose3Prior->get_noiseModel()));
|
||||
}
|
||||
return pose3Graph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Return the orientations of a graph including only BetweenFactors<Pose3>
|
||||
Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph) {
|
||||
gttic(InitializePose3_computeOrientationsChordal);
|
||||
|
||||
// regularize measurements and plug everything in a factor graph
|
||||
GaussianFactorGraph relaxedGraph = buildLinearOrientationGraph(pose3Graph);
|
||||
|
||||
// Solve the LFG
|
||||
VectorValues relaxedRot3 = relaxedGraph.optimize();
|
||||
|
||||
// normalize and compute Rot3
|
||||
return normalizeRelaxedRotations(relaxedRot3);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Return the orientations of a graph including only BetweenFactors<Pose3>
|
||||
Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const Values& givenGuess, const size_t maxIter, const bool setRefFrame) {
|
||||
gttic(InitializePose3_computeOrientationsGradient);
|
||||
|
||||
// this works on the inverse rotations, according to Tron&Vidal,2011
|
||||
Values inverseRot;
|
||||
inverseRot.insert(keyAnchor, Rot3());
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, givenGuess) {
|
||||
Key key = key_value.key;
|
||||
const Pose3& pose = givenGuess.at<Pose3>(key);
|
||||
inverseRot.insert(key, pose.rotation().inverse());
|
||||
}
|
||||
|
||||
// Create the map of edges incident on each node
|
||||
KeyVectorMap adjEdgesMap;
|
||||
KeyRotMap factorId2RotMap;
|
||||
|
||||
createSymbolicGraph(adjEdgesMap, factorId2RotMap, pose3Graph);
|
||||
|
||||
// calculate max node degree & allocate gradient
|
||||
size_t maxNodeDeg = 0;
|
||||
VectorValues grad;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, inverseRot) {
|
||||
Key key = key_value.key;
|
||||
grad.insert(key,Vector3::Zero());
|
||||
size_t currNodeDeg = (adjEdgesMap.at(key)).size();
|
||||
if(currNodeDeg > maxNodeDeg)
|
||||
maxNodeDeg = currNodeDeg;
|
||||
}
|
||||
|
||||
// Create parameters
|
||||
double b = 1;
|
||||
double f0 = 1/b - (1/b + M_PI) * exp(-b*M_PI);
|
||||
double a = (M_PI*M_PI)/(2*f0);
|
||||
double rho = 2*a*b;
|
||||
double mu_max = maxNodeDeg * rho;
|
||||
double stepsize = 2/mu_max; // = 1/(a b dG)
|
||||
|
||||
std::cout <<" b " << b <<" f0 " << f0 <<" a " << a <<" rho " << rho <<" stepsize " << stepsize << " maxNodeDeg "<< maxNodeDeg << std::endl;
|
||||
double maxGrad;
|
||||
// gradient iterations
|
||||
size_t it;
|
||||
for(it=0; it < maxIter; it++){
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compute the gradient at each node
|
||||
//std::cout << "it " << it <<" b " << b <<" f0 " << f0 <<" a " << a
|
||||
// <<" rho " << rho <<" stepsize " << stepsize << " maxNodeDeg "<< maxNodeDeg << std::endl;
|
||||
maxGrad = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, inverseRot) {
|
||||
Key key = key_value.key;
|
||||
//std::cout << "---------------------------key " << DefaultKeyFormatter(key) << std::endl;
|
||||
Vector gradKey = Vector3::Zero();
|
||||
// collect the gradient for each edge incident on key
|
||||
BOOST_FOREACH(const size_t& factorId, adjEdgesMap.at(key)){
|
||||
Rot3 Rij = factorId2RotMap.at(factorId);
|
||||
Rot3 Ri = inverseRot.at<Rot3>(key);
|
||||
if( key == (pose3Graph.at(factorId))->keys()[0] ){
|
||||
Key key1 = (pose3Graph.at(factorId))->keys()[1];
|
||||
Rot3 Rj = inverseRot.at<Rot3>(key1);
|
||||
gradKey = gradKey + gradientTron(Ri, Rij * Rj, a, b);
|
||||
//std::cout << "key1 " << DefaultKeyFormatter(key1) << " gradientTron(Ri, Rij * Rj, a, b) \n " << gradientTron(Ri, Rij * Rj, a, b) << std::endl;
|
||||
}else if( key == (pose3Graph.at(factorId))->keys()[1] ){
|
||||
Key key0 = (pose3Graph.at(factorId))->keys()[0];
|
||||
Rot3 Rj = inverseRot.at<Rot3>(key0);
|
||||
gradKey = gradKey + gradientTron(Ri, Rij.between(Rj), a, b);
|
||||
//std::cout << "key0 " << DefaultKeyFormatter(key0) << " gradientTron(Ri, Rij.inverse() * Rj, a, b) \n " << gradientTron(Ri, Rij.between(Rj), a, b) << std::endl;
|
||||
}else{
|
||||
std::cout << "Error in gradient computation" << std::endl;
|
||||
}
|
||||
} // end of i-th gradient computation
|
||||
grad.at(key) = stepsize * gradKey;
|
||||
|
||||
double normGradKey = (gradKey).norm();
|
||||
//std::cout << "key " << DefaultKeyFormatter(key) <<" \n grad \n" << grad.at(key) << std::endl;
|
||||
if(normGradKey>maxGrad)
|
||||
maxGrad = normGradKey;
|
||||
} // end of loop over nodes
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// update estimates
|
||||
inverseRot = inverseRot.retract(grad);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// check stopping condition
|
||||
if (it>20 && maxGrad < 5e-3)
|
||||
break;
|
||||
} // enf of gradient iterations
|
||||
|
||||
std::cout << "nr of gradient iterations " << it << "maxGrad " << maxGrad << std::endl;
|
||||
|
||||
// Return correct rotations
|
||||
const Rot3& Rref = inverseRot.at<Rot3>(keyAnchor); // This will be set to the identity as so far we included no prior
|
||||
Values estimateRot;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, inverseRot) {
|
||||
Key key = key_value.key;
|
||||
if (key != keyAnchor) {
|
||||
const Rot3& R = inverseRot.at<Rot3>(key);
|
||||
if(setRefFrame)
|
||||
estimateRot.insert(key, Rref.compose(R.inverse()));
|
||||
else
|
||||
estimateRot.insert(key, R.inverse());
|
||||
}
|
||||
}
|
||||
return estimateRot;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap, const NonlinearFactorGraph& pose3Graph){
|
||||
size_t factorId = 0;
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose3Graph) {
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between){
|
||||
Rot3 Rij = pose3Between->measured().rotation();
|
||||
factorId2RotMap.insert(pair<Key, Rot3 >(factorId,Rij));
|
||||
|
||||
Key key1 = pose3Between->key1();
|
||||
if (adjEdgesMap.find(key1) != adjEdgesMap.end()){ // key is already in
|
||||
adjEdgesMap.at(key1).push_back(factorId);
|
||||
}else{
|
||||
vector<size_t> edge_id;
|
||||
edge_id.push_back(factorId);
|
||||
adjEdgesMap.insert(pair<Key, vector<size_t> >(key1, edge_id));
|
||||
}
|
||||
Key key2 = pose3Between->key2();
|
||||
if (adjEdgesMap.find(key2) != adjEdgesMap.end()){ // key is already in
|
||||
adjEdgesMap.at(key2).push_back(factorId);
|
||||
}else{
|
||||
vector<size_t> edge_id;
|
||||
edge_id.push_back(factorId);
|
||||
adjEdgesMap.insert(pair<Key, vector<size_t> >(key2, edge_id));
|
||||
}
|
||||
}else{
|
||||
std::cout << "Error in computeOrientationsGradient" << std::endl;
|
||||
}
|
||||
factorId++;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b) {
|
||||
Vector3 logRot = Rot3::Logmap(R1.between(R2));
|
||||
|
||||
double th = logRot.norm();
|
||||
if(th != th){ // the second case means that th = nan (logRot does not work well for +/-pi)
|
||||
Rot3 R1pert = R1.compose( Rot3::Expmap((Vector(3)<< 0.01, 0.01, 0.01)) ); // some perturbation
|
||||
logRot = Rot3::Logmap(R1pert.between(R2));
|
||||
th = logRot.norm();
|
||||
}
|
||||
// exclude small or invalid rotations
|
||||
if (th > 1e-5 && th == th){ // nonzero valid rotations
|
||||
logRot = logRot / th;
|
||||
}else{
|
||||
logRot = Vector3::Zero();
|
||||
th = 0.0;
|
||||
}
|
||||
|
||||
double fdot = a*b*th*exp(-b*th);
|
||||
return fdot*logRot;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values initializeOrientations(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose3 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
return computeOrientationsChordal(pose3Graph);
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
|
||||
gttic(InitializePose3_computePoses);
|
||||
|
||||
// put into Values structure
|
||||
Values initialPose;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, initialRot){
|
||||
Key key = key_value.key;
|
||||
const Rot3& rot = initialRot.at<Rot3>(key);
|
||||
Pose3 initializedPose = Pose3(rot, Point3());
|
||||
initialPose.insert(key, initializedPose);
|
||||
}
|
||||
// add prior
|
||||
noiseModel::Unit::shared_ptr priorModel = noiseModel::Unit::Create(6);
|
||||
initialPose.insert(keyAnchor, Pose3());
|
||||
pose3graph.add(PriorFactor<Pose3>(keyAnchor, Pose3(), priorModel));
|
||||
|
||||
// Create optimizer
|
||||
GaussNewtonParams params;
|
||||
bool singleIter = true;
|
||||
if(singleIter){
|
||||
params.maxIterations = 1;
|
||||
}else{
|
||||
std::cout << " \n\n\n\n performing more than 1 GN iterations \n\n\n" <<std::endl;
|
||||
params.setVerbosity("TERMINATION");
|
||||
}
|
||||
GaussNewtonOptimizer optimizer(pose3graph, initialPose, params);
|
||||
Values GNresult = optimizer.optimize();
|
||||
|
||||
// put into Values structure
|
||||
Values estimate;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, GNresult) {
|
||||
Key key = key_value.key;
|
||||
if (key != keyAnchor) {
|
||||
const Pose3& pose = GNresult.at<Pose3>(key);
|
||||
estimate.insert(key, pose);
|
||||
}
|
||||
}
|
||||
return estimate;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values initialize(const NonlinearFactorGraph& graph) {
|
||||
gttic(InitializePose3_initialize);
|
||||
|
||||
// We "extract" the Pose3 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
Values valueRot3 = computeOrientationsChordal(pose3Graph);
|
||||
|
||||
// Compute the full poses (1 GN iteration on full poses)
|
||||
return computePoses(pose3Graph, valueRot3);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, bool useGradient) {
|
||||
Values initialValues;
|
||||
|
||||
// We "extract" the Pose3 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
Values orientations;
|
||||
if(useGradient)
|
||||
orientations = computeOrientationsGradient(pose3Graph, givenGuess);
|
||||
else
|
||||
orientations = computeOrientationsChordal(pose3Graph);
|
||||
|
||||
// orientations.print("orientations\n");
|
||||
|
||||
// Compute the full poses (1 GN iteration on full poses)
|
||||
return computePoses(pose3Graph, orientations);
|
||||
|
||||
// BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, orientations) {
|
||||
// Key key = key_value.key;
|
||||
// if (key != keyAnchor) {
|
||||
// const Point3& pos = givenGuess.at<Pose3>(key).translation();
|
||||
// const Rot3& rot = orientations.at<Rot3>(key);
|
||||
// Pose3 initializedPoses = Pose3(rot, pos);
|
||||
// initialValues.insert(key, initializedPoses);
|
||||
// }
|
||||
// }
|
||||
// return initialValues;
|
||||
}
|
||||
|
||||
} // end of namespace lago
|
||||
} // end of namespace gtsam
|
|
@ -0,0 +1,59 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file InitializePose3.h
|
||||
* @brief Initialize Pose3 in a factor graph
|
||||
*
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date August, 2014
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/inference/graph.h>
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
typedef std::map<Key, std::vector<size_t> > KeyVectorMap;
|
||||
typedef std::map<Key, Rot3 > KeyRotMap;
|
||||
|
||||
namespace InitializePose3 {
|
||||
|
||||
GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(const NonlinearFactorGraph& g);
|
||||
|
||||
GTSAM_EXPORT Values normalizeRelaxedRotations(const VectorValues& relaxedRot3);
|
||||
|
||||
GTSAM_EXPORT Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph);
|
||||
|
||||
GTSAM_EXPORT Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph,
|
||||
const Values& givenGuess, size_t maxIter = 10000, const bool setRefFrame = true);
|
||||
|
||||
GTSAM_EXPORT void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap,
|
||||
const NonlinearFactorGraph& pose3Graph);
|
||||
|
||||
GTSAM_EXPORT Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b);
|
||||
|
||||
GTSAM_EXPORT NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph);
|
||||
|
||||
GTSAM_EXPORT Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot);
|
||||
|
||||
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph);
|
||||
|
||||
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, bool useGradient = false);
|
||||
|
||||
} // end of namespace lago
|
||||
} // end of namespace gtsam
|
|
@ -77,7 +77,7 @@ public:
|
|||
(*H).middleCols(rotInterval.first, rDim).setIdentity(rDim, rDim);
|
||||
}
|
||||
|
||||
return Rotation::Logmap(newR) - Rotation::Logmap(measured_);
|
||||
return measured_.localCoordinates(newR);
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
|
@ -101,6 +101,25 @@ static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
|
|||
double v1, v2, v3, v4, v5, v6;
|
||||
is >> v1 >> v2 >> v3 >> v4 >> v5 >> v6;
|
||||
|
||||
if (noiseFormat == NoiseFormatAUTO)
|
||||
{
|
||||
// Try to guess covariance matrix layout
|
||||
if(v1 != 0.0 && v2 == 0.0 && v3 != 0.0 && v4 != 0.0 && v5 == 0.0 && v6 == 0.0)
|
||||
{
|
||||
// NoiseFormatGRAPH
|
||||
noiseFormat = NoiseFormatGRAPH;
|
||||
}
|
||||
else if(v1 != 0.0 && v2 == 0.0 && v3 == 0.0 && v4 != 0.0 && v5 == 0.0 && v6 != 0.0)
|
||||
{
|
||||
// NoiseFormatCOV
|
||||
noiseFormat = NoiseFormatCOV;
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::invalid_argument("load2D: unrecognized covariance matrix format in dataset file. Please specify the noise format.");
|
||||
}
|
||||
}
|
||||
|
||||
// Read matrix and check that diagonal entries are non-zero
|
||||
Matrix M(3, 3);
|
||||
switch (noiseFormat) {
|
||||
|
@ -162,7 +181,7 @@ static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GraphAndValues load2D(const string& filename, SharedNoiseModel model, int maxID,
|
||||
GraphAndValues load2D(const string& filename, SharedNoiseModel model, Key maxID,
|
||||
bool addNoise, bool smart, NoiseFormat noiseFormat,
|
||||
KernelFunctionType kernelFunctionType) {
|
||||
|
||||
|
@ -210,7 +229,7 @@ GraphAndValues load2D(const string& filename, SharedNoiseModel model, int maxID,
|
|||
}
|
||||
|
||||
// Parse the pose constraints
|
||||
int id1, id2;
|
||||
Key id1, id2;
|
||||
bool haveLandmark = false;
|
||||
while (!is.eof()) {
|
||||
if (!(is >> tag))
|
||||
|
|
|
@ -57,7 +57,8 @@ enum NoiseFormat {
|
|||
NoiseFormatG2O, ///< Information matrix I11, I12, I13, I22, I23, I33
|
||||
NoiseFormatTORO, ///< Information matrix, but inf_ff inf_fs inf_ss inf_rr inf_fr inf_sr
|
||||
NoiseFormatGRAPH, ///< default: toro-style order, but covariance matrix !
|
||||
NoiseFormatCOV ///< Covariance matrix C11, C12, C13, C22, C23, C33
|
||||
NoiseFormatCOV, ///< Covariance matrix C11, C12, C13, C22, C23, C33
|
||||
NoiseFormatAUTO ///< Try to guess covariance matrix layout
|
||||
};
|
||||
|
||||
/// Robust kernel type to wrap around quadratic noise model
|
||||
|
@ -79,7 +80,7 @@ GTSAM_EXPORT GraphAndValues load2D(
|
|||
std::pair<std::string, SharedNoiseModel> dataset, int maxID = 0,
|
||||
bool addNoise = false,
|
||||
bool smart = true, //
|
||||
NoiseFormat noiseFormat = NoiseFormatGRAPH,
|
||||
NoiseFormat noiseFormat = NoiseFormatAUTO,
|
||||
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
|
||||
|
||||
/**
|
||||
|
@ -94,8 +95,8 @@ GTSAM_EXPORT GraphAndValues load2D(
|
|||
* @return graph and initial values
|
||||
*/
|
||||
GTSAM_EXPORT GraphAndValues load2D(const std::string& filename,
|
||||
SharedNoiseModel model = SharedNoiseModel(), int maxID = 0, bool addNoise =
|
||||
false, bool smart = true, NoiseFormat noiseFormat = NoiseFormatGRAPH, //
|
||||
SharedNoiseModel model = SharedNoiseModel(), Key maxID = 0, bool addNoise =
|
||||
false, bool smart = true, NoiseFormat noiseFormat = NoiseFormatAUTO, //
|
||||
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
|
||||
|
||||
/// @deprecated load2D now allows for arbitrary models and wrapping a robust kernel
|
||||
|
|
|
@ -56,6 +56,17 @@ TEST( dataSet, load2D)
|
|||
EXPECT(assert_equal(expected, *actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( dataSet, load2DVictoriaPark)
|
||||
{
|
||||
const string filename = findExampleDataFile("victoria_park.txt");
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
boost::tie(graph, initial) = load2D(filename);
|
||||
EXPECT_LONGS_EQUAL(10608,graph->size());
|
||||
EXPECT_LONGS_EQUAL(7120,initial->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( dataSet, Balbianello)
|
||||
{
|
||||
|
|
|
@ -0,0 +1,259 @@
|
|||
/**
|
||||
* @file testImplicitSchurFactor.cpp
|
||||
* @brief unit test implicit jacobian factors
|
||||
* @author Frank Dellaert
|
||||
* @date Oct 20, 2013
|
||||
*/
|
||||
|
||||
//#include <gtsam_unstable/slam/ImplicitSchurFactor.h>
|
||||
#include <gtsam/slam/ImplicitSchurFactor.h>
|
||||
//#include <gtsam_unstable/slam/JacobianFactorQ.h>
|
||||
#include <gtsam/slam/JacobianFactorQ.h>
|
||||
//#include "gtsam_unstable/slam/JacobianFactorQR.h"
|
||||
#include "gtsam/slam/JacobianFactorQR.h"
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
#include <boost/range/iterator_range.hpp>
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace boost::assign;
|
||||
using namespace gtsam;
|
||||
|
||||
// F
|
||||
typedef Eigen::Matrix<double, 2, 6> Matrix26;
|
||||
const Matrix26 F0 = Matrix26::Ones();
|
||||
const Matrix26 F1 = 2 * Matrix26::Ones();
|
||||
const Matrix26 F3 = 3 * Matrix26::Ones();
|
||||
const vector<pair<Key, Matrix26> > Fblocks = list_of<pair<Key, Matrix> > //
|
||||
(make_pair(0, F0))(make_pair(1, F1))(make_pair(3, F3));
|
||||
// RHS and sigmas
|
||||
const Vector b = (Vector(6) << 1., 2., 3., 4., 5., 6.);
|
||||
|
||||
//*************************************************************************************
|
||||
TEST( implicitSchurFactor, creation ) {
|
||||
// Matrix E = Matrix::Ones(6,3);
|
||||
Matrix E = zeros(6, 3);
|
||||
E.block<2,2>(0, 0) = eye(2);
|
||||
E.block<2,3>(2, 0) = 2 * ones(2, 3);
|
||||
Matrix3 P = (E.transpose() * E).inverse();
|
||||
ImplicitSchurFactor<6> expected(Fblocks, E, P, b);
|
||||
Matrix expectedP = expected.getPointCovariance();
|
||||
EXPECT(assert_equal(expectedP, P));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( implicitSchurFactor, addHessianMultiply ) {
|
||||
|
||||
Matrix E = zeros(6, 3);
|
||||
E.block<2,2>(0, 0) = eye(2);
|
||||
E.block<2,3>(2, 0) = 2 * ones(2, 3);
|
||||
E.block<2,2>(4, 1) = eye(2);
|
||||
Matrix3 P = (E.transpose() * E).inverse();
|
||||
|
||||
double alpha = 0.5;
|
||||
VectorValues xvalues = map_list_of //
|
||||
(0, gtsam::repeat(6, 2))//
|
||||
(1, gtsam::repeat(6, 4))//
|
||||
(2, gtsam::repeat(6, 0))// distractor
|
||||
(3, gtsam::repeat(6, 8));
|
||||
|
||||
VectorValues yExpected = map_list_of//
|
||||
(0, gtsam::repeat(6, 27))//
|
||||
(1, gtsam::repeat(6, -40))//
|
||||
(2, gtsam::repeat(6, 0))// distractor
|
||||
(3, gtsam::repeat(6, 279));
|
||||
|
||||
// Create full F
|
||||
size_t M=4, m = 3, d = 6;
|
||||
Matrix F(2 * m, d * M);
|
||||
F << F0, zeros(2, d * 3), zeros(2, d), F1, zeros(2, d*2), zeros(2, d * 3), F3;
|
||||
|
||||
// Calculate expected result F'*alpha*(I - E*P*E')*F*x
|
||||
FastVector<Key> keys;
|
||||
keys += 0,1,2,3;
|
||||
Vector x = xvalues.vector(keys);
|
||||
Vector expected = zero(24);
|
||||
ImplicitSchurFactor<6>::multiplyHessianAdd(F, E, P, alpha, x, expected);
|
||||
EXPECT(assert_equal(expected, yExpected.vector(keys), 1e-8));
|
||||
|
||||
// Create ImplicitSchurFactor
|
||||
ImplicitSchurFactor<6> implicitFactor(Fblocks, E, P, b);
|
||||
|
||||
VectorValues zero = 0 * yExpected;// quick way to get zero w right structure
|
||||
{ // First Version
|
||||
VectorValues yActual = zero;
|
||||
implicitFactor.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(yExpected, yActual, 1e-8));
|
||||
implicitFactor.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(2 * yExpected, yActual, 1e-8));
|
||||
implicitFactor.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
EXPECT(assert_equal(zero, yActual, 1e-8));
|
||||
}
|
||||
|
||||
typedef Eigen::Matrix<double, 24, 1> DeltaX;
|
||||
typedef Eigen::Map<DeltaX> XMap;
|
||||
double* y = new double[24];
|
||||
double* xdata = x.data();
|
||||
|
||||
{ // Raw memory Version
|
||||
std::fill(y, y + 24, 0);// zero y !
|
||||
implicitFactor.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(expected, XMap(y), 1e-8));
|
||||
implicitFactor.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(Vector(2 * expected), XMap(y), 1e-8));
|
||||
implicitFactor.multiplyHessianAdd(-1, xdata, y);
|
||||
EXPECT(assert_equal(Vector(0 * expected), XMap(y), 1e-8));
|
||||
}
|
||||
|
||||
// Create JacobianFactor with same error
|
||||
const SharedDiagonal model;
|
||||
JacobianFactorQ<6> jf(Fblocks, E, P, b, model);
|
||||
|
||||
{ // error
|
||||
double expectedError = jf.error(xvalues);
|
||||
double actualError = implicitFactor.errorJF(xvalues);
|
||||
DOUBLES_EQUAL(expectedError,actualError,1e-7)
|
||||
}
|
||||
|
||||
{ // JacobianFactor with same error
|
||||
VectorValues yActual = zero;
|
||||
jf.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(yExpected, yActual, 1e-8));
|
||||
jf.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(2 * yExpected, yActual, 1e-8));
|
||||
jf.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
EXPECT(assert_equal(zero, yActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // check hessian Diagonal
|
||||
VectorValues diagExpected = jf.hessianDiagonal();
|
||||
VectorValues diagActual = implicitFactor.hessianDiagonal();
|
||||
EXPECT(assert_equal(diagExpected, diagActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // check hessian Block Diagonal
|
||||
map<Key,Matrix> BD = jf.hessianBlockDiagonal();
|
||||
map<Key,Matrix> actualBD = implicitFactor.hessianBlockDiagonal();
|
||||
LONGS_EQUAL(3,actualBD.size());
|
||||
EXPECT(assert_equal(BD[0],actualBD[0]));
|
||||
EXPECT(assert_equal(BD[1],actualBD[1]));
|
||||
EXPECT(assert_equal(BD[3],actualBD[3]));
|
||||
}
|
||||
|
||||
{ // Raw memory Version
|
||||
std::fill(y, y + 24, 0);// zero y !
|
||||
jf.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(expected, XMap(y), 1e-8));
|
||||
jf.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(Vector(2 * expected), XMap(y), 1e-8));
|
||||
jf.multiplyHessianAdd(-1, xdata, y);
|
||||
EXPECT(assert_equal(Vector(0 * expected), XMap(y), 1e-8));
|
||||
}
|
||||
|
||||
{ // Check gradientAtZero
|
||||
VectorValues expected = jf.gradientAtZero();
|
||||
VectorValues actual = implicitFactor.gradientAtZero();
|
||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||
}
|
||||
|
||||
// Create JacobianFactorQR
|
||||
JacobianFactorQR<6> jfq(Fblocks, E, P, b, model);
|
||||
{
|
||||
const SharedDiagonal model;
|
||||
VectorValues yActual = zero;
|
||||
jfq.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(yExpected, yActual, 1e-8));
|
||||
jfq.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(2 * yExpected, yActual, 1e-8));
|
||||
jfq.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
EXPECT(assert_equal(zero, yActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // Raw memory Version
|
||||
std::fill(y, y + 24, 0);// zero y !
|
||||
jfq.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(expected, XMap(y), 1e-8));
|
||||
jfq.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(Vector(2 * expected), XMap(y), 1e-8));
|
||||
jfq.multiplyHessianAdd(-1, xdata, y);
|
||||
EXPECT(assert_equal(Vector(0 * expected), XMap(y), 1e-8));
|
||||
}
|
||||
delete [] y;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(implicitSchurFactor, hessianDiagonal)
|
||||
{
|
||||
/* TESTED AGAINST MATLAB
|
||||
* F = [ones(2,6) zeros(2,6) zeros(2,6)
|
||||
zeros(2,6) 2*ones(2,6) zeros(2,6)
|
||||
zeros(2,6) zeros(2,6) 3*ones(2,6)]
|
||||
E = [[1:6] [1:6] [0.5 1:5]];
|
||||
E = reshape(E',3,6)'
|
||||
P = inv(E' * E)
|
||||
H = F' * (eye(6) - E * P * E') * F
|
||||
diag(H)
|
||||
*/
|
||||
Matrix E(6,3);
|
||||
E.block<2,3>(0, 0) << 1,2,3,4,5,6;
|
||||
E.block<2,3>(2, 0) << 1,2,3,4,5,6;
|
||||
E.block<2,3>(4, 0) << 0.5,1,2,3,4,5;
|
||||
Matrix3 P = (E.transpose() * E).inverse();
|
||||
ImplicitSchurFactor<6> factor(Fblocks, E, P, b);
|
||||
|
||||
// hessianDiagonal
|
||||
VectorValues expected;
|
||||
expected.insert(0, 1.195652*ones(6));
|
||||
expected.insert(1, 4.782608*ones(6));
|
||||
expected.insert(3, 7.043478*ones(6));
|
||||
EXPECT(assert_equal(expected, factor.hessianDiagonal(),1e-5));
|
||||
|
||||
// hessianBlockDiagonal
|
||||
map<Key,Matrix> actualBD = factor.hessianBlockDiagonal();
|
||||
LONGS_EQUAL(3,actualBD.size());
|
||||
Matrix FtE0 = F0.transpose() * E.block<2,3>(0, 0);
|
||||
Matrix FtE1 = F1.transpose() * E.block<2,3>(2, 0);
|
||||
Matrix FtE3 = F3.transpose() * E.block<2,3>(4, 0);
|
||||
|
||||
// variant one
|
||||
EXPECT(assert_equal(F0.transpose()*F0-FtE0*P*FtE0.transpose(),actualBD[0]));
|
||||
EXPECT(assert_equal(F1.transpose()*F1-FtE1*P*FtE1.transpose(),actualBD[1]));
|
||||
EXPECT(assert_equal(F3.transpose()*F3-FtE3*P*FtE3.transpose(),actualBD[3]));
|
||||
|
||||
// variant two
|
||||
Matrix I2 = eye(2);
|
||||
Matrix E0 = E.block<2,3>(0, 0);
|
||||
Matrix F0t = F0.transpose();
|
||||
EXPECT(assert_equal(F0t*F0-F0t*E0*P*E0.transpose()*F0,actualBD[0]));
|
||||
EXPECT(assert_equal(F0t*(F0-E0*P*E0.transpose()*F0),actualBD[0]));
|
||||
|
||||
Matrix M1 = F0t*(F0-E0*P*E0.transpose()*F0);
|
||||
Matrix M2 = F0t*F0-F0t*E0*P*E0.transpose()*F0;
|
||||
|
||||
EXPECT(assert_equal( M1 , actualBD[0] ));
|
||||
EXPECT(assert_equal( M1 , M2 ));
|
||||
|
||||
Matrix M1b = F0t*(E0*P*E0.transpose()*F0);
|
||||
Matrix M2b = F0t*E0*P*E0.transpose()*F0;
|
||||
EXPECT(assert_equal( M1b , M2b ));
|
||||
|
||||
EXPECT(assert_equal(F0t*(I2-E0*P*E0.transpose())*F0,actualBD[0]));
|
||||
EXPECT(assert_equal(F1.transpose()*F1-FtE1*P*FtE1.transpose(),actualBD[1]));
|
||||
EXPECT(assert_equal(F3.transpose()*F3-FtE3*P*FtE3.transpose(),actualBD[3]));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(void) {
|
||||
TestResult tr;
|
||||
int result = TestRegistry::runAllTests(tr);
|
||||
return result;
|
||||
}
|
||||
//*************************************************************************************
|
|
@ -0,0 +1,259 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testInitializePose3.cpp
|
||||
* @brief Unit tests for 3D SLAM initialization, using rotation relaxation
|
||||
*
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date August, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost::assign;
|
||||
|
||||
static Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
|
||||
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(6, 0.1));
|
||||
|
||||
namespace simple {
|
||||
// We consider a small graph:
|
||||
// symbolic FG
|
||||
// x2 0 1
|
||||
// / | \ 1 2
|
||||
// / | \ 2 3
|
||||
// x3 | x1 2 0
|
||||
// \ | / 0 3
|
||||
// \ | /
|
||||
// x0
|
||||
//
|
||||
static Point3 p0 = Point3(0,0,0);
|
||||
static Rot3 R0 = Rot3::Expmap( ( Vector(3) << 0.0,0.0,0.0 ) );
|
||||
static Point3 p1 = Point3(1,2,0);
|
||||
static Rot3 R1 = Rot3::Expmap( ( Vector(3) << 0.0,0.0,1.570796 ) );
|
||||
static Point3 p2 = Point3(0,2,0);
|
||||
static Rot3 R2 = Rot3::Expmap( ( Vector(3) << 0.0,0.0,3.141593 ) );
|
||||
static Point3 p3 = Point3(-1,1,0);
|
||||
static Rot3 R3 = Rot3::Expmap( ( Vector(3) << 0.0,0.0,4.712389 ) );
|
||||
|
||||
static Pose3 pose0 = Pose3(R0,p0);
|
||||
static Pose3 pose1 = Pose3(R1,p1);
|
||||
static Pose3 pose2 = Pose3(R2,p2);
|
||||
static Pose3 pose3 = Pose3(R3,p3);
|
||||
|
||||
NonlinearFactorGraph graph() {
|
||||
NonlinearFactorGraph g;
|
||||
g.add(BetweenFactor<Pose3>(x0, x1, pose0.between(pose1), model));
|
||||
g.add(BetweenFactor<Pose3>(x1, x2, pose1.between(pose2), model));
|
||||
g.add(BetweenFactor<Pose3>(x2, x3, pose2.between(pose3), model));
|
||||
g.add(BetweenFactor<Pose3>(x2, x0, pose2.between(pose0), model));
|
||||
g.add(BetweenFactor<Pose3>(x0, x3, pose0.between(pose3), model));
|
||||
g.add(PriorFactor<Pose3>(x0, pose0, model));
|
||||
return g;
|
||||
}
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, buildPose3graph ) {
|
||||
NonlinearFactorGraph pose3graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
// pose3graph.print("");
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, orientations ) {
|
||||
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
|
||||
Values initial = InitializePose3::computeOrientationsChordal(pose3Graph);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal(simple::R0, initial.at<Rot3>(x0), 1e-6));
|
||||
EXPECT(assert_equal(simple::R1, initial.at<Rot3>(x1), 1e-6));
|
||||
EXPECT(assert_equal(simple::R2, initial.at<Rot3>(x2), 1e-6));
|
||||
EXPECT(assert_equal(simple::R3, initial.at<Rot3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, orientationsGradientSymbolicGraph ) {
|
||||
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
|
||||
KeyVectorMap adjEdgesMap;
|
||||
KeyRotMap factorId2RotMap;
|
||||
|
||||
InitializePose3::createSymbolicGraph(adjEdgesMap, factorId2RotMap, pose3Graph);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0)[0], 0, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0)[1], 3, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0)[2], 4, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0)[3], 5, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0).size(), 4, 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x1)[0], 0, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x1)[1], 1, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x1).size(), 2, 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x2)[0], 1, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x2)[1], 2, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x2)[2], 3, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x2).size(), 3, 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x3)[0], 2, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x3)[1], 4, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x3).size(), 2, 1e-9);
|
||||
|
||||
// This includes the anchor
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.size(), 5, 1e-9);
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, singleGradient ) {
|
||||
Rot3 R1 = Rot3();
|
||||
Matrix M = Matrix3::Zero();
|
||||
M(0,1) = -1; M(1,0) = 1; M(2,2) = 1;
|
||||
Rot3 R2 = Rot3(M);
|
||||
double a = 6.010534238540223;
|
||||
double b = 1.0;
|
||||
|
||||
Vector actual = InitializePose3::gradientTron(R1, R2, a, b);
|
||||
Vector expected = Vector3::Zero();
|
||||
expected(2) = 1.962658662803917;
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, iterationGradient ) {
|
||||
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
|
||||
// Wrong initial guess - initialization should fix the rotations
|
||||
Rot3 Rpert = Rot3::Expmap((Vector(3)<< 0.01, 0.01, 0.01));
|
||||
Values givenPoses;
|
||||
givenPoses.insert(x0,simple::pose0);
|
||||
givenPoses.insert(x1,(simple::pose0).compose( Pose3(Rpert,Point3()) ));
|
||||
givenPoses.insert(x2, (simple::pose0).compose( Pose3(Rpert.inverse(),Point3()) ));
|
||||
givenPoses.insert(x3, (simple::pose0).compose( Pose3(Rpert,Point3()) ));
|
||||
|
||||
size_t maxIter = 1; // test gradient at the first iteration
|
||||
bool setRefFrame = false;
|
||||
Values orientations = InitializePose3::computeOrientationsGradient(pose3Graph, givenPoses, maxIter, setRefFrame);
|
||||
|
||||
Matrix M0 = (Matrix(3,3) << 0.999435813876064, -0.033571481675497, 0.001004768630281,
|
||||
0.033572116359134, 0.999436104312325, -0.000621610948719,
|
||||
-0.000983333645009, 0.000654992453817, 0.999999302019670);
|
||||
Rot3 R0Expected = Rot3(M0);
|
||||
EXPECT(assert_equal(R0Expected, orientations.at<Rot3>(x0), 1e-5));
|
||||
|
||||
Matrix M1 = (Matrix(3,3) << 0.999905367545392, -0.010866391403031, 0.008436675399114,
|
||||
0.010943459008004, 0.999898317528125, -0.009143047050380,
|
||||
-0.008336465609239, 0.009234508232789, 0.999922610604863);
|
||||
Rot3 R1Expected = Rot3(M1);
|
||||
EXPECT(assert_equal(R1Expected, orientations.at<Rot3>(x1), 1e-5));
|
||||
|
||||
Matrix M2 = (Matrix(3,3) << 0.998936644682875, 0.045376417678595, -0.008158469732553,
|
||||
-0.045306446926148, 0.998936408933058, 0.008566024448664,
|
||||
0.008538487960253, -0.008187284445083, 0.999930028850403);
|
||||
Rot3 R2Expected = Rot3(M2);
|
||||
EXPECT(assert_equal(R2Expected, orientations.at<Rot3>(x2), 1e-5));
|
||||
|
||||
Matrix M3 = (Matrix(3,3) << 0.999898767273093, -0.010834701971459, 0.009223038487275,
|
||||
0.010911315499947, 0.999906044037258, -0.008297366559388,
|
||||
-0.009132272433995, 0.008397162077148, 0.999923041673329);
|
||||
Rot3 R3Expected = Rot3(M3);
|
||||
EXPECT(assert_equal(R3Expected, orientations.at<Rot3>(x3), 1e-5));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, orientationsGradient ) {
|
||||
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
|
||||
// Wrong initial guess - initialization should fix the rotations
|
||||
Rot3 Rpert = Rot3::Expmap((Vector(3)<< 0.01, 0.01, 0.01));
|
||||
Values givenPoses;
|
||||
givenPoses.insert(x0,simple::pose0);
|
||||
givenPoses.insert(x1,(simple::pose0).compose( Pose3(Rpert,Point3()) ));
|
||||
givenPoses.insert(x2, (simple::pose0).compose( Pose3(Rpert.inverse(),Point3()) ));
|
||||
givenPoses.insert(x3, (simple::pose0).compose( Pose3(Rpert,Point3()) ));
|
||||
// do 10 gradient iterations
|
||||
bool setRefFrame = false;
|
||||
Values orientations = InitializePose3::computeOrientationsGradient(pose3Graph, givenPoses, 10, setRefFrame);
|
||||
|
||||
// const Key keyAnchor = symbol('Z', 9999999);
|
||||
// givenPoses.insert(keyAnchor,simple::pose0);
|
||||
// string g2oFile = "/home/aspn/Desktop/toyExample.g2o";
|
||||
// writeG2o(pose3Graph, givenPoses, g2oFile);
|
||||
|
||||
const string matlabResultsfile = findExampleDataFile("simpleGraph10gradIter");
|
||||
NonlinearFactorGraph::shared_ptr matlabGraph;
|
||||
Values::shared_ptr matlabValues;
|
||||
bool is3D = true;
|
||||
boost::tie(matlabGraph, matlabValues) = readG2o(matlabResultsfile, is3D);
|
||||
|
||||
Rot3 R0Expected = matlabValues->at<Pose3>(1).rotation();
|
||||
EXPECT(assert_equal(R0Expected, orientations.at<Rot3>(x0), 1e-4));
|
||||
|
||||
Rot3 R1Expected = matlabValues->at<Pose3>(2).rotation();
|
||||
EXPECT(assert_equal(R1Expected, orientations.at<Rot3>(x1), 1e-4));
|
||||
|
||||
Rot3 R2Expected = matlabValues->at<Pose3>(3).rotation();
|
||||
EXPECT(assert_equal(R2Expected, orientations.at<Rot3>(x2), 1e-3));
|
||||
|
||||
Rot3 R3Expected = matlabValues->at<Pose3>(4).rotation();
|
||||
EXPECT(assert_equal(R3Expected, orientations.at<Rot3>(x3), 1e-4));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, posesWithGivenGuess ) {
|
||||
Values givenPoses;
|
||||
givenPoses.insert(x0,simple::pose0);
|
||||
givenPoses.insert(x1,simple::pose1);
|
||||
givenPoses.insert(x2,simple::pose2);
|
||||
givenPoses.insert(x3,simple::pose3);
|
||||
|
||||
Values initial = InitializePose3::initialize(simple::graph(), givenPoses);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal(givenPoses, initial, 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( InitializePose3, initializePoses )
|
||||
{
|
||||
const string g2oFile = findExampleDataFile("pose3example-grid");
|
||||
NonlinearFactorGraph::shared_ptr inputGraph;
|
||||
Values::shared_ptr expectedValues;
|
||||
bool is3D = true;
|
||||
boost::tie(inputGraph, expectedValues) = readG2o(g2oFile, is3D);
|
||||
noiseModel::Unit::shared_ptr priorModel = noiseModel::Unit::Create(6);
|
||||
inputGraph->add(PriorFactor<Pose3>(0, Pose3(), priorModel));
|
||||
|
||||
Values initial = InitializePose3::initialize(*inputGraph);
|
||||
EXPECT(assert_equal(*expectedValues,initial,1e-4));
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -36,7 +36,7 @@ using namespace boost::assign;
|
|||
static Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
|
||||
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
|
||||
|
||||
namespace simple {
|
||||
namespace simpleLago {
|
||||
// We consider a small graph:
|
||||
// symbolic FG
|
||||
// x2 0 1
|
||||
|
@ -67,7 +67,7 @@ NonlinearFactorGraph graph() {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, checkSTandChords ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
|
@ -84,7 +84,7 @@ TEST( Lago, checkSTandChords ) {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, orientationsOverSpanningTree ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
|
@ -115,7 +115,7 @@ TEST( Lago, orientationsOverSpanningTree ) {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, regularizedMeasurements ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
|
@ -141,7 +141,7 @@ TEST( Lago, regularizedMeasurements ) {
|
|||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraphVectorValues ) {
|
||||
bool useOdometricPath = false;
|
||||
VectorValues initial = lago::initializeOrientations(simple::graph(), useOdometricPath);
|
||||
VectorValues initial = lago::initializeOrientations(simpleLago::graph(), useOdometricPath);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
|
||||
|
@ -153,7 +153,7 @@ TEST( Lago, smallGraphVectorValues ) {
|
|||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraphVectorValuesSP ) {
|
||||
|
||||
VectorValues initial = lago::initializeOrientations(simple::graph());
|
||||
VectorValues initial = lago::initializeOrientations(simpleLago::graph());
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
|
||||
|
@ -165,8 +165,8 @@ TEST( Lago, smallGraphVectorValuesSP ) {
|
|||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePosePriors ) {
|
||||
bool useOdometricPath = false;
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simpleLago::pose1, model));
|
||||
VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
|
@ -178,8 +178,8 @@ TEST( Lago, multiplePosePriors ) {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePosePriorsSP ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simpleLago::pose1, model));
|
||||
VectorValues initial = lago::initializeOrientations(g);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
|
@ -192,8 +192,8 @@ TEST( Lago, multiplePosePriorsSP ) {
|
|||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePoseAndRotPriors ) {
|
||||
bool useOdometricPath = false;
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simpleLago::pose1.theta(), model));
|
||||
VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
|
@ -205,8 +205,8 @@ TEST( Lago, multiplePoseAndRotPriors ) {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePoseAndRotPriorsSP ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simpleLago::pose1.theta(), model));
|
||||
VectorValues initial = lago::initializeOrientations(g);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
|
@ -221,20 +221,20 @@ TEST( Lago, smallGraphValues ) {
|
|||
|
||||
// we set the orientations in the initial guess to zero
|
||||
Values initialGuess;
|
||||
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
|
||||
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
|
||||
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
|
||||
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
|
||||
initialGuess.insert(x0,Pose2(simpleLago::pose0.x(),simpleLago::pose0.y(),0.0));
|
||||
initialGuess.insert(x1,Pose2(simpleLago::pose1.x(),simpleLago::pose1.y(),0.0));
|
||||
initialGuess.insert(x2,Pose2(simpleLago::pose2.x(),simpleLago::pose2.y(),0.0));
|
||||
initialGuess.insert(x3,Pose2(simpleLago::pose3.x(),simpleLago::pose3.y(),0.0));
|
||||
|
||||
// lago does not touch the Cartesian part and only fixed the orientations
|
||||
Values actual = lago::initialize(simple::graph(), initialGuess);
|
||||
Values actual = lago::initialize(simpleLago::graph(), initialGuess);
|
||||
|
||||
// we are in a noiseless case
|
||||
Values expected;
|
||||
expected.insert(x0,simple::pose0);
|
||||
expected.insert(x1,simple::pose1);
|
||||
expected.insert(x2,simple::pose2);
|
||||
expected.insert(x3,simple::pose3);
|
||||
expected.insert(x0,simpleLago::pose0);
|
||||
expected.insert(x1,simpleLago::pose1);
|
||||
expected.insert(x2,simpleLago::pose2);
|
||||
expected.insert(x3,simpleLago::pose3);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
@ -243,14 +243,14 @@ TEST( Lago, smallGraphValues ) {
|
|||
TEST( Lago, smallGraph2 ) {
|
||||
|
||||
// lago does not touch the Cartesian part and only fixed the orientations
|
||||
Values actual = lago::initialize(simple::graph());
|
||||
Values actual = lago::initialize(simpleLago::graph());
|
||||
|
||||
// we are in a noiseless case
|
||||
Values expected;
|
||||
expected.insert(x0,simple::pose0);
|
||||
expected.insert(x1,simple::pose1);
|
||||
expected.insert(x2,simple::pose2);
|
||||
expected.insert(x3,simple::pose3);
|
||||
expected.insert(x0,simpleLago::pose0);
|
||||
expected.insert(x1,simpleLago::pose1);
|
||||
expected.insert(x2,simpleLago::pose2);
|
||||
expected.insert(x3,simpleLago::pose3);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
|
|
@ -35,6 +35,7 @@ const Rot3 rot3A, rot3B = Rot3::pitch(-M_PI_2), rot3C = Rot3::Expmap((Vector(3)
|
|||
// Pose2 examples
|
||||
const Point2 point2A(1.0, 2.0), point2B(4.0, 6.0);
|
||||
const Rot2 rot2A, rot2B = Rot2::fromAngle(M_PI_2);
|
||||
const Rot2 rot2C = Rot2::fromAngle(M_PI-0.01), rot2D = Rot2::fromAngle(M_PI+0.01);
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector evalFactorError3(const Pose3RotationPrior& factor, const Pose3& x) {
|
||||
|
@ -61,9 +62,15 @@ TEST( testPoseRotationFactor, level3_error ) {
|
|||
Pose3 pose1(rot3A, point3A);
|
||||
Pose3RotationPrior factor(poseKey, rot3C, model3);
|
||||
Matrix actH1;
|
||||
EXPECT(assert_equal((Vector(3) << -0.1,-0.2,-0.3), factor.evaluateError(pose1, actH1)));
|
||||
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
EXPECT(assert_equal((Vector(3) << -0.1, -0.2,-0.3), factor.evaluateError(pose1, actH1)));
|
||||
#else
|
||||
EXPECT(assert_equal((Vector(3) << -0.1, -0.2, -0.3), factor.evaluateError(pose1, actH1),1e-2));
|
||||
#endif
|
||||
Matrix expH1 = numericalDerivative22(evalFactorError3, factor, pose1, 1e-5);
|
||||
EXPECT(assert_equal(expH1, actH1, tol));
|
||||
// the derivative is more complex, but is close to the identity for Rot3 around the origin
|
||||
// If not using true expmap will be close, but not exact around the origin
|
||||
// EXPECT(assert_equal(expH1, actH1, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -86,6 +93,16 @@ TEST( testPoseRotationFactor, level2_error ) {
|
|||
EXPECT(assert_equal(expH1, actH1, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( testPoseRotationFactor, level2_error_wrap ) {
|
||||
Pose2 pose1(rot2C, point2A);
|
||||
Pose2RotationPrior factor(poseKey, rot2D, model1);
|
||||
Matrix actH1;
|
||||
EXPECT(assert_equal((Vector(1) << -0.02), factor.evaluateError(pose1, actH1)));
|
||||
Matrix expH1 = numericalDerivative22(evalFactorError2, factor, pose1, 1e-5);
|
||||
EXPECT(assert_equal(expH1, actH1, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -34,89 +34,89 @@ class DSFMap {
|
|||
|
||||
protected:
|
||||
|
||||
/// We store the forest in an STL map, but parents are done with pointers
|
||||
struct Entry {
|
||||
typename std::map<KEY, Entry>::iterator parent_;
|
||||
size_t rank_;
|
||||
Entry() {}
|
||||
};
|
||||
/// We store the forest in an STL map, but parents are done with pointers
|
||||
struct Entry {
|
||||
typename std::map<KEY, Entry>::iterator parent_;
|
||||
size_t rank_;
|
||||
Entry() {}
|
||||
};
|
||||
|
||||
typedef typename std::map<KEY, Entry> Map;
|
||||
typedef typename Map::iterator iterator;
|
||||
mutable Map entries_;
|
||||
typedef typename Map::iterator iterator;
|
||||
mutable Map entries_;
|
||||
|
||||
/// Given key, find iterator to initial entry
|
||||
iterator find__(const KEY& key) const {
|
||||
static const Entry empty;
|
||||
iterator it = entries_.find(key);
|
||||
// if key does not exist, create and return itself
|
||||
if (it == entries_.end()) {
|
||||
it = entries_.insert(std::make_pair(key, empty)).first;
|
||||
it->second.parent_ = it;
|
||||
it->second.rank_ = 0;
|
||||
}
|
||||
return it;
|
||||
}
|
||||
/// Given key, find iterator to initial entry
|
||||
iterator find__(const KEY& key) const {
|
||||
static const Entry empty;
|
||||
iterator it = entries_.find(key);
|
||||
// if key does not exist, create and return itself
|
||||
if (it == entries_.end()) {
|
||||
it = entries_.insert(std::make_pair(key, empty)).first;
|
||||
it->second.parent_ = it;
|
||||
it->second.rank_ = 0;
|
||||
}
|
||||
return it;
|
||||
}
|
||||
|
||||
/// Given iterator to initial entry, find the root Entry
|
||||
iterator find_(const iterator& it) const {
|
||||
// follow parent pointers until we reach set representative
|
||||
iterator& parent = it->second.parent_;
|
||||
if (parent != it)
|
||||
parent = find_(parent); // not yet, recurse!
|
||||
return parent;
|
||||
}
|
||||
/// Given iterator to initial entry, find the root Entry
|
||||
iterator find_(const iterator& it) const {
|
||||
// follow parent pointers until we reach set representative
|
||||
iterator& parent = it->second.parent_;
|
||||
if (parent != it)
|
||||
parent = find_(parent); // not yet, recurse!
|
||||
return parent;
|
||||
}
|
||||
|
||||
/// Given key, find the root Entry
|
||||
inline iterator find_(const KEY& key) const {
|
||||
iterator initial = find__(key);
|
||||
return find_(initial);
|
||||
}
|
||||
/// Given key, find the root Entry
|
||||
inline iterator find_(const KEY& key) const {
|
||||
iterator initial = find__(key);
|
||||
return find_(initial);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
typedef std::set<KEY> Set;
|
||||
typedef std::set<KEY> Set;
|
||||
|
||||
/// constructor
|
||||
DSFMap() {
|
||||
}
|
||||
/// constructor
|
||||
DSFMap() {
|
||||
}
|
||||
|
||||
/// Given key, find the representative key for the set in which it lives
|
||||
inline KEY find(const KEY& key) const {
|
||||
iterator root = find_(key);
|
||||
return root->first;
|
||||
}
|
||||
/// Given key, find the representative key for the set in which it lives
|
||||
inline KEY find(const KEY& key) const {
|
||||
iterator root = find_(key);
|
||||
return root->first;
|
||||
}
|
||||
|
||||
/// Merge two sets
|
||||
void merge(const KEY& x, const KEY& y) {
|
||||
/// Merge two sets
|
||||
void merge(const KEY& x, const KEY& y) {
|
||||
|
||||
// straight from http://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
||||
iterator xRoot = find_(x);
|
||||
iterator yRoot = find_(y);
|
||||
if (xRoot == yRoot)
|
||||
return;
|
||||
// straight from http://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
||||
iterator xRoot = find_(x);
|
||||
iterator yRoot = find_(y);
|
||||
if (xRoot == yRoot)
|
||||
return;
|
||||
|
||||
// Merge sets
|
||||
if (xRoot->second.rank_ < yRoot->second.rank_)
|
||||
xRoot->second.parent_ = yRoot;
|
||||
else if (xRoot->second.rank_ > yRoot->second.rank_)
|
||||
yRoot->second.parent_ = xRoot;
|
||||
else {
|
||||
yRoot->second.parent_ = xRoot;
|
||||
xRoot->second.rank_ = xRoot->second.rank_ + 1;
|
||||
}
|
||||
}
|
||||
// Merge sets
|
||||
if (xRoot->second.rank_ < yRoot->second.rank_)
|
||||
xRoot->second.parent_ = yRoot;
|
||||
else if (xRoot->second.rank_ > yRoot->second.rank_)
|
||||
yRoot->second.parent_ = xRoot;
|
||||
else {
|
||||
yRoot->second.parent_ = xRoot;
|
||||
xRoot->second.rank_ = xRoot->second.rank_ + 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// return all sets, i.e. a partition of all elements
|
||||
std::map<KEY, Set> sets() const {
|
||||
std::map<KEY, Set> sets;
|
||||
iterator it = entries_.begin();
|
||||
for (; it != entries_.end(); it++) {
|
||||
iterator root = find_(it);
|
||||
sets[root->first].insert(it->first);
|
||||
}
|
||||
return sets;
|
||||
}
|
||||
/// return all sets, i.e. a partition of all elements
|
||||
std::map<KEY, Set> sets() const {
|
||||
std::map<KEY, Set> sets;
|
||||
iterator it = entries_.begin();
|
||||
for (; it != entries_.end(); it++) {
|
||||
iterator root = find_(it);
|
||||
sets[root->first].insert(it->first);
|
||||
}
|
||||
return sets;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
/**
|
||||
* @file testLoopyBelief.cpp
|
||||
* @file testLoopyBelief.cpp
|
||||
* @brief
|
||||
* @author Duy-Nguyen Ta
|
||||
* @date Oct 11, 2013
|
||||
* @date Oct 11, 2013
|
||||
*/
|
||||
|
||||
#include <gtsam/inference/VariableIndex.h>
|
||||
|
|
|
@ -26,539 +26,539 @@ extern "C" {
|
|||
|
||||
namespace gtsam { namespace partition {
|
||||
|
||||
typedef boost::shared_array<idx_t> sharedInts;
|
||||
typedef boost::shared_array<idx_t> sharedInts;
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Return the size of the separator and the partiion indices {part}
|
||||
* Part [j] is 0, 1, or 2, depending on
|
||||
* whether node j is in the left part of the graph, the right part, or the
|
||||
* separator, respectively
|
||||
*/
|
||||
std::pair<int, sharedInts> separatorMetis(idx_t n, const sharedInts& xadj,
|
||||
const sharedInts& adjncy, const sharedInts& adjwgt, bool verbose) {
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Return the size of the separator and the partiion indices {part}
|
||||
* Part [j] is 0, 1, or 2, depending on
|
||||
* whether node j is in the left part of the graph, the right part, or the
|
||||
* separator, respectively
|
||||
*/
|
||||
std::pair<int, sharedInts> separatorMetis(idx_t n, const sharedInts& xadj,
|
||||
const sharedInts& adjncy, const sharedInts& adjwgt, bool verbose) {
|
||||
|
||||
// control parameters
|
||||
idx_t vwgt[n]; // the weights of the vertices
|
||||
idx_t options[METIS_NOPTIONS];
|
||||
METIS_SetDefaultOptions(options); // use defaults
|
||||
idx_t sepsize; // the size of the separator, output
|
||||
sharedInts part_(new idx_t[n]); // the partition of each vertex, output
|
||||
// control parameters
|
||||
idx_t vwgt[n]; // the weights of the vertices
|
||||
idx_t options[METIS_NOPTIONS];
|
||||
METIS_SetDefaultOptions(options); // use defaults
|
||||
idx_t sepsize; // the size of the separator, output
|
||||
sharedInts part_(new idx_t[n]); // the partition of each vertex, output
|
||||
|
||||
// set uniform weights on the vertices
|
||||
std::fill(vwgt, vwgt+n, 1);
|
||||
// set uniform weights on the vertices
|
||||
std::fill(vwgt, vwgt+n, 1);
|
||||
|
||||
// TODO: Fix at later time
|
||||
//boost::timer::cpu_timer TOTALTmr;
|
||||
if (verbose) {
|
||||
printf("**********************************************************************\n");
|
||||
printf("Graph Information ---------------------------------------------------\n");
|
||||
printf(" #Vertices: %d, #Edges: %u\n", n, *(xadj.get()+n) / 2);
|
||||
printf("\nND Partitioning... -------------------------------------------\n");
|
||||
//TOTALTmr.start()
|
||||
}
|
||||
// TODO: Fix at later time
|
||||
//boost::timer::cpu_timer TOTALTmr;
|
||||
if (verbose) {
|
||||
printf("**********************************************************************\n");
|
||||
printf("Graph Information ---------------------------------------------------\n");
|
||||
printf(" #Vertices: %d, #Edges: %u\n", n, *(xadj.get()+n) / 2);
|
||||
printf("\nND Partitioning... -------------------------------------------\n");
|
||||
//TOTALTmr.start()
|
||||
}
|
||||
|
||||
// call metis parition routine
|
||||
METIS_ComputeVertexSeparator(&n, xadj.get(), adjncy.get(),
|
||||
// call metis parition routine
|
||||
METIS_ComputeVertexSeparator(&n, xadj.get(), adjncy.get(),
|
||||
vwgt, options, &sepsize, part_.get());
|
||||
|
||||
if (verbose) {
|
||||
//boost::cpu_times const elapsed_times(timer.elapsed());
|
||||
//printf("\nTiming Information --------------------------------------------------\n");
|
||||
//printf(" Total: \t\t %7.3f\n", elapsed_times);
|
||||
printf(" Sep size: \t\t %d\n", sepsize);
|
||||
printf("**********************************************************************\n");
|
||||
}
|
||||
if (verbose) {
|
||||
//boost::cpu_times const elapsed_times(timer.elapsed());
|
||||
//printf("\nTiming Information --------------------------------------------------\n");
|
||||
//printf(" Total: \t\t %7.3f\n", elapsed_times);
|
||||
printf(" Sep size: \t\t %d\n", sepsize);
|
||||
printf("**********************************************************************\n");
|
||||
}
|
||||
|
||||
return std::make_pair(sepsize, part_);
|
||||
}
|
||||
return std::make_pair(sepsize, part_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void modefied_EdgeComputeSeparator(idx_t *nvtxs, idx_t *xadj, idx_t *adjncy, idx_t *vwgt,
|
||||
idx_t *adjwgt, idx_t *options, idx_t *edgecut, idx_t *part)
|
||||
{
|
||||
/* ************************************************************************* */
|
||||
void modefied_EdgeComputeSeparator(idx_t *nvtxs, idx_t *xadj, idx_t *adjncy, idx_t *vwgt,
|
||||
idx_t *adjwgt, idx_t *options, idx_t *edgecut, idx_t *part)
|
||||
{
|
||||
idx_t i, ncon;
|
||||
graph_t *graph;
|
||||
real_t *tpwgts2;
|
||||
ctrl_t *ctrl;
|
||||
ctrl = SetupCtrl(METIS_OP_OMETIS, options, 1, 3, NULL, NULL);
|
||||
ctrl->iptype = METIS_IPTYPE_GROW;
|
||||
//if () == NULL)
|
||||
// return METIS_ERROR_INPUT;
|
||||
graph_t *graph;
|
||||
real_t *tpwgts2;
|
||||
ctrl_t *ctrl;
|
||||
ctrl = SetupCtrl(METIS_OP_OMETIS, options, 1, 3, NULL, NULL);
|
||||
ctrl->iptype = METIS_IPTYPE_GROW;
|
||||
//if () == NULL)
|
||||
// return METIS_ERROR_INPUT;
|
||||
|
||||
InitRandom(ctrl->seed);
|
||||
InitRandom(ctrl->seed);
|
||||
|
||||
graph = SetupGraph(ctrl, *nvtxs, 1, xadj, adjncy, vwgt, NULL, NULL);
|
||||
graph = SetupGraph(ctrl, *nvtxs, 1, xadj, adjncy, vwgt, NULL, NULL);
|
||||
|
||||
AllocateWorkSpace(ctrl, graph);
|
||||
AllocateWorkSpace(ctrl, graph);
|
||||
|
||||
ncon = graph->ncon;
|
||||
ctrl->ncuts = 1;
|
||||
|
||||
/* determine the weights of the two partitions as a function of the weight of the
|
||||
target partition weights */
|
||||
ncon = graph->ncon;
|
||||
ctrl->ncuts = 1;
|
||||
|
||||
/* determine the weights of the two partitions as a function of the weight of the
|
||||
target partition weights */
|
||||
|
||||
tpwgts2 = rwspacemalloc(ctrl, 2*ncon);
|
||||
for (i=0; i<ncon; i++) {
|
||||
tpwgts2[i] = rsum((2>>1), ctrl->tpwgts+i, ncon);
|
||||
tpwgts2[ncon+i] = 1.0 - tpwgts2[i];
|
||||
}
|
||||
/* perform the bisection */
|
||||
*edgecut = MultilevelBisect(ctrl, graph, tpwgts2);
|
||||
tpwgts2 = rwspacemalloc(ctrl, 2*ncon);
|
||||
for (i=0; i<ncon; i++) {
|
||||
tpwgts2[i] = rsum((2>>1), ctrl->tpwgts+i, ncon);
|
||||
tpwgts2[ncon+i] = 1.0 - tpwgts2[i];
|
||||
}
|
||||
/* perform the bisection */
|
||||
*edgecut = MultilevelBisect(ctrl, graph, tpwgts2);
|
||||
|
||||
// ConstructMinCoverSeparator(&ctrl, &graph, 1.05);
|
||||
// *edgecut = graph->mincut;
|
||||
// *sepsize = graph.pwgts[2];
|
||||
icopy(*nvtxs, graph->where, part);
|
||||
std::cout << "Finished bisection:" << *edgecut << std::endl;
|
||||
FreeGraph(&graph);
|
||||
// ConstructMinCoverSeparator(&ctrl, &graph, 1.05);
|
||||
// *edgecut = graph->mincut;
|
||||
// *sepsize = graph.pwgts[2];
|
||||
icopy(*nvtxs, graph->where, part);
|
||||
std::cout << "Finished bisection:" << *edgecut << std::endl;
|
||||
FreeGraph(&graph);
|
||||
|
||||
FreeCtrl(&ctrl);
|
||||
}
|
||||
FreeCtrl(&ctrl);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Return the number of edge cuts and the partition indices {part}
|
||||
* Part [j] is 0 or 1, depending on
|
||||
* whether node j is in the left part of the graph or the right part respectively
|
||||
*/
|
||||
std::pair<int, sharedInts> edgeMetis(idx_t n, const sharedInts& xadj, const sharedInts& adjncy,
|
||||
const sharedInts& adjwgt, bool verbose) {
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Return the number of edge cuts and the partition indices {part}
|
||||
* Part [j] is 0 or 1, depending on
|
||||
* whether node j is in the left part of the graph or the right part respectively
|
||||
*/
|
||||
std::pair<int, sharedInts> edgeMetis(idx_t n, const sharedInts& xadj, const sharedInts& adjncy,
|
||||
const sharedInts& adjwgt, bool verbose) {
|
||||
|
||||
// control parameters
|
||||
idx_t vwgt[n]; // the weights of the vertices
|
||||
idx_t options[METIS_NOPTIONS];
|
||||
METIS_SetDefaultOptions(options); // use defaults
|
||||
idx_t edgecut; // the number of edge cuts, output
|
||||
sharedInts part_(new idx_t[n]); // the partition of each vertex, output
|
||||
// control parameters
|
||||
idx_t vwgt[n]; // the weights of the vertices
|
||||
idx_t options[METIS_NOPTIONS];
|
||||
METIS_SetDefaultOptions(options); // use defaults
|
||||
idx_t edgecut; // the number of edge cuts, output
|
||||
sharedInts part_(new idx_t[n]); // the partition of each vertex, output
|
||||
|
||||
// set uniform weights on the vertices
|
||||
std::fill(vwgt, vwgt+n, 1);
|
||||
// set uniform weights on the vertices
|
||||
std::fill(vwgt, vwgt+n, 1);
|
||||
|
||||
//TODO: Fix later
|
||||
//boost::timer TOTALTmr;
|
||||
if (verbose) {
|
||||
printf("**********************************************************************\n");
|
||||
printf("Graph Information ---------------------------------------------------\n");
|
||||
printf(" #Vertices: %d, #Edges: %u\n", n, *(xadj.get()+n) / 2);
|
||||
printf("\nND Partitioning... -------------------------------------------\n");
|
||||
//cleartimer(TOTALTmr);
|
||||
//starttimer(TOTALTmr);
|
||||
}
|
||||
//TODO: Fix later
|
||||
//boost::timer TOTALTmr;
|
||||
if (verbose) {
|
||||
printf("**********************************************************************\n");
|
||||
printf("Graph Information ---------------------------------------------------\n");
|
||||
printf(" #Vertices: %d, #Edges: %u\n", n, *(xadj.get()+n) / 2);
|
||||
printf("\nND Partitioning... -------------------------------------------\n");
|
||||
//cleartimer(TOTALTmr);
|
||||
//starttimer(TOTALTmr);
|
||||
}
|
||||
|
||||
//int wgtflag = 1; // only edge weights
|
||||
//int numflag = 0; // c style numbering starting from 0
|
||||
//int nparts = 2; // partition the graph to 2 submaps
|
||||
modefied_EdgeComputeSeparator(&n, xadj.get(), adjncy.get(), vwgt, adjwgt.get(),
|
||||
options, &edgecut, part_.get());
|
||||
//int wgtflag = 1; // only edge weights
|
||||
//int numflag = 0; // c style numbering starting from 0
|
||||
//int nparts = 2; // partition the graph to 2 submaps
|
||||
modefied_EdgeComputeSeparator(&n, xadj.get(), adjncy.get(), vwgt, adjwgt.get(),
|
||||
options, &edgecut, part_.get());
|
||||
|
||||
|
||||
if (verbose) {
|
||||
//stoptimer(TOTALTmr);
|
||||
printf("\nTiming Information --------------------------------------------------\n");
|
||||
//printf(" Total: \t\t %7.3f\n", gettimer(TOTALTmr));
|
||||
printf(" Edge cuts: \t\t %d\n", edgecut);
|
||||
printf("**********************************************************************\n");
|
||||
}
|
||||
|
||||
if (verbose) {
|
||||
//stoptimer(TOTALTmr);
|
||||
printf("\nTiming Information --------------------------------------------------\n");
|
||||
//printf(" Total: \t\t %7.3f\n", gettimer(TOTALTmr));
|
||||
printf(" Edge cuts: \t\t %d\n", edgecut);
|
||||
printf("**********************************************************************\n");
|
||||
}
|
||||
|
||||
return std::make_pair(edgecut, part_);
|
||||
}
|
||||
return std::make_pair(edgecut, part_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Prepare the data structure {xadj} and {adjncy} required by metis
|
||||
* xadj always has the size equal to the no. of the nodes plus 1
|
||||
* adjncy always has the size equal to two times of the no. of the edges in the Metis graph
|
||||
*/
|
||||
template <class GenericGraph>
|
||||
void prepareMetisGraph(const GenericGraph& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
|
||||
sharedInts* ptr_xadj, sharedInts* ptr_adjncy, sharedInts* ptr_adjwgt) {
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Prepare the data structure {xadj} and {adjncy} required by metis
|
||||
* xadj always has the size equal to the no. of the nodes plus 1
|
||||
* adjncy always has the size equal to two times of the no. of the edges in the Metis graph
|
||||
*/
|
||||
template <class GenericGraph>
|
||||
void prepareMetisGraph(const GenericGraph& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
|
||||
sharedInts* ptr_xadj, sharedInts* ptr_adjncy, sharedInts* ptr_adjwgt) {
|
||||
|
||||
typedef int Weight;
|
||||
typedef std::vector<int> Weights;
|
||||
typedef std::vector<int> Neighbors;
|
||||
typedef std::pair<Neighbors, Weights> NeighborsInfo;
|
||||
typedef int Weight;
|
||||
typedef std::vector<int> Weights;
|
||||
typedef std::vector<int> Neighbors;
|
||||
typedef std::pair<Neighbors, Weights> NeighborsInfo;
|
||||
|
||||
// set up dictionary
|
||||
std::vector<int>& dictionary = workspace.dictionary;
|
||||
workspace.prepareDictionary(keys);
|
||||
// set up dictionary
|
||||
std::vector<int>& dictionary = workspace.dictionary;
|
||||
workspace.prepareDictionary(keys);
|
||||
|
||||
// prepare for {adjacencyMap}, a pair of neighbor indices and the correponding edge weights
|
||||
int numNodes = keys.size();
|
||||
int numEdges = 0;
|
||||
std::vector<NeighborsInfo> adjacencyMap;
|
||||
adjacencyMap.resize(numNodes);
|
||||
std::cout << "Number of nodes: " << adjacencyMap.size() << std::endl;
|
||||
int index1, index2;
|
||||
// prepare for {adjacencyMap}, a pair of neighbor indices and the correponding edge weights
|
||||
int numNodes = keys.size();
|
||||
int numEdges = 0;
|
||||
std::vector<NeighborsInfo> adjacencyMap;
|
||||
adjacencyMap.resize(numNodes);
|
||||
std::cout << "Number of nodes: " << adjacencyMap.size() << std::endl;
|
||||
int index1, index2;
|
||||
|
||||
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph){
|
||||
index1 = dictionary[factor->key1.index];
|
||||
index2 = dictionary[factor->key2.index];
|
||||
std::cout << "index1: " << index1 << std::endl;
|
||||
std::cout << "index2: " << index2 << std::endl;
|
||||
// if both nodes are in the current graph, i.e. not a joint factor between frontal and separator
|
||||
if (index1 >= 0 && index2 >= 0) {
|
||||
std::pair<Neighbors, Weights>& adjacencyMap1 = adjacencyMap[index1];
|
||||
std::pair<Neighbors, Weights>& adjacencyMap2 = adjacencyMap[index2];
|
||||
try{
|
||||
adjacencyMap1.first.push_back(index2);
|
||||
adjacencyMap1.second.push_back(factor->weight);
|
||||
adjacencyMap2.first.push_back(index1);
|
||||
adjacencyMap2.second.push_back(factor->weight);
|
||||
}catch(std::exception& e){
|
||||
std::cout << e.what() << std::endl;
|
||||
}
|
||||
numEdges++;
|
||||
}
|
||||
}
|
||||
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph){
|
||||
index1 = dictionary[factor->key1.index];
|
||||
index2 = dictionary[factor->key2.index];
|
||||
std::cout << "index1: " << index1 << std::endl;
|
||||
std::cout << "index2: " << index2 << std::endl;
|
||||
// if both nodes are in the current graph, i.e. not a joint factor between frontal and separator
|
||||
if (index1 >= 0 && index2 >= 0) {
|
||||
std::pair<Neighbors, Weights>& adjacencyMap1 = adjacencyMap[index1];
|
||||
std::pair<Neighbors, Weights>& adjacencyMap2 = adjacencyMap[index2];
|
||||
try{
|
||||
adjacencyMap1.first.push_back(index2);
|
||||
adjacencyMap1.second.push_back(factor->weight);
|
||||
adjacencyMap2.first.push_back(index1);
|
||||
adjacencyMap2.second.push_back(factor->weight);
|
||||
}catch(std::exception& e){
|
||||
std::cout << e.what() << std::endl;
|
||||
}
|
||||
numEdges++;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare for {xadj}, {adjncy}, and {adjwgt}
|
||||
*ptr_xadj = sharedInts(new idx_t[numNodes+1]);
|
||||
*ptr_adjncy = sharedInts(new idx_t[numEdges*2]);
|
||||
*ptr_adjwgt = sharedInts(new idx_t[numEdges*2]);
|
||||
sharedInts& xadj = *ptr_xadj;
|
||||
sharedInts& adjncy = *ptr_adjncy;
|
||||
sharedInts& adjwgt = *ptr_adjwgt;
|
||||
int ind_xadj = 0, ind_adjncy = 0;
|
||||
BOOST_FOREACH(const NeighborsInfo& info, adjacencyMap) {
|
||||
*(xadj.get() + ind_xadj) = ind_adjncy;
|
||||
std::copy(info.first .begin(), info.first .end(), adjncy.get() + ind_adjncy);
|
||||
std::copy(info.second.begin(), info.second.end(), adjwgt.get() + ind_adjncy);
|
||||
assert(info.first.size() == info.second.size());
|
||||
ind_adjncy += info.first.size();
|
||||
ind_xadj ++;
|
||||
}
|
||||
if (ind_xadj != numNodes) throw std::runtime_error("prepareMetisGraph_: ind_xadj != numNodes");
|
||||
*(xadj.get() + ind_xadj) = ind_adjncy;
|
||||
}
|
||||
// prepare for {xadj}, {adjncy}, and {adjwgt}
|
||||
*ptr_xadj = sharedInts(new idx_t[numNodes+1]);
|
||||
*ptr_adjncy = sharedInts(new idx_t[numEdges*2]);
|
||||
*ptr_adjwgt = sharedInts(new idx_t[numEdges*2]);
|
||||
sharedInts& xadj = *ptr_xadj;
|
||||
sharedInts& adjncy = *ptr_adjncy;
|
||||
sharedInts& adjwgt = *ptr_adjwgt;
|
||||
int ind_xadj = 0, ind_adjncy = 0;
|
||||
BOOST_FOREACH(const NeighborsInfo& info, adjacencyMap) {
|
||||
*(xadj.get() + ind_xadj) = ind_adjncy;
|
||||
std::copy(info.first .begin(), info.first .end(), adjncy.get() + ind_adjncy);
|
||||
std::copy(info.second.begin(), info.second.end(), adjwgt.get() + ind_adjncy);
|
||||
assert(info.first.size() == info.second.size());
|
||||
ind_adjncy += info.first.size();
|
||||
ind_xadj ++;
|
||||
}
|
||||
if (ind_xadj != numNodes) throw std::runtime_error("prepareMetisGraph_: ind_xadj != numNodes");
|
||||
*(xadj.get() + ind_xadj) = ind_adjncy;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GenericGraph>
|
||||
boost::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph,
|
||||
const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) {
|
||||
// create a metis graph
|
||||
size_t numKeys = keys.size();
|
||||
if (verbose)
|
||||
std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl;
|
||||
/* ************************************************************************* */
|
||||
template<class GenericGraph>
|
||||
boost::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph,
|
||||
const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) {
|
||||
// create a metis graph
|
||||
size_t numKeys = keys.size();
|
||||
if (verbose)
|
||||
std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl;
|
||||
|
||||
sharedInts xadj, adjncy, adjwgt;
|
||||
sharedInts xadj, adjncy, adjwgt;
|
||||
|
||||
prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt);
|
||||
prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt);
|
||||
|
||||
// run ND on the graph
|
||||
size_t sepsize;
|
||||
sharedInts part;
|
||||
boost::tie(sepsize, part) = separatorMetis(numKeys, xadj, adjncy, adjwgt, verbose);
|
||||
if (!sepsize) return boost::optional<MetisResult>();
|
||||
// run ND on the graph
|
||||
size_t sepsize;
|
||||
sharedInts part;
|
||||
boost::tie(sepsize, part) = separatorMetis(numKeys, xadj, adjncy, adjwgt, verbose);
|
||||
if (!sepsize) return boost::optional<MetisResult>();
|
||||
|
||||
// convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later
|
||||
// we will have more submaps
|
||||
MetisResult result;
|
||||
result.C.reserve(sepsize);
|
||||
result.A.reserve(numKeys - sepsize);
|
||||
result.B.reserve(numKeys - sepsize);
|
||||
int* ptr_part = part.get();
|
||||
std::vector<size_t>::const_iterator itKey = keys.begin();
|
||||
std::vector<size_t>::const_iterator itKeyLast = keys.end();
|
||||
while(itKey != itKeyLast) {
|
||||
switch(*(ptr_part++)) {
|
||||
case 0: result.A.push_back(*(itKey++)); break;
|
||||
case 1: result.B.push_back(*(itKey++)); break;
|
||||
case 2: result.C.push_back(*(itKey++)); break;
|
||||
default: throw std::runtime_error("separatorPartitionByMetis: invalid results from Metis ND!");
|
||||
}
|
||||
}
|
||||
// convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later
|
||||
// we will have more submaps
|
||||
MetisResult result;
|
||||
result.C.reserve(sepsize);
|
||||
result.A.reserve(numKeys - sepsize);
|
||||
result.B.reserve(numKeys - sepsize);
|
||||
int* ptr_part = part.get();
|
||||
std::vector<size_t>::const_iterator itKey = keys.begin();
|
||||
std::vector<size_t>::const_iterator itKeyLast = keys.end();
|
||||
while(itKey != itKeyLast) {
|
||||
switch(*(ptr_part++)) {
|
||||
case 0: result.A.push_back(*(itKey++)); break;
|
||||
case 1: result.B.push_back(*(itKey++)); break;
|
||||
case 2: result.C.push_back(*(itKey++)); break;
|
||||
default: throw std::runtime_error("separatorPartitionByMetis: invalid results from Metis ND!");
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) {
|
||||
std::cout << "total key: " << keys.size()
|
||||
<< " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", "
|
||||
<< result.C.size() << "; sepsize from Metis = " << sepsize << std::endl;
|
||||
//throw runtime_error("separatorPartitionByMetis:stop for debug");
|
||||
}
|
||||
if (verbose) {
|
||||
std::cout << "total key: " << keys.size()
|
||||
<< " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", "
|
||||
<< result.C.size() << "; sepsize from Metis = " << sepsize << std::endl;
|
||||
//throw runtime_error("separatorPartitionByMetis:stop for debug");
|
||||
}
|
||||
|
||||
if(result.C.size() != sepsize) {
|
||||
std::cout << "total key: " << keys.size()
|
||||
<< " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", " << result.C.size()
|
||||
<< "; sepsize from Metis = " << sepsize << std::endl;
|
||||
throw std::runtime_error("separatorPartitionByMetis: invalid sepsize from Metis ND!");
|
||||
}
|
||||
if(result.C.size() != sepsize) {
|
||||
std::cout << "total key: " << keys.size()
|
||||
<< " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", " << result.C.size()
|
||||
<< "; sepsize from Metis = " << sepsize << std::endl;
|
||||
throw std::runtime_error("separatorPartitionByMetis: invalid sepsize from Metis ND!");
|
||||
}
|
||||
|
||||
return boost::make_optional<MetisResult >(result);
|
||||
}
|
||||
return boost::make_optional<MetisResult >(result);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
template<class GenericGraph>
|
||||
boost::optional<MetisResult> edgePartitionByMetis(const GenericGraph& graph,
|
||||
const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) {
|
||||
/* *************************************************************************/
|
||||
template<class GenericGraph>
|
||||
boost::optional<MetisResult> edgePartitionByMetis(const GenericGraph& graph,
|
||||
const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) {
|
||||
|
||||
// a small hack for handling the camera1-camera2 case used in the unit tests
|
||||
if (graph.size() == 1 && keys.size() == 2) {
|
||||
MetisResult result;
|
||||
result.A.push_back(keys.front());
|
||||
result.B.push_back(keys.back());
|
||||
return result;
|
||||
}
|
||||
// a small hack for handling the camera1-camera2 case used in the unit tests
|
||||
if (graph.size() == 1 && keys.size() == 2) {
|
||||
MetisResult result;
|
||||
result.A.push_back(keys.front());
|
||||
result.B.push_back(keys.back());
|
||||
return result;
|
||||
}
|
||||
|
||||
// create a metis graph
|
||||
size_t numKeys = keys.size();
|
||||
if (verbose) std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl;
|
||||
sharedInts xadj, adjncy, adjwgt;
|
||||
prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt);
|
||||
// create a metis graph
|
||||
size_t numKeys = keys.size();
|
||||
if (verbose) std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl;
|
||||
sharedInts xadj, adjncy, adjwgt;
|
||||
prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt);
|
||||
|
||||
// run metis on the graph
|
||||
int edgecut;
|
||||
sharedInts part;
|
||||
boost::tie(edgecut, part) = edgeMetis(numKeys, xadj, adjncy, adjwgt, verbose);
|
||||
// run metis on the graph
|
||||
int edgecut;
|
||||
sharedInts part;
|
||||
boost::tie(edgecut, part) = edgeMetis(numKeys, xadj, adjncy, adjwgt, verbose);
|
||||
|
||||
// convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later we will have more submaps
|
||||
MetisResult result;
|
||||
result.A.reserve(numKeys);
|
||||
result.B.reserve(numKeys);
|
||||
int* ptr_part = part.get();
|
||||
std::vector<size_t>::const_iterator itKey = keys.begin();
|
||||
std::vector<size_t>::const_iterator itKeyLast = keys.end();
|
||||
while(itKey != itKeyLast) {
|
||||
if (*ptr_part != 0 && *ptr_part != 1)
|
||||
std::cout << *ptr_part << "!!!" << std::endl;
|
||||
switch(*(ptr_part++)) {
|
||||
case 0: result.A.push_back(*(itKey++)); break;
|
||||
case 1: result.B.push_back(*(itKey++)); break;
|
||||
default: throw std::runtime_error("edgePartitionByMetis: invalid results from Metis ND!");
|
||||
}
|
||||
}
|
||||
// convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later we will have more submaps
|
||||
MetisResult result;
|
||||
result.A.reserve(numKeys);
|
||||
result.B.reserve(numKeys);
|
||||
int* ptr_part = part.get();
|
||||
std::vector<size_t>::const_iterator itKey = keys.begin();
|
||||
std::vector<size_t>::const_iterator itKeyLast = keys.end();
|
||||
while(itKey != itKeyLast) {
|
||||
if (*ptr_part != 0 && *ptr_part != 1)
|
||||
std::cout << *ptr_part << "!!!" << std::endl;
|
||||
switch(*(ptr_part++)) {
|
||||
case 0: result.A.push_back(*(itKey++)); break;
|
||||
case 1: result.B.push_back(*(itKey++)); break;
|
||||
default: throw std::runtime_error("edgePartitionByMetis: invalid results from Metis ND!");
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) {
|
||||
std::cout << "the size of two submaps in the reduced graph: " << result.A.size()
|
||||
<< " " << result.B.size() << std::endl;
|
||||
int edgeCut = 0;
|
||||
if (verbose) {
|
||||
std::cout << "the size of two submaps in the reduced graph: " << result.A.size()
|
||||
<< " " << result.B.size() << std::endl;
|
||||
int edgeCut = 0;
|
||||
|
||||
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph){
|
||||
int key1 = factor->key1.index;
|
||||
int key2 = factor->key2.index;
|
||||
// print keys and their subgraph assignment
|
||||
std::cout << key1;
|
||||
if (std::find(result.A.begin(), result.A.end(), key1) != result.A.end()) std::cout <<"A ";
|
||||
if (std::find(result.B.begin(), result.B.end(), key1) != result.B.end()) std::cout <<"B ";
|
||||
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph){
|
||||
int key1 = factor->key1.index;
|
||||
int key2 = factor->key2.index;
|
||||
// print keys and their subgraph assignment
|
||||
std::cout << key1;
|
||||
if (std::find(result.A.begin(), result.A.end(), key1) != result.A.end()) std::cout <<"A ";
|
||||
if (std::find(result.B.begin(), result.B.end(), key1) != result.B.end()) std::cout <<"B ";
|
||||
|
||||
std::cout << key2;
|
||||
if (std::find(result.A.begin(), result.A.end(), key2) != result.A.end()) std::cout <<"A ";
|
||||
if (std::find(result.B.begin(), result.B.end(), key2) != result.B.end()) std::cout <<"B ";
|
||||
std::cout << key2;
|
||||
if (std::find(result.A.begin(), result.A.end(), key2) != result.A.end()) std::cout <<"A ";
|
||||
if (std::find(result.B.begin(), result.B.end(), key2) != result.B.end()) std::cout <<"B ";
|
||||
std::cout << "weight " << factor->weight;;
|
||||
|
||||
// find vertices that were assigned to sets A & B. Their edge will be cut
|
||||
if ((std::find(result.A.begin(), result.A.end(), key1) != result.A.end() &&
|
||||
std::find(result.B.begin(), result.B.end(), key2) != result.B.end()) ||
|
||||
(std::find(result.B.begin(), result.B.end(), key1) != result.B.end() &&
|
||||
std::find(result.A.begin(), result.A.end(), key2) != result.A.end())){
|
||||
edgeCut ++;
|
||||
std::cout << " CUT ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << "edgeCut: " << edgeCut << std::endl;
|
||||
}
|
||||
// find vertices that were assigned to sets A & B. Their edge will be cut
|
||||
if ((std::find(result.A.begin(), result.A.end(), key1) != result.A.end() &&
|
||||
std::find(result.B.begin(), result.B.end(), key2) != result.B.end()) ||
|
||||
(std::find(result.B.begin(), result.B.end(), key1) != result.B.end() &&
|
||||
std::find(result.A.begin(), result.A.end(), key2) != result.A.end())){
|
||||
edgeCut ++;
|
||||
std::cout << " CUT ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << "edgeCut: " << edgeCut << std::endl;
|
||||
}
|
||||
|
||||
return boost::make_optional<MetisResult >(result);
|
||||
}
|
||||
return boost::make_optional<MetisResult >(result);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool isLargerIsland(const std::vector<size_t>& island1, const std::vector<size_t>& island2) {
|
||||
return island1.size() > island2.size();
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
bool isLargerIsland(const std::vector<size_t>& island1, const std::vector<size_t>& island2) {
|
||||
return island1.size() > island2.size();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// debug functions
|
||||
void printIsland(const std::vector<size_t>& island) {
|
||||
std::cout << "island: ";
|
||||
BOOST_FOREACH(const size_t key, island)
|
||||
std::cout << key << " ";
|
||||
std::cout << std::endl;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
// debug functions
|
||||
void printIsland(const std::vector<size_t>& island) {
|
||||
std::cout << "island: ";
|
||||
BOOST_FOREACH(const size_t key, island)
|
||||
std::cout << key << " ";
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void printIslands(const std::list<std::vector<size_t> >& islands) {
|
||||
BOOST_FOREACH(const std::vector<std::size_t>& island, islands)
|
||||
printIsland(island);
|
||||
}
|
||||
void printIslands(const std::list<std::vector<size_t> >& islands) {
|
||||
BOOST_FOREACH(const std::vector<std::size_t>& island, islands)
|
||||
printIsland(island);
|
||||
}
|
||||
|
||||
void printNumCamerasLandmarks(const std::vector<size_t>& keys, const std::vector<Symbol>& int2symbol) {
|
||||
int numCamera = 0, numLandmark = 0;
|
||||
BOOST_FOREACH(const size_t key, keys)
|
||||
if (int2symbol[key].chr() == 'x')
|
||||
numCamera++;
|
||||
else
|
||||
numLandmark++;
|
||||
std::cout << "numCamera: " << numCamera << " numLandmark: " << numLandmark << std::endl;
|
||||
}
|
||||
void printNumCamerasLandmarks(const std::vector<size_t>& keys, const std::vector<Symbol>& int2symbol) {
|
||||
int numCamera = 0, numLandmark = 0;
|
||||
BOOST_FOREACH(const size_t key, keys)
|
||||
if (int2symbol[key].chr() == 'x')
|
||||
numCamera++;
|
||||
else
|
||||
numLandmark++;
|
||||
std::cout << "numCamera: " << numCamera << " numLandmark: " << numLandmark << std::endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GenericGraph>
|
||||
void addLandmarkToPartitionResult(const GenericGraph& graph, const std::vector<size_t>& landmarkKeys,
|
||||
MetisResult& partitionResult, WorkSpace& workspace) {
|
||||
/* ************************************************************************* */
|
||||
template<class GenericGraph>
|
||||
void addLandmarkToPartitionResult(const GenericGraph& graph, const std::vector<size_t>& landmarkKeys,
|
||||
MetisResult& partitionResult, WorkSpace& workspace) {
|
||||
|
||||
// set up cameras in the dictionary
|
||||
std::vector<size_t>& A = partitionResult.A;
|
||||
std::vector<size_t>& B = partitionResult.B;
|
||||
std::vector<size_t>& C = partitionResult.C;
|
||||
std::vector<int>& dictionary = workspace.dictionary;
|
||||
std::fill(dictionary.begin(), dictionary.end(), -1);
|
||||
BOOST_FOREACH(const size_t a, A)
|
||||
dictionary[a] = 1;
|
||||
BOOST_FOREACH(const size_t b, B)
|
||||
dictionary[b] = 2;
|
||||
if (!C.empty())
|
||||
throw std::runtime_error("addLandmarkToPartitionResult: C is not empty");
|
||||
// set up cameras in the dictionary
|
||||
std::vector<size_t>& A = partitionResult.A;
|
||||
std::vector<size_t>& B = partitionResult.B;
|
||||
std::vector<size_t>& C = partitionResult.C;
|
||||
std::vector<int>& dictionary = workspace.dictionary;
|
||||
std::fill(dictionary.begin(), dictionary.end(), -1);
|
||||
BOOST_FOREACH(const size_t a, A)
|
||||
dictionary[a] = 1;
|
||||
BOOST_FOREACH(const size_t b, B)
|
||||
dictionary[b] = 2;
|
||||
if (!C.empty())
|
||||
throw std::runtime_error("addLandmarkToPartitionResult: C is not empty");
|
||||
|
||||
// set up landmarks
|
||||
size_t i,j;
|
||||
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph) {
|
||||
i = factor->key1.index;
|
||||
j = factor->key2.index;
|
||||
if (dictionary[j] == 0) // if the landmark is already in the separator, continue
|
||||
continue;
|
||||
else if (dictionary[j] == -1)
|
||||
dictionary[j] = dictionary[i];
|
||||
else {
|
||||
if (dictionary[j] != dictionary[i])
|
||||
dictionary[j] = 0;
|
||||
}
|
||||
// if (j == 67980)
|
||||
// std::cout << "dictionary[67980]" << dictionary[j] << std::endl;
|
||||
}
|
||||
// set up landmarks
|
||||
size_t i,j;
|
||||
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph) {
|
||||
i = factor->key1.index;
|
||||
j = factor->key2.index;
|
||||
if (dictionary[j] == 0) // if the landmark is already in the separator, continue
|
||||
continue;
|
||||
else if (dictionary[j] == -1)
|
||||
dictionary[j] = dictionary[i];
|
||||
else {
|
||||
if (dictionary[j] != dictionary[i])
|
||||
dictionary[j] = 0;
|
||||
}
|
||||
// if (j == 67980)
|
||||
// std::cout << "dictionary[67980]" << dictionary[j] << std::endl;
|
||||
}
|
||||
|
||||
BOOST_FOREACH(const size_t j, landmarkKeys) {
|
||||
switch(dictionary[j]) {
|
||||
case 0: C.push_back(j); break;
|
||||
case 1: A.push_back(j); break;
|
||||
case 2: B.push_back(j); break;
|
||||
default: std::cout << j << ": " << dictionary[j] << std::endl;
|
||||
throw std::runtime_error("addLandmarkToPartitionResult: wrong status for landmark");
|
||||
}
|
||||
}
|
||||
}
|
||||
BOOST_FOREACH(const size_t j, landmarkKeys) {
|
||||
switch(dictionary[j]) {
|
||||
case 0: C.push_back(j); break;
|
||||
case 1: A.push_back(j); break;
|
||||
case 2: B.push_back(j); break;
|
||||
default: std::cout << j << ": " << dictionary[j] << std::endl;
|
||||
throw std::runtime_error("addLandmarkToPartitionResult: wrong status for landmark");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#define REDUCE_CAMERA_GRAPH
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GenericGraph>
|
||||
boost::optional<MetisResult> findPartitoning(const GenericGraph& graph, const std::vector<size_t>& keys,
|
||||
WorkSpace& workspace, bool verbose,
|
||||
const boost::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph) {
|
||||
boost::optional<MetisResult> result;
|
||||
GenericGraph reducedGraph;
|
||||
std::vector<size_t> keyToPartition;
|
||||
std::vector<size_t> cameraKeys, landmarkKeys;
|
||||
if (reduceGraph) {
|
||||
if (!int2symbol.is_initialized())
|
||||
throw std::invalid_argument("findSeparator: int2symbol must be valid!");
|
||||
/* ************************************************************************* */
|
||||
template<class GenericGraph>
|
||||
boost::optional<MetisResult> findPartitoning(const GenericGraph& graph, const std::vector<size_t>& keys,
|
||||
WorkSpace& workspace, bool verbose,
|
||||
const boost::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph) {
|
||||
boost::optional<MetisResult> result;
|
||||
GenericGraph reducedGraph;
|
||||
std::vector<size_t> keyToPartition;
|
||||
std::vector<size_t> cameraKeys, landmarkKeys;
|
||||
if (reduceGraph) {
|
||||
if (!int2symbol.is_initialized())
|
||||
throw std::invalid_argument("findSeparator: int2symbol must be valid!");
|
||||
|
||||
// find out all the landmark keys, which are to be eliminated
|
||||
cameraKeys.reserve(keys.size());
|
||||
landmarkKeys.reserve(keys.size());
|
||||
BOOST_FOREACH(const size_t key, keys) {
|
||||
if((*int2symbol)[key].chr() == 'x')
|
||||
cameraKeys.push_back(key);
|
||||
else
|
||||
landmarkKeys.push_back(key);
|
||||
}
|
||||
// find out all the landmark keys, which are to be eliminated
|
||||
cameraKeys.reserve(keys.size());
|
||||
landmarkKeys.reserve(keys.size());
|
||||
BOOST_FOREACH(const size_t key, keys) {
|
||||
if((*int2symbol)[key].chr() == 'x')
|
||||
cameraKeys.push_back(key);
|
||||
else
|
||||
landmarkKeys.push_back(key);
|
||||
}
|
||||
|
||||
keyToPartition = cameraKeys;
|
||||
workspace.prepareDictionary(keyToPartition);
|
||||
const std::vector<int>& dictionary = workspace.dictionary;
|
||||
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reducedGraph);
|
||||
std::cout << "original graph: V" << keys.size() << ", E" << graph.size()
|
||||
<< " --> reduced graph: V" << cameraKeys.size() << ", E" << reducedGraph.size() << std::endl;
|
||||
result = edgePartitionByMetis(reducedGraph, keyToPartition, workspace, verbose);
|
||||
} else // call Metis to partition the graph to A, B, C
|
||||
result = separatorPartitionByMetis(graph, keys, workspace, verbose);
|
||||
keyToPartition = cameraKeys;
|
||||
workspace.prepareDictionary(keyToPartition);
|
||||
const std::vector<int>& dictionary = workspace.dictionary;
|
||||
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reducedGraph);
|
||||
std::cout << "original graph: V" << keys.size() << ", E" << graph.size()
|
||||
<< " --> reduced graph: V" << cameraKeys.size() << ", E" << reducedGraph.size() << std::endl;
|
||||
result = edgePartitionByMetis(reducedGraph, keyToPartition, workspace, verbose);
|
||||
} else // call Metis to partition the graph to A, B, C
|
||||
result = separatorPartitionByMetis(graph, keys, workspace, verbose);
|
||||
|
||||
if (!result.is_initialized()) {
|
||||
std::cout << "metis failed!" << std::endl;
|
||||
return 0;
|
||||
}
|
||||
if (!result.is_initialized()) {
|
||||
std::cout << "metis failed!" << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (reduceGraph) {
|
||||
addLandmarkToPartitionResult(graph, landmarkKeys, *result, workspace);
|
||||
std::cout << "the separator size: " << result->C.size() << " landmarks" << std::endl;
|
||||
}
|
||||
if (reduceGraph) {
|
||||
addLandmarkToPartitionResult(graph, landmarkKeys, *result, workspace);
|
||||
std::cout << "the separator size: " << result->C.size() << " landmarks" << std::endl;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GenericGraph>
|
||||
int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys,
|
||||
const int minNodesPerMap, WorkSpace& workspace, bool verbose,
|
||||
const boost::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph,
|
||||
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) {
|
||||
/* ************************************************************************* */
|
||||
template<class GenericGraph>
|
||||
int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys,
|
||||
const int minNodesPerMap, WorkSpace& workspace, bool verbose,
|
||||
const boost::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph,
|
||||
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) {
|
||||
|
||||
boost::optional<MetisResult> result = findPartitoning(graph, keys, workspace,
|
||||
verbose, int2symbol, reduceGraph);
|
||||
boost::optional<MetisResult> result = findPartitoning(graph, keys, workspace,
|
||||
verbose, int2symbol, reduceGraph);
|
||||
|
||||
// find the island in A and B, and make them separated submaps
|
||||
typedef std::vector<size_t> Island;
|
||||
std::list<Island> islands;
|
||||
// find the island in A and B, and make them separated submaps
|
||||
typedef std::vector<size_t> Island;
|
||||
std::list<Island> islands;
|
||||
|
||||
std::list<Island> islands_in_A = findIslands(graph, result->A, workspace,
|
||||
minNrConstraintsPerCamera, minNrConstraintsPerLandmark);
|
||||
std::list<Island> islands_in_A = findIslands(graph, result->A, workspace,
|
||||
minNrConstraintsPerCamera, minNrConstraintsPerLandmark);
|
||||
|
||||
std::list<Island> islands_in_B = findIslands(graph, result->B, workspace,
|
||||
minNrConstraintsPerCamera, minNrConstraintsPerLandmark);
|
||||
std::list<Island> islands_in_B = findIslands(graph, result->B, workspace,
|
||||
minNrConstraintsPerCamera, minNrConstraintsPerLandmark);
|
||||
|
||||
islands.insert(islands.end(), islands_in_A.begin(), islands_in_A.end());
|
||||
islands.insert(islands.end(), islands_in_B.begin(), islands_in_B.end());
|
||||
islands.sort(isLargerIsland);
|
||||
size_t numIsland0 = islands.size();
|
||||
islands.insert(islands.end(), islands_in_A.begin(), islands_in_A.end());
|
||||
islands.insert(islands.end(), islands_in_B.begin(), islands_in_B.end());
|
||||
islands.sort(isLargerIsland);
|
||||
size_t numIsland0 = islands.size();
|
||||
|
||||
#ifdef NDEBUG
|
||||
// verbose = true;
|
||||
// if (!int2symbol) throw std::invalid_argument("findSeparator: int2symbol is not set!");
|
||||
// std::cout << "sep size: " << result->C.size() << "; ";
|
||||
// printNumCamerasLandmarks(result->C, *int2symbol);
|
||||
// std::cout << "no. of island: " << islands.size() << "; ";
|
||||
// std::cout << "island size: ";
|
||||
// BOOST_FOREACH(const Island& island, islands)
|
||||
// std::cout << island.size() << " ";
|
||||
// std::cout << std::endl;
|
||||
// verbose = true;
|
||||
// if (!int2symbol) throw std::invalid_argument("findSeparator: int2symbol is not set!");
|
||||
// std::cout << "sep size: " << result->C.size() << "; ";
|
||||
// printNumCamerasLandmarks(result->C, *int2symbol);
|
||||
// std::cout << "no. of island: " << islands.size() << "; ";
|
||||
// std::cout << "island size: ";
|
||||
// BOOST_FOREACH(const Island& island, islands)
|
||||
// std::cout << island.size() << " ";
|
||||
// std::cout << std::endl;
|
||||
|
||||
// BOOST_FOREACH(const Island& island, islands) {
|
||||
// printNumCamerasLandmarks(island, int2symbol);
|
||||
// }
|
||||
// BOOST_FOREACH(const Island& island, islands) {
|
||||
// printNumCamerasLandmarks(island, int2symbol);
|
||||
// }
|
||||
#endif
|
||||
|
||||
// absorb small components into the separator
|
||||
size_t oldSize = islands.size();
|
||||
while(true) {
|
||||
if (islands.size() < 2) {
|
||||
std::cout << "numIsland: " << numIsland0 << std::endl;
|
||||
throw std::runtime_error("findSeparator: found fewer than 2 submaps!");
|
||||
}
|
||||
// absorb small components into the separator
|
||||
size_t oldSize = islands.size();
|
||||
while(true) {
|
||||
if (islands.size() < 2) {
|
||||
std::cout << "numIsland: " << numIsland0 << std::endl;
|
||||
throw std::runtime_error("findSeparator: found fewer than 2 submaps!");
|
||||
}
|
||||
|
||||
std::list<Island>::reference island = islands.back();
|
||||
if ((int)island.size() >= minNodesPerMap) break;
|
||||
result->C.insert(result->C.end(), island.begin(), island.end());
|
||||
islands.pop_back();
|
||||
}
|
||||
if (islands.size() != oldSize){
|
||||
if (verbose) std::cout << oldSize << "-" << oldSize - islands.size() << " submap(s);\t" << std::endl;
|
||||
}
|
||||
else{
|
||||
if (verbose) std::cout << oldSize << " submap(s);\t" << std::endl;
|
||||
}
|
||||
std::list<Island>::reference island = islands.back();
|
||||
if ((int)island.size() >= minNodesPerMap) break;
|
||||
result->C.insert(result->C.end(), island.begin(), island.end());
|
||||
islands.pop_back();
|
||||
}
|
||||
if (islands.size() != oldSize){
|
||||
if (verbose) std::cout << oldSize << "-" << oldSize - islands.size() << " submap(s);\t" << std::endl;
|
||||
}
|
||||
else{
|
||||
if (verbose) std::cout << oldSize << " submap(s);\t" << std::endl;
|
||||
}
|
||||
|
||||
// generate the node map
|
||||
std::vector<int>& partitionTable = workspace.partitionTable;
|
||||
std::fill(partitionTable.begin(), partitionTable.end(), -1);
|
||||
BOOST_FOREACH(const size_t key, result->C)
|
||||
partitionTable[key] = 0;
|
||||
int idx = 0;
|
||||
BOOST_FOREACH(const Island& island, islands) {
|
||||
idx++;
|
||||
BOOST_FOREACH(const size_t key, island) {
|
||||
partitionTable[key] = idx;
|
||||
}
|
||||
}
|
||||
// generate the node map
|
||||
std::vector<int>& partitionTable = workspace.partitionTable;
|
||||
std::fill(partitionTable.begin(), partitionTable.end(), -1);
|
||||
BOOST_FOREACH(const size_t key, result->C)
|
||||
partitionTable[key] = 0;
|
||||
int idx = 0;
|
||||
BOOST_FOREACH(const Island& island, islands) {
|
||||
idx++;
|
||||
BOOST_FOREACH(const size_t key, island) {
|
||||
partitionTable[key] = idx;
|
||||
}
|
||||
}
|
||||
|
||||
return islands.size();
|
||||
}
|
||||
return islands.size();
|
||||
}
|
||||
|
||||
}} //namespace
|
||||
|
|
|
@ -16,29 +16,29 @@
|
|||
|
||||
namespace gtsam { namespace partition {
|
||||
|
||||
// typedef std::map<size_t, size_t> PartitionTable; // from the key to the partition: 0 - separator, > 1: submap id
|
||||
// typedef std::map<size_t, size_t> PartitionTable; // from the key to the partition: 0 - separator, > 1: submap id
|
||||
|
||||
/** the metis Nest dissection result */
|
||||
struct MetisResult {
|
||||
std::vector<size_t> A, B; // frontals
|
||||
std::vector<size_t> C; // separator
|
||||
};
|
||||
/** the metis Nest dissection result */
|
||||
struct MetisResult {
|
||||
std::vector<size_t> A, B; // frontals
|
||||
std::vector<size_t> C; // separator
|
||||
};
|
||||
|
||||
/**
|
||||
* use Metis library to partition, return the size of separator and the optional partition table
|
||||
* the size of dictionary mush be equal to the number of variables in the original graph (the largest one)
|
||||
*/
|
||||
template<class GenericGraph>
|
||||
boost::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph, const std::vector<size_t>& keys,
|
||||
WorkSpace& workspace, bool verbose);
|
||||
/**
|
||||
* use Metis library to partition, return the size of separator and the optional partition table
|
||||
* the size of dictionary mush be equal to the number of variables in the original graph (the largest one)
|
||||
*/
|
||||
template<class GenericGraph>
|
||||
boost::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph, const std::vector<size_t>& keys,
|
||||
WorkSpace& workspace, bool verbose);
|
||||
|
||||
/**
|
||||
* return the number of submaps and the parition table of the partitioned graph (**stored in workspace.partitionTable**).
|
||||
* return 0 if failed Note that the original output of Metis is 0,1 for submap, and 2 for the separator.
|
||||
*/
|
||||
template<class GenericGraph>
|
||||
int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys,
|
||||
const int minNodesPerMap, WorkSpace& workspace, bool verbose, const boost::optional<std::vector<Symbol> >& int2symbol,
|
||||
const bool reduceGraph, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark);
|
||||
/**
|
||||
* return the number of submaps and the parition table of the partitioned graph (**stored in workspace.partitionTable**).
|
||||
* return 0 if failed Note that the original output of Metis is 0,1 for submap, and 2 for the separator.
|
||||
*/
|
||||
template<class GenericGraph>
|
||||
int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys,
|
||||
const int minNodesPerMap, WorkSpace& workspace, bool verbose, const boost::optional<std::vector<Symbol> >& int2symbol,
|
||||
const bool reduceGraph, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark);
|
||||
|
||||
}} //namespace
|
||||
|
|
|
@ -19,459 +19,459 @@ using namespace std;
|
|||
|
||||
namespace gtsam { namespace partition {
|
||||
|
||||
/**
|
||||
* Note: Need to be able to handle a graph with factors that involve variables not in the given {keys}
|
||||
*/
|
||||
list<vector<size_t> > findIslands(const GenericGraph2D& graph, const vector<size_t>& keys, WorkSpace& workspace,
|
||||
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark)
|
||||
{
|
||||
typedef pair<int, int> IntPair;
|
||||
typedef list<sharedGenericFactor2D> FactorList;
|
||||
typedef map<IntPair, FactorList::iterator> Connections;
|
||||
/**
|
||||
* Note: Need to be able to handle a graph with factors that involve variables not in the given {keys}
|
||||
*/
|
||||
list<vector<size_t> > findIslands(const GenericGraph2D& graph, const vector<size_t>& keys, WorkSpace& workspace,
|
||||
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark)
|
||||
{
|
||||
typedef pair<int, int> IntPair;
|
||||
typedef list<sharedGenericFactor2D> FactorList;
|
||||
typedef map<IntPair, FactorList::iterator> Connections;
|
||||
|
||||
// create disjoin set forest
|
||||
DSFVector dsf(workspace.dsf, keys);
|
||||
// create disjoin set forest
|
||||
DSFVector dsf(workspace.dsf, keys);
|
||||
|
||||
FactorList factors(graph.begin(), graph.end());
|
||||
size_t nrFactors = factors.size();
|
||||
FactorList::iterator itEnd;
|
||||
workspace.prepareDictionary(keys);
|
||||
while (nrFactors) {
|
||||
Connections connections;
|
||||
bool succeed = false;
|
||||
itEnd = factors.end();
|
||||
list<FactorList::iterator> toErase;
|
||||
for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) {
|
||||
FactorList factors(graph.begin(), graph.end());
|
||||
size_t nrFactors = factors.size();
|
||||
FactorList::iterator itEnd;
|
||||
workspace.prepareDictionary(keys);
|
||||
while (nrFactors) {
|
||||
Connections connections;
|
||||
bool succeed = false;
|
||||
itEnd = factors.end();
|
||||
list<FactorList::iterator> toErase;
|
||||
for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) {
|
||||
|
||||
// remove invalid factors
|
||||
GenericNode2D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2;
|
||||
if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) {
|
||||
toErase.push_back(itFactor); nrFactors--; continue;
|
||||
}
|
||||
// remove invalid factors
|
||||
GenericNode2D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2;
|
||||
if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) {
|
||||
toErase.push_back(itFactor); nrFactors--; continue;
|
||||
}
|
||||
|
||||
size_t label1 = dsf.findSet(key1.index);
|
||||
size_t label2 = dsf.findSet(key2.index);
|
||||
if (label1 == label2) { toErase.push_back(itFactor); nrFactors--; continue; }
|
||||
size_t label1 = dsf.findSet(key1.index);
|
||||
size_t label2 = dsf.findSet(key2.index);
|
||||
if (label1 == label2) { toErase.push_back(itFactor); nrFactors--; continue; }
|
||||
|
||||
// merge two trees if the connection is strong enough, otherwise cache it
|
||||
// an odometry factor always merges two islands
|
||||
if (key1.type == NODE_POSE_2D && key2.type == NODE_POSE_2D) {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
dsf.makeUnionInPlace(label1, label2);
|
||||
succeed = true;
|
||||
break;
|
||||
}
|
||||
// merge two trees if the connection is strong enough, otherwise cache it
|
||||
// an odometry factor always merges two islands
|
||||
if (key1.type == NODE_POSE_2D && key2.type == NODE_POSE_2D) {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
dsf.makeUnionInPlace(label1, label2);
|
||||
succeed = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// single landmark island only need one measurement
|
||||
if ((dsf.isSingleton(label1)==1 && key1.type == NODE_LANDMARK_2D) ||
|
||||
(dsf.isSingleton(label2)==1 && key2.type == NODE_LANDMARK_2D)) {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
dsf.makeUnionInPlace(label1, label2);
|
||||
succeed = true;
|
||||
break;
|
||||
}
|
||||
// single landmark island only need one measurement
|
||||
if ((dsf.isSingleton(label1)==1 && key1.type == NODE_LANDMARK_2D) ||
|
||||
(dsf.isSingleton(label2)==1 && key2.type == NODE_LANDMARK_2D)) {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
dsf.makeUnionInPlace(label1, label2);
|
||||
succeed = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// stack the current factor with the cached constraint
|
||||
IntPair labels = (label1 < label2) ? make_pair(label1, label2) : make_pair(label2, label1);
|
||||
Connections::iterator itCached = connections.find(labels);
|
||||
if (itCached == connections.end()) {
|
||||
connections.insert(make_pair(labels, itFactor));
|
||||
continue;
|
||||
} else {
|
||||
GenericNode2D key21 = (*itCached->second)->key1, key22 = (*itCached->second)->key2;
|
||||
// if observe the same landmark, we can not merge, abandon the current factor
|
||||
if ((key1.index == key21.index && key1.type == NODE_LANDMARK_2D) ||
|
||||
(key1.index == key22.index && key1.type == NODE_LANDMARK_2D) ||
|
||||
(key2.index == key21.index && key2.type == NODE_LANDMARK_2D) ||
|
||||
(key2.index == key22.index && key2.type == NODE_LANDMARK_2D)) {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
continue;
|
||||
} else {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
toErase.push_back(itCached->second); nrFactors--;
|
||||
dsf.makeUnionInPlace(label1, label2);
|
||||
connections.erase(itCached);
|
||||
succeed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// stack the current factor with the cached constraint
|
||||
IntPair labels = (label1 < label2) ? make_pair(label1, label2) : make_pair(label2, label1);
|
||||
Connections::iterator itCached = connections.find(labels);
|
||||
if (itCached == connections.end()) {
|
||||
connections.insert(make_pair(labels, itFactor));
|
||||
continue;
|
||||
} else {
|
||||
GenericNode2D key21 = (*itCached->second)->key1, key22 = (*itCached->second)->key2;
|
||||
// if observe the same landmark, we can not merge, abandon the current factor
|
||||
if ((key1.index == key21.index && key1.type == NODE_LANDMARK_2D) ||
|
||||
(key1.index == key22.index && key1.type == NODE_LANDMARK_2D) ||
|
||||
(key2.index == key21.index && key2.type == NODE_LANDMARK_2D) ||
|
||||
(key2.index == key22.index && key2.type == NODE_LANDMARK_2D)) {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
continue;
|
||||
} else {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
toErase.push_back(itCached->second); nrFactors--;
|
||||
dsf.makeUnionInPlace(label1, label2);
|
||||
connections.erase(itCached);
|
||||
succeed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// erase unused factors
|
||||
BOOST_FOREACH(const FactorList::iterator& it, toErase)
|
||||
factors.erase(it);
|
||||
// erase unused factors
|
||||
BOOST_FOREACH(const FactorList::iterator& it, toErase)
|
||||
factors.erase(it);
|
||||
|
||||
if (!succeed) break;
|
||||
}
|
||||
if (!succeed) break;
|
||||
}
|
||||
|
||||
list<vector<size_t> > islands;
|
||||
map<size_t, vector<size_t> > arrays = dsf.arrays();
|
||||
size_t key; vector<size_t> array;
|
||||
BOOST_FOREACH(boost::tie(key, array), arrays)
|
||||
islands.push_back(array);
|
||||
return islands;
|
||||
}
|
||||
list<vector<size_t> > islands;
|
||||
map<size_t, vector<size_t> > arrays = dsf.arrays();
|
||||
size_t key; vector<size_t> array;
|
||||
BOOST_FOREACH(boost::tie(key, array), arrays)
|
||||
islands.push_back(array);
|
||||
return islands;
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
void print(const GenericGraph2D& graph, const std::string name) {
|
||||
cout << name << endl;
|
||||
BOOST_FOREACH(const sharedGenericFactor2D& factor_, graph)
|
||||
cout << factor_->key1.index << " " << factor_->key2.index << endl;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
void print(const GenericGraph2D& graph, const std::string name) {
|
||||
cout << name << endl;
|
||||
BOOST_FOREACH(const sharedGenericFactor2D& factor_, graph)
|
||||
cout << factor_->key1.index << " " << factor_->key2.index << endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void print(const GenericGraph3D& graph, const std::string name) {
|
||||
cout << name << endl;
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph)
|
||||
cout << factor_->key1.index << " " << factor_->key2.index << " (" <<
|
||||
factor_->key1.type << ", " << factor_->key2.type <<")" << endl;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
void print(const GenericGraph3D& graph, const std::string name) {
|
||||
cout << name << endl;
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph)
|
||||
cout << factor_->key1.index << " " << factor_->key2.index << " (" <<
|
||||
factor_->key1.type << ", " << factor_->key2.type <<")" << endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// create disjoin set forest
|
||||
DSFVector createDSF(const GenericGraph3D& graph, const vector<size_t>& keys, const WorkSpace& workspace) {
|
||||
DSFVector dsf(workspace.dsf, keys);
|
||||
typedef list<sharedGenericFactor3D> FactorList;
|
||||
/* ************************************************************************* */
|
||||
// create disjoin set forest
|
||||
DSFVector createDSF(const GenericGraph3D& graph, const vector<size_t>& keys, const WorkSpace& workspace) {
|
||||
DSFVector dsf(workspace.dsf, keys);
|
||||
typedef list<sharedGenericFactor3D> FactorList;
|
||||
|
||||
FactorList factors(graph.begin(), graph.end());
|
||||
size_t nrFactors = factors.size();
|
||||
FactorList::iterator itEnd;
|
||||
while (nrFactors) {
|
||||
FactorList factors(graph.begin(), graph.end());
|
||||
size_t nrFactors = factors.size();
|
||||
FactorList::iterator itEnd;
|
||||
while (nrFactors) {
|
||||
|
||||
bool succeed = false;
|
||||
itEnd = factors.end();
|
||||
list<FactorList::iterator> toErase;
|
||||
for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) {
|
||||
bool succeed = false;
|
||||
itEnd = factors.end();
|
||||
list<FactorList::iterator> toErase;
|
||||
for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) {
|
||||
|
||||
// remove invalid factors
|
||||
if (graph.size() == 178765) cout << "kai21" << endl;
|
||||
GenericNode3D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2;
|
||||
if (graph.size() == 178765) cout << "kai21: " << key1.index << " " << key2.index << endl;
|
||||
if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) {
|
||||
toErase.push_back(itFactor); nrFactors--; continue;
|
||||
}
|
||||
// remove invalid factors
|
||||
if (graph.size() == 178765) cout << "kai21" << endl;
|
||||
GenericNode3D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2;
|
||||
if (graph.size() == 178765) cout << "kai21: " << key1.index << " " << key2.index << endl;
|
||||
if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) {
|
||||
toErase.push_back(itFactor); nrFactors--; continue;
|
||||
}
|
||||
|
||||
if (graph.size() == 178765) cout << "kai22" << endl;
|
||||
size_t label1 = dsf.findSet(key1.index);
|
||||
size_t label2 = dsf.findSet(key2.index);
|
||||
if (label1 == label2) { toErase.push_back(itFactor); nrFactors--; continue; }
|
||||
if (graph.size() == 178765) cout << "kai22" << endl;
|
||||
size_t label1 = dsf.findSet(key1.index);
|
||||
size_t label2 = dsf.findSet(key2.index);
|
||||
if (label1 == label2) { toErase.push_back(itFactor); nrFactors--; continue; }
|
||||
|
||||
if (graph.size() == 178765) cout << "kai23" << endl;
|
||||
// merge two trees if the connection is strong enough, otherwise cache it
|
||||
// an odometry factor always merges two islands
|
||||
if ((key1.type == NODE_POSE_3D && key2.type == NODE_LANDMARK_3D) ||
|
||||
(key1.type == NODE_POSE_3D && key2.type == NODE_POSE_3D)) {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
dsf.makeUnionInPlace(label1, label2);
|
||||
succeed = true;
|
||||
break;
|
||||
}
|
||||
if (graph.size() == 178765) cout << "kai23" << endl;
|
||||
// merge two trees if the connection is strong enough, otherwise cache it
|
||||
// an odometry factor always merges two islands
|
||||
if ((key1.type == NODE_POSE_3D && key2.type == NODE_LANDMARK_3D) ||
|
||||
(key1.type == NODE_POSE_3D && key2.type == NODE_POSE_3D)) {
|
||||
toErase.push_back(itFactor); nrFactors--;
|
||||
dsf.makeUnionInPlace(label1, label2);
|
||||
succeed = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (graph.size() == 178765) cout << "kai24" << endl;
|
||||
if (graph.size() == 178765) cout << "kai24" << endl;
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// erase unused factors
|
||||
BOOST_FOREACH(const FactorList::iterator& it, toErase)
|
||||
factors.erase(it);
|
||||
// erase unused factors
|
||||
BOOST_FOREACH(const FactorList::iterator& it, toErase)
|
||||
factors.erase(it);
|
||||
|
||||
if (!succeed) break;
|
||||
}
|
||||
return dsf;
|
||||
}
|
||||
if (!succeed) break;
|
||||
}
|
||||
return dsf;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// first check the type of the key (pose or landmark), and then check whether it is singular
|
||||
inline bool isSingular(const set<size_t>& singularCameras, const set<size_t>& singularLandmarks, const GenericNode3D& node) {
|
||||
switch(node.type) {
|
||||
case NODE_POSE_3D:
|
||||
return singularCameras.find(node.index) != singularCameras.end(); break;
|
||||
case NODE_LANDMARK_3D:
|
||||
return singularLandmarks.find(node.index) != singularLandmarks.end(); break;
|
||||
default:
|
||||
throw runtime_error("unrecognized key type!");
|
||||
}
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
// first check the type of the key (pose or landmark), and then check whether it is singular
|
||||
inline bool isSingular(const set<size_t>& singularCameras, const set<size_t>& singularLandmarks, const GenericNode3D& node) {
|
||||
switch(node.type) {
|
||||
case NODE_POSE_3D:
|
||||
return singularCameras.find(node.index) != singularCameras.end(); break;
|
||||
case NODE_LANDMARK_3D:
|
||||
return singularLandmarks.find(node.index) != singularLandmarks.end(); break;
|
||||
default:
|
||||
throw runtime_error("unrecognized key type!");
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void findSingularCamerasLandmarks(const GenericGraph3D& graph, const WorkSpace& workspace,
|
||||
const vector<bool>& isCamera, const vector<bool>& isLandmark,
|
||||
set<size_t>& singularCameras, set<size_t>& singularLandmarks, vector<int>& nrConstraints,
|
||||
bool& foundSingularCamera, bool& foundSingularLandmark,
|
||||
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) {
|
||||
/* ************************************************************************* */
|
||||
void findSingularCamerasLandmarks(const GenericGraph3D& graph, const WorkSpace& workspace,
|
||||
const vector<bool>& isCamera, const vector<bool>& isLandmark,
|
||||
set<size_t>& singularCameras, set<size_t>& singularLandmarks, vector<int>& nrConstraints,
|
||||
bool& foundSingularCamera, bool& foundSingularLandmark,
|
||||
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) {
|
||||
|
||||
// compute the constraint number per camera
|
||||
std::fill(nrConstraints.begin(), nrConstraints.end(), 0);
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
|
||||
const int& key1 = factor_->key1.index;
|
||||
const int& key2 = factor_->key2.index;
|
||||
if (workspace.dictionary[key1] != -1 && workspace.dictionary[key2] != -1 &&
|
||||
!isSingular(singularCameras, singularLandmarks, factor_->key1) &&
|
||||
!isSingular(singularCameras, singularLandmarks, factor_->key2)) {
|
||||
nrConstraints[key1]++;
|
||||
nrConstraints[key2]++;
|
||||
// compute the constraint number per camera
|
||||
std::fill(nrConstraints.begin(), nrConstraints.end(), 0);
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
|
||||
const int& key1 = factor_->key1.index;
|
||||
const int& key2 = factor_->key2.index;
|
||||
if (workspace.dictionary[key1] != -1 && workspace.dictionary[key2] != -1 &&
|
||||
!isSingular(singularCameras, singularLandmarks, factor_->key1) &&
|
||||
!isSingular(singularCameras, singularLandmarks, factor_->key2)) {
|
||||
nrConstraints[key1]++;
|
||||
nrConstraints[key2]++;
|
||||
|
||||
// a single pose constraint is sufficient for stereo, so we add 2 to the counter
|
||||
// for a total of 3, i.e. the same as 3 landmarks fully constraining the camera
|
||||
if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){
|
||||
nrConstraints[key1]+=2;
|
||||
nrConstraints[key2]+=2;
|
||||
}
|
||||
}
|
||||
}
|
||||
// a single pose constraint is sufficient for stereo, so we add 2 to the counter
|
||||
// for a total of 3, i.e. the same as 3 landmarks fully constraining the camera
|
||||
if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){
|
||||
nrConstraints[key1]+=2;
|
||||
nrConstraints[key2]+=2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// find singular cameras and landmarks
|
||||
foundSingularCamera = false;
|
||||
foundSingularLandmark = false;
|
||||
for (size_t i=0; i<nrConstraints.size(); i++) {
|
||||
if (isCamera[i] && nrConstraints[i] < minNrConstraintsPerCamera &&
|
||||
singularCameras.find(i) == singularCameras.end()) {
|
||||
singularCameras.insert(i);
|
||||
foundSingularCamera = true;
|
||||
}
|
||||
if (isLandmark[i] && nrConstraints[i] < minNrConstraintsPerLandmark &&
|
||||
singularLandmarks.find(i) == singularLandmarks.end()) {
|
||||
singularLandmarks.insert(i);
|
||||
foundSingularLandmark = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// find singular cameras and landmarks
|
||||
foundSingularCamera = false;
|
||||
foundSingularLandmark = false;
|
||||
for (size_t i=0; i<nrConstraints.size(); i++) {
|
||||
if (isCamera[i] && nrConstraints[i] < minNrConstraintsPerCamera &&
|
||||
singularCameras.find(i) == singularCameras.end()) {
|
||||
singularCameras.insert(i);
|
||||
foundSingularCamera = true;
|
||||
}
|
||||
if (isLandmark[i] && nrConstraints[i] < minNrConstraintsPerLandmark &&
|
||||
singularLandmarks.find(i) == singularLandmarks.end()) {
|
||||
singularLandmarks.insert(i);
|
||||
foundSingularLandmark = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
list<vector<size_t> > findIslands(const GenericGraph3D& graph, const vector<size_t>& keys, WorkSpace& workspace,
|
||||
const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) {
|
||||
/* ************************************************************************* */
|
||||
list<vector<size_t> > findIslands(const GenericGraph3D& graph, const vector<size_t>& keys, WorkSpace& workspace,
|
||||
const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) {
|
||||
|
||||
// create disjoint set forest
|
||||
workspace.prepareDictionary(keys);
|
||||
DSFVector dsf = createDSF(graph, keys, workspace);
|
||||
// create disjoint set forest
|
||||
workspace.prepareDictionary(keys);
|
||||
DSFVector dsf = createDSF(graph, keys, workspace);
|
||||
|
||||
const bool verbose = false;
|
||||
bool foundSingularCamera = true;
|
||||
bool foundSingularLandmark = true;
|
||||
const bool verbose = false;
|
||||
bool foundSingularCamera = true;
|
||||
bool foundSingularLandmark = true;
|
||||
|
||||
list<vector<size_t> > islands;
|
||||
set<size_t> singularCameras, singularLandmarks;
|
||||
vector<bool> isCamera(workspace.dictionary.size(), false);
|
||||
vector<bool> isLandmark(workspace.dictionary.size(), false);
|
||||
list<vector<size_t> > islands;
|
||||
set<size_t> singularCameras, singularLandmarks;
|
||||
vector<bool> isCamera(workspace.dictionary.size(), false);
|
||||
vector<bool> isLandmark(workspace.dictionary.size(), false);
|
||||
|
||||
// check the constraint number of every variable
|
||||
// find the camera and landmark keys
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
|
||||
//assert(factor_->key2.type == NODE_LANDMARK_3D); // only VisualSLAM should come here, not StereoSLAM
|
||||
if (workspace.dictionary[factor_->key1.index] != -1) {
|
||||
if (factor_->key1.type == NODE_POSE_3D)
|
||||
isCamera[factor_->key1.index] = true;
|
||||
else
|
||||
isLandmark[factor_->key1.index] = true;
|
||||
}
|
||||
// check the constraint number of every variable
|
||||
// find the camera and landmark keys
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
|
||||
//assert(factor_->key2.type == NODE_LANDMARK_3D); // only VisualSLAM should come here, not StereoSLAM
|
||||
if (workspace.dictionary[factor_->key1.index] != -1) {
|
||||
if (factor_->key1.type == NODE_POSE_3D)
|
||||
isCamera[factor_->key1.index] = true;
|
||||
else
|
||||
isLandmark[factor_->key1.index] = true;
|
||||
}
|
||||
if (workspace.dictionary[factor_->key2.index] != -1) {
|
||||
if (factor_->key2.type == NODE_POSE_3D)
|
||||
isCamera[factor_->key2.index] = true;
|
||||
else
|
||||
isLandmark[factor_->key2.index] = true;
|
||||
if (factor_->key2.type == NODE_POSE_3D)
|
||||
isCamera[factor_->key2.index] = true;
|
||||
else
|
||||
isLandmark[factor_->key2.index] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
vector<int> nrConstraints(workspace.dictionary.size(), 0);
|
||||
// iterate until all singular variables have been removed. Removing a singular variable
|
||||
// can cause another to become singular, so this will probably run several times
|
||||
while (foundSingularCamera || foundSingularLandmark) {
|
||||
findSingularCamerasLandmarks(graph, workspace, isCamera, isLandmark, // input
|
||||
singularCameras, singularLandmarks, nrConstraints, // output
|
||||
foundSingularCamera, foundSingularLandmark, // output
|
||||
minNrConstraintsPerCamera, minNrConstraintsPerLandmark); // input
|
||||
}
|
||||
vector<int> nrConstraints(workspace.dictionary.size(), 0);
|
||||
// iterate until all singular variables have been removed. Removing a singular variable
|
||||
// can cause another to become singular, so this will probably run several times
|
||||
while (foundSingularCamera || foundSingularLandmark) {
|
||||
findSingularCamerasLandmarks(graph, workspace, isCamera, isLandmark, // input
|
||||
singularCameras, singularLandmarks, nrConstraints, // output
|
||||
foundSingularCamera, foundSingularLandmark, // output
|
||||
minNrConstraintsPerCamera, minNrConstraintsPerLandmark); // input
|
||||
}
|
||||
|
||||
// add singular variables directly as islands
|
||||
if (!singularCameras.empty()) {
|
||||
if (verbose) cout << "singular cameras:";
|
||||
BOOST_FOREACH(const size_t i, singularCameras) {
|
||||
islands.push_back(vector<size_t>(1, i)); // <---------------------------
|
||||
if (verbose) cout << i << " ";
|
||||
}
|
||||
if (verbose) cout << endl;
|
||||
}
|
||||
if (!singularLandmarks.empty()) {
|
||||
if (verbose) cout << "singular landmarks:";
|
||||
BOOST_FOREACH(const size_t i, singularLandmarks) {
|
||||
islands.push_back(vector<size_t>(1, i)); // <---------------------------
|
||||
if (verbose) cout << i << " ";
|
||||
}
|
||||
if (verbose) cout << endl;
|
||||
}
|
||||
// add singular variables directly as islands
|
||||
if (!singularCameras.empty()) {
|
||||
if (verbose) cout << "singular cameras:";
|
||||
BOOST_FOREACH(const size_t i, singularCameras) {
|
||||
islands.push_back(vector<size_t>(1, i)); // <---------------------------
|
||||
if (verbose) cout << i << " ";
|
||||
}
|
||||
if (verbose) cout << endl;
|
||||
}
|
||||
if (!singularLandmarks.empty()) {
|
||||
if (verbose) cout << "singular landmarks:";
|
||||
BOOST_FOREACH(const size_t i, singularLandmarks) {
|
||||
islands.push_back(vector<size_t>(1, i)); // <---------------------------
|
||||
if (verbose) cout << i << " ";
|
||||
}
|
||||
if (verbose) cout << endl;
|
||||
}
|
||||
|
||||
|
||||
// regenerating islands
|
||||
map<size_t, vector<size_t> > labelIslands = dsf.arrays();
|
||||
size_t label; vector<size_t> island;
|
||||
BOOST_FOREACH(boost::tie(label, island), labelIslands) {
|
||||
vector<size_t> filteredIsland; // remove singular cameras from array
|
||||
filteredIsland.reserve(island.size());
|
||||
BOOST_FOREACH(const size_t key, island) {
|
||||
if ((isCamera[key] && singularCameras.find(key) == singularCameras.end()) || // not singular
|
||||
(isLandmark[key] && singularLandmarks.find(key) == singularLandmarks.end()) || // not singular
|
||||
(!isCamera[key] && !isLandmark[key])) { // the key is not involved in any factor, so the type is undertermined
|
||||
filteredIsland.push_back(key);
|
||||
}
|
||||
}
|
||||
islands.push_back(filteredIsland);
|
||||
}
|
||||
// regenerating islands
|
||||
map<size_t, vector<size_t> > labelIslands = dsf.arrays();
|
||||
size_t label; vector<size_t> island;
|
||||
BOOST_FOREACH(boost::tie(label, island), labelIslands) {
|
||||
vector<size_t> filteredIsland; // remove singular cameras from array
|
||||
filteredIsland.reserve(island.size());
|
||||
BOOST_FOREACH(const size_t key, island) {
|
||||
if ((isCamera[key] && singularCameras.find(key) == singularCameras.end()) || // not singular
|
||||
(isLandmark[key] && singularLandmarks.find(key) == singularLandmarks.end()) || // not singular
|
||||
(!isCamera[key] && !isLandmark[key])) { // the key is not involved in any factor, so the type is undertermined
|
||||
filteredIsland.push_back(key);
|
||||
}
|
||||
}
|
||||
islands.push_back(filteredIsland);
|
||||
}
|
||||
|
||||
// sanity check
|
||||
size_t nrKeys = 0;
|
||||
BOOST_FOREACH(const vector<size_t>& island, islands)
|
||||
nrKeys += island.size();
|
||||
if (nrKeys != keys.size()) {
|
||||
cout << nrKeys << " vs " << keys.size() << endl;
|
||||
throw runtime_error("findIslands: the number of keys is inconsistent!");
|
||||
}
|
||||
// sanity check
|
||||
size_t nrKeys = 0;
|
||||
BOOST_FOREACH(const vector<size_t>& island, islands)
|
||||
nrKeys += island.size();
|
||||
if (nrKeys != keys.size()) {
|
||||
cout << nrKeys << " vs " << keys.size() << endl;
|
||||
throw runtime_error("findIslands: the number of keys is inconsistent!");
|
||||
}
|
||||
|
||||
|
||||
if (verbose) cout << "found " << islands.size() << " islands!" << endl;
|
||||
return islands;
|
||||
}
|
||||
if (verbose) cout << "found " << islands.size() << " islands!" << endl;
|
||||
return islands;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// return the number of intersection between two **sorted** landmark vectors
|
||||
inline int getNrCommonLandmarks(const vector<size_t>& landmarks1, const vector<size_t>& landmarks2){
|
||||
size_t i1 = 0, i2 = 0;
|
||||
int nrCommonLandmarks = 0;
|
||||
while (i1 < landmarks1.size() && i2 < landmarks2.size()) {
|
||||
if (landmarks1[i1] < landmarks2[i2])
|
||||
i1 ++;
|
||||
else if (landmarks1[i1] > landmarks2[i2])
|
||||
i2 ++;
|
||||
else {
|
||||
i1++; i2++;
|
||||
nrCommonLandmarks ++;
|
||||
}
|
||||
}
|
||||
return nrCommonLandmarks;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
// return the number of intersection between two **sorted** landmark vectors
|
||||
inline int getNrCommonLandmarks(const vector<size_t>& landmarks1, const vector<size_t>& landmarks2){
|
||||
size_t i1 = 0, i2 = 0;
|
||||
int nrCommonLandmarks = 0;
|
||||
while (i1 < landmarks1.size() && i2 < landmarks2.size()) {
|
||||
if (landmarks1[i1] < landmarks2[i2])
|
||||
i1 ++;
|
||||
else if (landmarks1[i1] > landmarks2[i2])
|
||||
i2 ++;
|
||||
else {
|
||||
i1++; i2++;
|
||||
nrCommonLandmarks ++;
|
||||
}
|
||||
}
|
||||
return nrCommonLandmarks;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
|
||||
const std::vector<int>& dictionary, GenericGraph3D& reducedGraph) {
|
||||
/* ************************************************************************* */
|
||||
void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
|
||||
const std::vector<int>& dictionary, GenericGraph3D& reducedGraph) {
|
||||
|
||||
typedef size_t CameraKey;
|
||||
typedef pair<CameraKey, CameraKey> CameraPair;
|
||||
typedef size_t LandmarkKey;
|
||||
// get a mapping from each landmark to its connected cameras
|
||||
vector<vector<LandmarkKey> > cameraToLandmarks(dictionary.size());
|
||||
// for odometry xi-xj where i<j, we always store cameraToCamera[i] = j, otherwise equal to -1 if no odometry
|
||||
vector<int> cameraToCamera(dictionary.size(), -1);
|
||||
size_t key_i, key_j;
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
|
||||
if (factor_->key1.type == NODE_POSE_3D) {
|
||||
if (factor_->key2.type == NODE_LANDMARK_3D) {// projection factor
|
||||
cameraToLandmarks[factor_->key1.index].push_back(factor_->key2.index);
|
||||
}
|
||||
else { // odometry factor
|
||||
if (factor_->key1.index < factor_->key2.index) {
|
||||
key_i = factor_->key1.index;
|
||||
key_j = factor_->key2.index;
|
||||
} else {
|
||||
key_i = factor_->key2.index;
|
||||
key_j = factor_->key1.index;
|
||||
}
|
||||
cameraToCamera[key_i] = key_j;
|
||||
}
|
||||
}
|
||||
}
|
||||
typedef size_t CameraKey;
|
||||
typedef pair<CameraKey, CameraKey> CameraPair;
|
||||
typedef size_t LandmarkKey;
|
||||
// get a mapping from each landmark to its connected cameras
|
||||
vector<vector<LandmarkKey> > cameraToLandmarks(dictionary.size());
|
||||
// for odometry xi-xj where i<j, we always store cameraToCamera[i] = j, otherwise equal to -1 if no odometry
|
||||
vector<int> cameraToCamera(dictionary.size(), -1);
|
||||
size_t key_i, key_j;
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
|
||||
if (factor_->key1.type == NODE_POSE_3D) {
|
||||
if (factor_->key2.type == NODE_LANDMARK_3D) {// projection factor
|
||||
cameraToLandmarks[factor_->key1.index].push_back(factor_->key2.index);
|
||||
}
|
||||
else { // odometry factor
|
||||
if (factor_->key1.index < factor_->key2.index) {
|
||||
key_i = factor_->key1.index;
|
||||
key_j = factor_->key2.index;
|
||||
} else {
|
||||
key_i = factor_->key2.index;
|
||||
key_j = factor_->key1.index;
|
||||
}
|
||||
cameraToCamera[key_i] = key_j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sort the landmark keys for the late getNrCommonLandmarks call
|
||||
BOOST_FOREACH(vector<LandmarkKey> &landmarks, cameraToLandmarks){
|
||||
if (!landmarks.empty())
|
||||
std::sort(landmarks.begin(), landmarks.end());
|
||||
}
|
||||
// sort the landmark keys for the late getNrCommonLandmarks call
|
||||
BOOST_FOREACH(vector<LandmarkKey> &landmarks, cameraToLandmarks){
|
||||
if (!landmarks.empty())
|
||||
std::sort(landmarks.begin(), landmarks.end());
|
||||
}
|
||||
|
||||
// generate the reduced graph
|
||||
reducedGraph.clear();
|
||||
int factorIndex = 0;
|
||||
int camera1, camera2, nrTotalConstraints;
|
||||
bool hasOdometry;
|
||||
for (size_t i1=0; i1<cameraKeys.size()-1; ++i1) {
|
||||
for (size_t i2=i1+1; i2<cameraKeys.size(); ++i2) {
|
||||
camera1 = cameraKeys[i1];
|
||||
camera2 = cameraKeys[i2];
|
||||
int nrCommonLandmarks = getNrCommonLandmarks(cameraToLandmarks[camera1], cameraToLandmarks[camera2]);
|
||||
hasOdometry = cameraToCamera[camera1] == camera2;
|
||||
if (nrCommonLandmarks > 0 || hasOdometry) {
|
||||
nrTotalConstraints = 2 * nrCommonLandmarks + (hasOdometry ? 6 : 0);
|
||||
reducedGraph.push_back(boost::make_shared<GenericFactor3D>(camera1, camera2,
|
||||
factorIndex++, NODE_POSE_3D, NODE_POSE_3D, nrTotalConstraints));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// generate the reduced graph
|
||||
reducedGraph.clear();
|
||||
int factorIndex = 0;
|
||||
int camera1, camera2, nrTotalConstraints;
|
||||
bool hasOdometry;
|
||||
for (size_t i1=0; i1<cameraKeys.size()-1; ++i1) {
|
||||
for (size_t i2=i1+1; i2<cameraKeys.size(); ++i2) {
|
||||
camera1 = cameraKeys[i1];
|
||||
camera2 = cameraKeys[i2];
|
||||
int nrCommonLandmarks = getNrCommonLandmarks(cameraToLandmarks[camera1], cameraToLandmarks[camera2]);
|
||||
hasOdometry = cameraToCamera[camera1] == camera2;
|
||||
if (nrCommonLandmarks > 0 || hasOdometry) {
|
||||
nrTotalConstraints = 2 * nrCommonLandmarks + (hasOdometry ? 6 : 0);
|
||||
reducedGraph.push_back(boost::make_shared<GenericFactor3D>(camera1, camera2,
|
||||
factorIndex++, NODE_POSE_3D, NODE_POSE_3D, nrTotalConstraints));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals,
|
||||
WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) {
|
||||
workspace.prepareDictionary(frontals);
|
||||
vector<size_t> nrConstraints(workspace.dictionary.size(), 0);
|
||||
/* ************************************************************************* */
|
||||
void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals,
|
||||
WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) {
|
||||
workspace.prepareDictionary(frontals);
|
||||
vector<size_t> nrConstraints(workspace.dictionary.size(), 0);
|
||||
|
||||
// summarize the constraint number
|
||||
const vector<int>& dictionary = workspace.dictionary;
|
||||
vector<bool> isValidCamera(workspace.dictionary.size(), false);
|
||||
vector<bool> isValidLandmark(workspace.dictionary.size(), false);
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
|
||||
assert(factor_->key1.type == NODE_POSE_3D);
|
||||
//assert(factor_->key2.type == NODE_LANDMARK_3D);
|
||||
const size_t& key1 = factor_->key1.index;
|
||||
const size_t& key2 = factor_->key2.index;
|
||||
if (dictionary[key1] == -1 || dictionary[key2] == -1)
|
||||
continue;
|
||||
// summarize the constraint number
|
||||
const vector<int>& dictionary = workspace.dictionary;
|
||||
vector<bool> isValidCamera(workspace.dictionary.size(), false);
|
||||
vector<bool> isValidLandmark(workspace.dictionary.size(), false);
|
||||
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
|
||||
assert(factor_->key1.type == NODE_POSE_3D);
|
||||
//assert(factor_->key2.type == NODE_LANDMARK_3D);
|
||||
const size_t& key1 = factor_->key1.index;
|
||||
const size_t& key2 = factor_->key2.index;
|
||||
if (dictionary[key1] == -1 || dictionary[key2] == -1)
|
||||
continue;
|
||||
|
||||
isValidCamera[key1] = true;
|
||||
if(factor_->key2.type == NODE_LANDMARK_3D)
|
||||
isValidLandmark[key2] = true;
|
||||
else
|
||||
isValidCamera[key2] = true;
|
||||
isValidCamera[key1] = true;
|
||||
if(factor_->key2.type == NODE_LANDMARK_3D)
|
||||
isValidLandmark[key2] = true;
|
||||
else
|
||||
isValidCamera[key2] = true;
|
||||
|
||||
nrConstraints[key1]++;
|
||||
nrConstraints[key2]++;
|
||||
nrConstraints[key1]++;
|
||||
nrConstraints[key2]++;
|
||||
|
||||
// a single pose constraint is sufficient for stereo, so we add 2 to the counter
|
||||
// for a total of 3, i.e. the same as 3 landmarks fully constraining the camera
|
||||
if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){
|
||||
nrConstraints[key1]+=2;
|
||||
nrConstraints[key2]+=2;
|
||||
}
|
||||
}
|
||||
// a single pose constraint is sufficient for stereo, so we add 2 to the counter
|
||||
// for a total of 3, i.e. the same as 3 landmarks fully constraining the camera
|
||||
if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){
|
||||
nrConstraints[key1]+=2;
|
||||
nrConstraints[key2]+=2;
|
||||
}
|
||||
}
|
||||
|
||||
// find the minimum constraint for cameras and landmarks
|
||||
size_t minFoundConstraintsPerCamera = 10000;
|
||||
size_t minFoundConstraintsPerLandmark = 10000;
|
||||
// find the minimum constraint for cameras and landmarks
|
||||
size_t minFoundConstraintsPerCamera = 10000;
|
||||
size_t minFoundConstraintsPerLandmark = 10000;
|
||||
|
||||
for (size_t i=0; i<isValidCamera.size(); i++) {
|
||||
if (isValidCamera[i]) {
|
||||
minFoundConstraintsPerCamera = std::min(nrConstraints[i], minFoundConstraintsPerCamera);
|
||||
if (nrConstraints[i] < minNrConstraintsPerCamera)
|
||||
cout << "!!!!!!!!!!!!!!!!!!! camera with " << nrConstraints[i] << " constraint: " << i << endl;
|
||||
}
|
||||
for (size_t i=0; i<isValidCamera.size(); i++) {
|
||||
if (isValidCamera[i]) {
|
||||
minFoundConstraintsPerCamera = std::min(nrConstraints[i], minFoundConstraintsPerCamera);
|
||||
if (nrConstraints[i] < minNrConstraintsPerCamera)
|
||||
cout << "!!!!!!!!!!!!!!!!!!! camera with " << nrConstraints[i] << " constraint: " << i << endl;
|
||||
}
|
||||
|
||||
}
|
||||
for (size_t j=0; j<isValidLandmark.size(); j++) {
|
||||
if (isValidLandmark[j]) {
|
||||
minFoundConstraintsPerLandmark = std::min(nrConstraints[j], minFoundConstraintsPerLandmark);
|
||||
if (nrConstraints[j] < minNrConstraintsPerLandmark)
|
||||
cout << "!!!!!!!!!!!!!!!!!!! landmark with " << nrConstraints[j] << " constraint: " << j << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (size_t j=0; j<isValidLandmark.size(); j++) {
|
||||
if (isValidLandmark[j]) {
|
||||
minFoundConstraintsPerLandmark = std::min(nrConstraints[j], minFoundConstraintsPerLandmark);
|
||||
if (nrConstraints[j] < minNrConstraintsPerLandmark)
|
||||
cout << "!!!!!!!!!!!!!!!!!!! landmark with " << nrConstraints[j] << " constraint: " << j << endl;
|
||||
}
|
||||
}
|
||||
|
||||
// debug info
|
||||
BOOST_FOREACH(const size_t key, frontals) {
|
||||
if (isValidCamera[key] && nrConstraints[key] < minNrConstraintsPerCamera)
|
||||
cout << "singular camera:" << key << " with " << nrConstraints[key] << " constraints" << endl;
|
||||
}
|
||||
// debug info
|
||||
BOOST_FOREACH(const size_t key, frontals) {
|
||||
if (isValidCamera[key] && nrConstraints[key] < minNrConstraintsPerCamera)
|
||||
cout << "singular camera:" << key << " with " << nrConstraints[key] << " constraints" << endl;
|
||||
}
|
||||
|
||||
if (minFoundConstraintsPerCamera < minNrConstraintsPerCamera)
|
||||
throw runtime_error("checkSingularity:minConstraintsPerCamera < " + boost::lexical_cast<string>(minFoundConstraintsPerCamera));
|
||||
if (minFoundConstraintsPerLandmark < minNrConstraintsPerLandmark)
|
||||
throw runtime_error("checkSingularity:minConstraintsPerLandmark < " + boost::lexical_cast<string>(minFoundConstraintsPerLandmark));
|
||||
}
|
||||
if (minFoundConstraintsPerCamera < minNrConstraintsPerCamera)
|
||||
throw runtime_error("checkSingularity:minConstraintsPerCamera < " + boost::lexical_cast<string>(minFoundConstraintsPerCamera));
|
||||
if (minFoundConstraintsPerLandmark < minNrConstraintsPerLandmark)
|
||||
throw runtime_error("checkSingularity:minConstraintsPerLandmark < " + boost::lexical_cast<string>(minFoundConstraintsPerLandmark));
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
|
|
@ -17,133 +17,133 @@
|
|||
|
||||
namespace gtsam { namespace partition {
|
||||
|
||||
/***************************************************
|
||||
* 2D generic factors and their factor graph
|
||||
***************************************************/
|
||||
enum GenericNode2DType { NODE_POSE_2D, NODE_LANDMARK_2D };
|
||||
/***************************************************
|
||||
* 2D generic factors and their factor graph
|
||||
***************************************************/
|
||||
enum GenericNode2DType { NODE_POSE_2D, NODE_LANDMARK_2D };
|
||||
|
||||
/** the index of the node and the type of the node */
|
||||
struct GenericNode2D {
|
||||
std::size_t index;
|
||||
GenericNode2DType type;
|
||||
GenericNode2D (const std::size_t& index_in, const GenericNode2DType& type_in) : index(index_in), type(type_in) {}
|
||||
};
|
||||
/** the index of the node and the type of the node */
|
||||
struct GenericNode2D {
|
||||
std::size_t index;
|
||||
GenericNode2DType type;
|
||||
GenericNode2D (const std::size_t& index_in, const GenericNode2DType& type_in) : index(index_in), type(type_in) {}
|
||||
};
|
||||
|
||||
/** a factor always involves two nodes/variables for now */
|
||||
struct GenericFactor2D {
|
||||
GenericNode2D key1;
|
||||
GenericNode2D key2;
|
||||
int index; // the factor index in the original nonlinear factor graph
|
||||
int weight; // the weight of the edge
|
||||
GenericFactor2D(const size_t index1, const GenericNode2DType type1, const size_t index2, const GenericNode2DType type2, const int index_ = -1, const int weight_ = 1)
|
||||
: key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {}
|
||||
GenericFactor2D(const size_t index1, const char type1, const size_t index2, const char type2, const int index_ = -1, const int weight_ = 1)
|
||||
: key1(index1, type1 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D),
|
||||
key2(index2, type2 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_), weight(weight_) {}
|
||||
};
|
||||
/** a factor always involves two nodes/variables for now */
|
||||
struct GenericFactor2D {
|
||||
GenericNode2D key1;
|
||||
GenericNode2D key2;
|
||||
int index; // the factor index in the original nonlinear factor graph
|
||||
int weight; // the weight of the edge
|
||||
GenericFactor2D(const size_t index1, const GenericNode2DType type1, const size_t index2, const GenericNode2DType type2, const int index_ = -1, const int weight_ = 1)
|
||||
: key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {}
|
||||
GenericFactor2D(const size_t index1, const char type1, const size_t index2, const char type2, const int index_ = -1, const int weight_ = 1)
|
||||
: key1(index1, type1 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D),
|
||||
key2(index2, type2 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_), weight(weight_) {}
|
||||
};
|
||||
|
||||
/** graph is a collection of factors */
|
||||
typedef boost::shared_ptr<GenericFactor2D> sharedGenericFactor2D;
|
||||
typedef std::vector<sharedGenericFactor2D> GenericGraph2D;
|
||||
/** graph is a collection of factors */
|
||||
typedef boost::shared_ptr<GenericFactor2D> sharedGenericFactor2D;
|
||||
typedef std::vector<sharedGenericFactor2D> GenericGraph2D;
|
||||
|
||||
/** merge nodes in DSF using constraints captured by the given graph */
|
||||
std::list<std::vector<size_t> > findIslands(const GenericGraph2D& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
|
||||
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark);
|
||||
/** merge nodes in DSF using constraints captured by the given graph */
|
||||
std::list<std::vector<size_t> > findIslands(const GenericGraph2D& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
|
||||
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark);
|
||||
|
||||
/** eliminate the sensors from generic graph */
|
||||
inline void reduceGenericGraph(const GenericGraph2D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
|
||||
const std::vector<int>& dictionary, GenericGraph2D& reducedGraph) {
|
||||
throw std::runtime_error("reduceGenericGraph 2d not implemented");
|
||||
}
|
||||
/** eliminate the sensors from generic graph */
|
||||
inline void reduceGenericGraph(const GenericGraph2D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
|
||||
const std::vector<int>& dictionary, GenericGraph2D& reducedGraph) {
|
||||
throw std::runtime_error("reduceGenericGraph 2d not implemented");
|
||||
}
|
||||
|
||||
/** check whether the 2D graph is singular (under constrained) , Dummy function for 2D */
|
||||
inline void checkSingularity(const GenericGraph2D& graph, const std::vector<size_t>& frontals,
|
||||
WorkSpace& workspace, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { return; }
|
||||
/** check whether the 2D graph is singular (under constrained) , Dummy function for 2D */
|
||||
inline void checkSingularity(const GenericGraph2D& graph, const std::vector<size_t>& frontals,
|
||||
WorkSpace& workspace, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { return; }
|
||||
|
||||
/** print the graph **/
|
||||
void print(const GenericGraph2D& graph, const std::string name = "GenericGraph2D");
|
||||
/** print the graph **/
|
||||
void print(const GenericGraph2D& graph, const std::string name = "GenericGraph2D");
|
||||
|
||||
/***************************************************
|
||||
* 3D generic factors and their factor graph
|
||||
***************************************************/
|
||||
enum GenericNode3DType { NODE_POSE_3D, NODE_LANDMARK_3D };
|
||||
/***************************************************
|
||||
* 3D generic factors and their factor graph
|
||||
***************************************************/
|
||||
enum GenericNode3DType { NODE_POSE_3D, NODE_LANDMARK_3D };
|
||||
|
||||
// const int minNrConstraintsPerCamera = 7;
|
||||
// const int minNrConstraintsPerLandmark = 2;
|
||||
// const int minNrConstraintsPerCamera = 7;
|
||||
// const int minNrConstraintsPerLandmark = 2;
|
||||
|
||||
/** the index of the node and the type of the node */
|
||||
struct GenericNode3D {
|
||||
std::size_t index;
|
||||
GenericNode3DType type;
|
||||
GenericNode3D (const std::size_t& index_in, const GenericNode3DType& type_in) : index(index_in), type(type_in) {}
|
||||
};
|
||||
/** the index of the node and the type of the node */
|
||||
struct GenericNode3D {
|
||||
std::size_t index;
|
||||
GenericNode3DType type;
|
||||
GenericNode3D (const std::size_t& index_in, const GenericNode3DType& type_in) : index(index_in), type(type_in) {}
|
||||
};
|
||||
|
||||
/** a factor always involves two nodes/variables for now */
|
||||
struct GenericFactor3D {
|
||||
GenericNode3D key1;
|
||||
GenericNode3D key2;
|
||||
int index; // the index in the entire graph, 0-based
|
||||
int weight; // the weight of the edge
|
||||
GenericFactor3D() :key1(-1, NODE_POSE_3D), key2(-1, NODE_LANDMARK_3D), index(-1), weight(1) {}
|
||||
GenericFactor3D(const size_t index1, const size_t index2, const int index_ = -1,
|
||||
const GenericNode3DType type1 = NODE_POSE_3D, const GenericNode3DType type2 = NODE_LANDMARK_3D, const int weight_ = 1)
|
||||
: key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {}
|
||||
};
|
||||
/** a factor always involves two nodes/variables for now */
|
||||
struct GenericFactor3D {
|
||||
GenericNode3D key1;
|
||||
GenericNode3D key2;
|
||||
int index; // the index in the entire graph, 0-based
|
||||
int weight; // the weight of the edge
|
||||
GenericFactor3D() :key1(-1, NODE_POSE_3D), key2(-1, NODE_LANDMARK_3D), index(-1), weight(1) {}
|
||||
GenericFactor3D(const size_t index1, const size_t index2, const int index_ = -1,
|
||||
const GenericNode3DType type1 = NODE_POSE_3D, const GenericNode3DType type2 = NODE_LANDMARK_3D, const int weight_ = 1)
|
||||
: key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {}
|
||||
};
|
||||
|
||||
/** graph is a collection of factors */
|
||||
typedef boost::shared_ptr<GenericFactor3D> sharedGenericFactor3D;
|
||||
typedef std::vector<sharedGenericFactor3D> GenericGraph3D;
|
||||
/** graph is a collection of factors */
|
||||
typedef boost::shared_ptr<GenericFactor3D> sharedGenericFactor3D;
|
||||
typedef std::vector<sharedGenericFactor3D> GenericGraph3D;
|
||||
|
||||
/** merge nodes in DSF using constraints captured by the given graph */
|
||||
std::list<std::vector<size_t> > findIslands(const GenericGraph3D& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
|
||||
const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark);
|
||||
/** merge nodes in DSF using constraints captured by the given graph */
|
||||
std::list<std::vector<size_t> > findIslands(const GenericGraph3D& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
|
||||
const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark);
|
||||
|
||||
/** eliminate the sensors from generic graph */
|
||||
void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
|
||||
const std::vector<int>& dictionary, GenericGraph3D& reducedGraph);
|
||||
/** eliminate the sensors from generic graph */
|
||||
void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
|
||||
const std::vector<int>& dictionary, GenericGraph3D& reducedGraph);
|
||||
|
||||
/** check whether the 3D graph is singular (under constrained) */
|
||||
void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals,
|
||||
WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark);
|
||||
/** check whether the 3D graph is singular (under constrained) */
|
||||
void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals,
|
||||
WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark);
|
||||
|
||||
|
||||
/** print the graph **/
|
||||
void print(const GenericGraph3D& graph, const std::string name = "GenericGraph3D");
|
||||
/** print the graph **/
|
||||
void print(const GenericGraph3D& graph, const std::string name = "GenericGraph3D");
|
||||
|
||||
/***************************************************
|
||||
* unary generic factors and their factor graph
|
||||
***************************************************/
|
||||
/** a factor involves a single variable */
|
||||
struct GenericUnaryFactor {
|
||||
GenericNode2D key;
|
||||
int index; // the factor index in the original nonlinear factor graph
|
||||
GenericUnaryFactor(const size_t key_, const GenericNode2DType type_, const int index_ = -1)
|
||||
: key(key_, type_), index(index_) {}
|
||||
GenericUnaryFactor(const size_t key_, const char type_, const int index_ = -1)
|
||||
: key(key_, type_ == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_) {}
|
||||
};
|
||||
/***************************************************
|
||||
* unary generic factors and their factor graph
|
||||
***************************************************/
|
||||
/** a factor involves a single variable */
|
||||
struct GenericUnaryFactor {
|
||||
GenericNode2D key;
|
||||
int index; // the factor index in the original nonlinear factor graph
|
||||
GenericUnaryFactor(const size_t key_, const GenericNode2DType type_, const int index_ = -1)
|
||||
: key(key_, type_), index(index_) {}
|
||||
GenericUnaryFactor(const size_t key_, const char type_, const int index_ = -1)
|
||||
: key(key_, type_ == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_) {}
|
||||
};
|
||||
|
||||
/** graph is a collection of factors */
|
||||
typedef boost::shared_ptr<GenericUnaryFactor> sharedGenericUnaryFactor;
|
||||
typedef std::vector<sharedGenericUnaryFactor> GenericUnaryGraph;
|
||||
/** graph is a collection of factors */
|
||||
typedef boost::shared_ptr<GenericUnaryFactor> sharedGenericUnaryFactor;
|
||||
typedef std::vector<sharedGenericUnaryFactor> GenericUnaryGraph;
|
||||
|
||||
/***************************************************
|
||||
* utility functions
|
||||
***************************************************/
|
||||
inline bool hasCommonCamera(const std::set<size_t>& cameras1, const std::set<size_t>& cameras2) {
|
||||
if (cameras1.empty() || cameras2.empty())
|
||||
throw std::invalid_argument("hasCommonCamera: the input camera set is empty!");
|
||||
std::set<size_t>::const_iterator it1 = cameras1.begin();
|
||||
std::set<size_t>::const_iterator it2 = cameras2.begin();
|
||||
while (it1 != cameras1.end() && it2 != cameras2.end()) {
|
||||
if (*it1 == *it2)
|
||||
return true;
|
||||
else if (*it1 < *it2)
|
||||
it1++;
|
||||
else
|
||||
it2++;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
/***************************************************
|
||||
* utility functions
|
||||
***************************************************/
|
||||
inline bool hasCommonCamera(const std::set<size_t>& cameras1, const std::set<size_t>& cameras2) {
|
||||
if (cameras1.empty() || cameras2.empty())
|
||||
throw std::invalid_argument("hasCommonCamera: the input camera set is empty!");
|
||||
std::set<size_t>::const_iterator it1 = cameras1.begin();
|
||||
std::set<size_t>::const_iterator it2 = cameras2.begin();
|
||||
while (it1 != cameras1.end() && it2 != cameras2.end()) {
|
||||
if (*it1 == *it2)
|
||||
return true;
|
||||
else if (*it1 < *it2)
|
||||
it1++;
|
||||
else
|
||||
it2++;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
|
|
@ -16,236 +16,236 @@
|
|||
|
||||
namespace gtsam { namespace partition {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection(
|
||||
const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose) :
|
||||
fg_(fg), ordering_(ordering){
|
||||
GenericUnaryGraph unaryFactors;
|
||||
GenericGraph gfg;
|
||||
boost::tie(unaryFactors, gfg) = fg.createGenericGraph(ordering);
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection(
|
||||
const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose) :
|
||||
fg_(fg), ordering_(ordering){
|
||||
GenericUnaryGraph unaryFactors;
|
||||
GenericGraph gfg;
|
||||
boost::tie(unaryFactors, gfg) = fg.createGenericGraph(ordering);
|
||||
|
||||
// build reverse mapping from integer to symbol
|
||||
int numNodes = ordering.size();
|
||||
int2symbol_.resize(numNodes);
|
||||
Ordering::const_iterator it = ordering.begin(), itLast = ordering.end();
|
||||
while(it != itLast)
|
||||
int2symbol_[it->second] = (it++)->first;
|
||||
// build reverse mapping from integer to symbol
|
||||
int numNodes = ordering.size();
|
||||
int2symbol_.resize(numNodes);
|
||||
Ordering::const_iterator it = ordering.begin(), itLast = ordering.end();
|
||||
while(it != itLast)
|
||||
int2symbol_[it->second] = (it++)->first;
|
||||
|
||||
vector<size_t> keys;
|
||||
keys.reserve(numNodes);
|
||||
for(int i=0; i<ordering.size(); ++i)
|
||||
keys.push_back(i);
|
||||
vector<size_t> keys;
|
||||
keys.reserve(numNodes);
|
||||
for(int i=0; i<ordering.size(); ++i)
|
||||
keys.push_back(i);
|
||||
|
||||
WorkSpace workspace(numNodes);
|
||||
root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), numNodeStopPartition, minNodesPerMap, boost::shared_ptr<SubNLG>(), workspace, verbose);
|
||||
}
|
||||
WorkSpace workspace(numNodes);
|
||||
root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), numNodeStopPartition, minNodesPerMap, boost::shared_ptr<SubNLG>(), workspace, verbose);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection(
|
||||
const NLG& fg, const Ordering& ordering, const boost::shared_ptr<Cuts>& cuts, const bool verbose) : fg_(fg), ordering_(ordering){
|
||||
GenericUnaryGraph unaryFactors;
|
||||
GenericGraph gfg;
|
||||
boost::tie(unaryFactors, gfg) = fg.createGenericGraph(ordering);
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection(
|
||||
const NLG& fg, const Ordering& ordering, const boost::shared_ptr<Cuts>& cuts, const bool verbose) : fg_(fg), ordering_(ordering){
|
||||
GenericUnaryGraph unaryFactors;
|
||||
GenericGraph gfg;
|
||||
boost::tie(unaryFactors, gfg) = fg.createGenericGraph(ordering);
|
||||
|
||||
// build reverse mapping from integer to symbol
|
||||
int numNodes = ordering.size();
|
||||
int2symbol_.resize(numNodes);
|
||||
Ordering::const_iterator it = ordering.begin(), itLast = ordering.end();
|
||||
while(it != itLast)
|
||||
int2symbol_[it->second] = (it++)->first;
|
||||
// build reverse mapping from integer to symbol
|
||||
int numNodes = ordering.size();
|
||||
int2symbol_.resize(numNodes);
|
||||
Ordering::const_iterator it = ordering.begin(), itLast = ordering.end();
|
||||
while(it != itLast)
|
||||
int2symbol_[it->second] = (it++)->first;
|
||||
|
||||
vector<size_t> keys;
|
||||
keys.reserve(numNodes);
|
||||
for(int i=0; i<ordering.size(); ++i)
|
||||
keys.push_back(i);
|
||||
vector<size_t> keys;
|
||||
keys.reserve(numNodes);
|
||||
for(int i=0; i<ordering.size(); ++i)
|
||||
keys.push_back(i);
|
||||
|
||||
WorkSpace workspace(numNodes);
|
||||
root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), cuts, boost::shared_ptr<SubNLG>(), workspace, verbose);
|
||||
}
|
||||
WorkSpace workspace(numNodes);
|
||||
root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), cuts, boost::shared_ptr<SubNLG>(), workspace, verbose);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::makeSubNLG(
|
||||
const NLG& fg, const vector<size_t>& frontals, const vector<size_t>& sep, const boost::shared_ptr<SubNLG>& parent) const {
|
||||
OrderedSymbols frontalKeys;
|
||||
BOOST_FOREACH(const size_t index, frontals)
|
||||
frontalKeys.push_back(int2symbol_[index]);
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::makeSubNLG(
|
||||
const NLG& fg, const vector<size_t>& frontals, const vector<size_t>& sep, const boost::shared_ptr<SubNLG>& parent) const {
|
||||
OrderedSymbols frontalKeys;
|
||||
BOOST_FOREACH(const size_t index, frontals)
|
||||
frontalKeys.push_back(int2symbol_[index]);
|
||||
|
||||
UnorderedSymbols sepKeys;
|
||||
BOOST_FOREACH(const size_t index, sep)
|
||||
sepKeys.insert(int2symbol_[index]);
|
||||
UnorderedSymbols sepKeys;
|
||||
BOOST_FOREACH(const size_t index, sep)
|
||||
sepKeys.insert(int2symbol_[index]);
|
||||
|
||||
return boost::make_shared<SubNLG>(fg, frontalKeys, sepKeys, parent);
|
||||
}
|
||||
return boost::make_shared<SubNLG>(fg, frontalKeys, sepKeys, parent);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
void NestedDissection<NLG, SubNLG, GenericGraph>::processFactor(
|
||||
const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable, // input
|
||||
vector<GenericGraph>& frontalFactors, NLG& sepFactors, vector<set<size_t> >& childSeps, // output factor graphs
|
||||
typename SubNLG::Weeklinks& weeklinks) const { // the links between child cliques
|
||||
list<size_t> sep_; // the separator variables involved in the current factor
|
||||
int partition1 = partitionTable[factor->key1.index];
|
||||
int partition2 = partitionTable[factor->key2.index];
|
||||
if (partition1 <= 0 && partition2 <= 0) { // is a factor in the current clique
|
||||
sepFactors.push_back(fg_[factor->index]);
|
||||
}
|
||||
else if (partition1 > 0 && partition2 > 0 && partition1 != partition2) { // is a weeklink (factor between two child cliques)
|
||||
weeklinks.push_back(fg_[factor->index]);
|
||||
}
|
||||
else if (partition1 > 0 && partition2 > 0 && partition1 == partition2) { // is a local factor in one of the child cliques
|
||||
frontalFactors[partition1 - 1].push_back(factor);
|
||||
}
|
||||
else { // is a joint factor in the child clique (involving varaibles in the current clique)
|
||||
if (partition1 > 0 && partition2 <= 0) {
|
||||
frontalFactors[partition1 - 1].push_back(factor);
|
||||
childSeps[partition1 - 1].insert(factor->key2.index);
|
||||
} else if (partition1 <= 0 && partition2 > 0) {
|
||||
frontalFactors[partition2 - 1].push_back(factor);
|
||||
childSeps[partition2 - 1].insert(factor->key1.index);
|
||||
} else
|
||||
throw runtime_error("processFactor: unexpected entries in the partition table!");
|
||||
}
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
void NestedDissection<NLG, SubNLG, GenericGraph>::processFactor(
|
||||
const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable, // input
|
||||
vector<GenericGraph>& frontalFactors, NLG& sepFactors, vector<set<size_t> >& childSeps, // output factor graphs
|
||||
typename SubNLG::Weeklinks& weeklinks) const { // the links between child cliques
|
||||
list<size_t> sep_; // the separator variables involved in the current factor
|
||||
int partition1 = partitionTable[factor->key1.index];
|
||||
int partition2 = partitionTable[factor->key2.index];
|
||||
if (partition1 <= 0 && partition2 <= 0) { // is a factor in the current clique
|
||||
sepFactors.push_back(fg_[factor->index]);
|
||||
}
|
||||
else if (partition1 > 0 && partition2 > 0 && partition1 != partition2) { // is a weeklink (factor between two child cliques)
|
||||
weeklinks.push_back(fg_[factor->index]);
|
||||
}
|
||||
else if (partition1 > 0 && partition2 > 0 && partition1 == partition2) { // is a local factor in one of the child cliques
|
||||
frontalFactors[partition1 - 1].push_back(factor);
|
||||
}
|
||||
else { // is a joint factor in the child clique (involving varaibles in the current clique)
|
||||
if (partition1 > 0 && partition2 <= 0) {
|
||||
frontalFactors[partition1 - 1].push_back(factor);
|
||||
childSeps[partition1 - 1].insert(factor->key2.index);
|
||||
} else if (partition1 <= 0 && partition2 > 0) {
|
||||
frontalFactors[partition2 - 1].push_back(factor);
|
||||
childSeps[partition2 - 1].insert(factor->key1.index);
|
||||
} else
|
||||
throw runtime_error("processFactor: unexpected entries in the partition table!");
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* given a factor graph and its partition {nodeMap}, split the factors between the child cliques ({frontalFactors})
|
||||
* and the current clique ({sepFactors}). Also split the variables between the child cliques ({childFrontals})
|
||||
* and the current clique ({localFrontals}). Those separator variables involved in {frontalFactors} are put into
|
||||
* the correspoding ordering in {childSeps}.
|
||||
*/
|
||||
// TODO: frontalFactors and localFrontals should be generated in findSeparator
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
void NestedDissection<NLG, SubNLG, GenericGraph>::partitionFactorsAndVariables(
|
||||
const GenericGraph& fg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& keys, //input
|
||||
const std::vector<int>& partitionTable, const int numSubmaps, // input
|
||||
vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors, NLG& sepFactors, // output factor graphs
|
||||
vector<vector<size_t> >& childFrontals, vector<vector<size_t> >& childSeps, vector<size_t>& localFrontals, // output sub-orderings
|
||||
typename SubNLG::Weeklinks& weeklinks) const { // the links between child cliques
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* given a factor graph and its partition {nodeMap}, split the factors between the child cliques ({frontalFactors})
|
||||
* and the current clique ({sepFactors}). Also split the variables between the child cliques ({childFrontals})
|
||||
* and the current clique ({localFrontals}). Those separator variables involved in {frontalFactors} are put into
|
||||
* the correspoding ordering in {childSeps}.
|
||||
*/
|
||||
// TODO: frontalFactors and localFrontals should be generated in findSeparator
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
void NestedDissection<NLG, SubNLG, GenericGraph>::partitionFactorsAndVariables(
|
||||
const GenericGraph& fg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& keys, //input
|
||||
const std::vector<int>& partitionTable, const int numSubmaps, // input
|
||||
vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors, NLG& sepFactors, // output factor graphs
|
||||
vector<vector<size_t> >& childFrontals, vector<vector<size_t> >& childSeps, vector<size_t>& localFrontals, // output sub-orderings
|
||||
typename SubNLG::Weeklinks& weeklinks) const { // the links between child cliques
|
||||
|
||||
// make three lists of variables A, B, and C
|
||||
int partition;
|
||||
childFrontals.resize(numSubmaps);
|
||||
BOOST_FOREACH(const size_t key, keys){
|
||||
partition = partitionTable[key];
|
||||
switch (partition) {
|
||||
case -1: break; // the separator of the separator variables
|
||||
case 0: localFrontals.push_back(key); break; // the separator variables
|
||||
default: childFrontals[partition-1].push_back(key); // the frontal variables
|
||||
}
|
||||
}
|
||||
// make three lists of variables A, B, and C
|
||||
int partition;
|
||||
childFrontals.resize(numSubmaps);
|
||||
BOOST_FOREACH(const size_t key, keys){
|
||||
partition = partitionTable[key];
|
||||
switch (partition) {
|
||||
case -1: break; // the separator of the separator variables
|
||||
case 0: localFrontals.push_back(key); break; // the separator variables
|
||||
default: childFrontals[partition-1].push_back(key); // the frontal variables
|
||||
}
|
||||
}
|
||||
|
||||
// group the factors to {frontalFactors} and {sepFactors},and find the joint variables
|
||||
vector<set<size_t> > childSeps_;
|
||||
childSeps_.resize(numSubmaps);
|
||||
childSeps.reserve(numSubmaps);
|
||||
frontalFactors.resize(numSubmaps);
|
||||
frontalUnaryFactors.resize(numSubmaps);
|
||||
BOOST_FOREACH(typename GenericGraph::value_type factor, fg)
|
||||
processFactor(factor, partitionTable, frontalFactors, sepFactors, childSeps_, weeklinks);
|
||||
BOOST_FOREACH(const set<size_t>& childSep, childSeps_)
|
||||
childSeps.push_back(vector<size_t>(childSep.begin(), childSep.end()));
|
||||
// group the factors to {frontalFactors} and {sepFactors},and find the joint variables
|
||||
vector<set<size_t> > childSeps_;
|
||||
childSeps_.resize(numSubmaps);
|
||||
childSeps.reserve(numSubmaps);
|
||||
frontalFactors.resize(numSubmaps);
|
||||
frontalUnaryFactors.resize(numSubmaps);
|
||||
BOOST_FOREACH(typename GenericGraph::value_type factor, fg)
|
||||
processFactor(factor, partitionTable, frontalFactors, sepFactors, childSeps_, weeklinks);
|
||||
BOOST_FOREACH(const set<size_t>& childSep, childSeps_)
|
||||
childSeps.push_back(vector<size_t>(childSep.begin(), childSep.end()));
|
||||
|
||||
// add unary factor to the current cluster or pass it to one of the child clusters
|
||||
BOOST_FOREACH(const sharedGenericUnaryFactor& unaryFactor_, unaryFactors) {
|
||||
partition = partitionTable[unaryFactor_->key.index];
|
||||
if (!partition) sepFactors.push_back(fg_[unaryFactor_->index]);
|
||||
else frontalUnaryFactors[partition-1].push_back(unaryFactor_);
|
||||
}
|
||||
}
|
||||
// add unary factor to the current cluster or pass it to one of the child clusters
|
||||
BOOST_FOREACH(const sharedGenericUnaryFactor& unaryFactor_, unaryFactors) {
|
||||
partition = partitionTable[unaryFactor_->key.index];
|
||||
if (!partition) sepFactors.push_back(fg_[unaryFactor_->index]);
|
||||
else frontalUnaryFactors[partition-1].push_back(unaryFactor_);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
NLG NestedDissection<NLG, SubNLG, GenericGraph>::collectOriginalFactors(
|
||||
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const {
|
||||
NLG sepFactors;
|
||||
typename GenericGraph::const_iterator it = gfg.begin(), itLast = gfg.end();
|
||||
while(it!=itLast) sepFactors.push_back(fg_[(*it++)->index]);
|
||||
BOOST_FOREACH(const sharedGenericUnaryFactor& unaryFactor_, unaryFactors)
|
||||
sepFactors.push_back(fg_[unaryFactor_->index]);
|
||||
return sepFactors;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
NLG NestedDissection<NLG, SubNLG, GenericGraph>::collectOriginalFactors(
|
||||
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const {
|
||||
NLG sepFactors;
|
||||
typename GenericGraph::const_iterator it = gfg.begin(), itLast = gfg.end();
|
||||
while(it!=itLast) sepFactors.push_back(fg_[(*it++)->index]);
|
||||
BOOST_FOREACH(const sharedGenericUnaryFactor& unaryFactor_, unaryFactors)
|
||||
sepFactors.push_back(fg_[unaryFactor_->index]);
|
||||
return sepFactors;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition(
|
||||
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep,
|
||||
const int numNodeStopPartition, const int minNodesPerMap, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const {
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition(
|
||||
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep,
|
||||
const int numNodeStopPartition, const int minNodesPerMap, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const {
|
||||
|
||||
// if no split needed
|
||||
NLG sepFactors; // factors that should remain in the current cluster
|
||||
if (frontals.size() <= numNodeStopPartition || gfg.size() <= numNodeStopPartition) {
|
||||
sepFactors = collectOriginalFactors(gfg, unaryFactors);
|
||||
return makeSubNLG(sepFactors, frontals, sep, parent);
|
||||
}
|
||||
// if no split needed
|
||||
NLG sepFactors; // factors that should remain in the current cluster
|
||||
if (frontals.size() <= numNodeStopPartition || gfg.size() <= numNodeStopPartition) {
|
||||
sepFactors = collectOriginalFactors(gfg, unaryFactors);
|
||||
return makeSubNLG(sepFactors, frontals, sep, parent);
|
||||
}
|
||||
|
||||
// find the nested dissection separator
|
||||
int numSubmaps = findSeparator(gfg, frontals, minNodesPerMap, workspace, verbose, int2symbol_, NLG::reduceGraph(),
|
||||
NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark());
|
||||
partition::PartitionTable& partitionTable = workspace.partitionTable;
|
||||
if (numSubmaps == 0) throw runtime_error("recursivePartition: get zero submap after ND!");
|
||||
// find the nested dissection separator
|
||||
int numSubmaps = findSeparator(gfg, frontals, minNodesPerMap, workspace, verbose, int2symbol_, NLG::reduceGraph(),
|
||||
NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark());
|
||||
partition::PartitionTable& partitionTable = workspace.partitionTable;
|
||||
if (numSubmaps == 0) throw runtime_error("recursivePartition: get zero submap after ND!");
|
||||
|
||||
// split the factors between child cliques and the current clique
|
||||
vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks;
|
||||
vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps;
|
||||
partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps,
|
||||
frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks);
|
||||
// split the factors between child cliques and the current clique
|
||||
vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks;
|
||||
vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps;
|
||||
partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps,
|
||||
frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks);
|
||||
|
||||
// make a new cluster
|
||||
boost::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent);
|
||||
current->setWeeklinks(weeklinks);
|
||||
// make a new cluster
|
||||
boost::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent);
|
||||
current->setWeeklinks(weeklinks);
|
||||
|
||||
// check whether all the submaps are fully constrained
|
||||
for (int i=0; i<numSubmaps; i++) {
|
||||
checkSingularity(frontalFactors[i], childFrontals[i], workspace, NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark());
|
||||
}
|
||||
// check whether all the submaps are fully constrained
|
||||
for (int i=0; i<numSubmaps; i++) {
|
||||
checkSingularity(frontalFactors[i], childFrontals[i], workspace, NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark());
|
||||
}
|
||||
|
||||
// create child clusters
|
||||
for (int i=0; i<numSubmaps; i++) {
|
||||
boost::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i],
|
||||
numNodeStopPartition, minNodesPerMap, current, workspace, verbose);
|
||||
current->addChild(child);
|
||||
}
|
||||
// create child clusters
|
||||
for (int i=0; i<numSubmaps; i++) {
|
||||
boost::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i],
|
||||
numNodeStopPartition, minNodesPerMap, current, workspace, verbose);
|
||||
current->addChild(child);
|
||||
}
|
||||
|
||||
return current;
|
||||
}
|
||||
return current;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition(
|
||||
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep,
|
||||
const boost::shared_ptr<Cuts>& cuts, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const {
|
||||
/* ************************************************************************* */
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition(
|
||||
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep,
|
||||
const boost::shared_ptr<Cuts>& cuts, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const {
|
||||
|
||||
// if there is no need to cut any more
|
||||
NLG sepFactors; // factors that should remain in the current cluster
|
||||
if (!cuts.get()) {
|
||||
sepFactors = collectOriginalFactors(gfg, unaryFactors);
|
||||
return makeSubNLG(sepFactors, frontals, sep, parent);
|
||||
}
|
||||
// if there is no need to cut any more
|
||||
NLG sepFactors; // factors that should remain in the current cluster
|
||||
if (!cuts.get()) {
|
||||
sepFactors = collectOriginalFactors(gfg, unaryFactors);
|
||||
return makeSubNLG(sepFactors, frontals, sep, parent);
|
||||
}
|
||||
|
||||
// retrieve the current partitioning info
|
||||
int numSubmaps = 2;
|
||||
partition::PartitionTable& partitionTable = cuts->partitionTable;
|
||||
// retrieve the current partitioning info
|
||||
int numSubmaps = 2;
|
||||
partition::PartitionTable& partitionTable = cuts->partitionTable;
|
||||
|
||||
// split the factors between child cliques and the current clique
|
||||
vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks;
|
||||
vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps;
|
||||
partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps,
|
||||
frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks);
|
||||
// split the factors between child cliques and the current clique
|
||||
vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks;
|
||||
vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps;
|
||||
partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps,
|
||||
frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks);
|
||||
|
||||
// make a new cluster
|
||||
boost::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent);
|
||||
current->setWeeklinks(weeklinks);
|
||||
// make a new cluster
|
||||
boost::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent);
|
||||
current->setWeeklinks(weeklinks);
|
||||
|
||||
// create child clusters
|
||||
for (int i=0; i<2; i++) {
|
||||
boost::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i],
|
||||
cuts->children.empty() ? boost::shared_ptr<Cuts>() : cuts->children[i], current, workspace, verbose);
|
||||
current->addChild(child);
|
||||
}
|
||||
return current;
|
||||
}
|
||||
// create child clusters
|
||||
for (int i=0; i<2; i++) {
|
||||
boost::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i],
|
||||
cuts->children.empty() ? boost::shared_ptr<Cuts>() : cuts->children[i], current, workspace, verbose);
|
||||
current->addChild(child);
|
||||
}
|
||||
return current;
|
||||
}
|
||||
}} //namespace
|
||||
|
|
|
@ -14,56 +14,56 @@
|
|||
|
||||
namespace gtsam { namespace partition {
|
||||
|
||||
/**
|
||||
* Apply nested dissection algorithm to nonlinear factor graphs
|
||||
*/
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
class NestedDissection {
|
||||
public:
|
||||
typedef boost::shared_ptr<SubNLG> sharedSubNLG;
|
||||
/**
|
||||
* Apply nested dissection algorithm to nonlinear factor graphs
|
||||
*/
|
||||
template <class NLG, class SubNLG, class GenericGraph>
|
||||
class NestedDissection {
|
||||
public:
|
||||
typedef boost::shared_ptr<SubNLG> sharedSubNLG;
|
||||
|
||||
private:
|
||||
NLG fg_; // the original nonlinear factor graph
|
||||
Ordering ordering_; // the variable ordering in the nonlinear factor graph
|
||||
std::vector<Symbol> int2symbol_; // the mapping from integer key to symbol
|
||||
sharedSubNLG root_; // the root of generated cluster tree
|
||||
private:
|
||||
NLG fg_; // the original nonlinear factor graph
|
||||
Ordering ordering_; // the variable ordering in the nonlinear factor graph
|
||||
std::vector<Symbol> int2symbol_; // the mapping from integer key to symbol
|
||||
sharedSubNLG root_; // the root of generated cluster tree
|
||||
|
||||
public:
|
||||
sharedSubNLG root() const { return root_; }
|
||||
public:
|
||||
sharedSubNLG root() const { return root_; }
|
||||
|
||||
public:
|
||||
/* constructor with post-determined partitoning*/
|
||||
NestedDissection(const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose = false);
|
||||
public:
|
||||
/* constructor with post-determined partitoning*/
|
||||
NestedDissection(const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose = false);
|
||||
|
||||
/* constructor with pre-determined cuts*/
|
||||
NestedDissection(const NLG& fg, const Ordering& ordering, const boost::shared_ptr<Cuts>& cuts, const bool verbose = false);
|
||||
/* constructor with pre-determined cuts*/
|
||||
NestedDissection(const NLG& fg, const Ordering& ordering, const boost::shared_ptr<Cuts>& cuts, const bool verbose = false);
|
||||
|
||||
private:
|
||||
/* convert generic subgraph to nonlinear subgraph */
|
||||
sharedSubNLG makeSubNLG(const NLG& fg, const std::vector<size_t>& frontals, const std::vector<size_t>& sep, const boost::shared_ptr<SubNLG>& parent) const;
|
||||
private:
|
||||
/* convert generic subgraph to nonlinear subgraph */
|
||||
sharedSubNLG makeSubNLG(const NLG& fg, const std::vector<size_t>& frontals, const std::vector<size_t>& sep, const boost::shared_ptr<SubNLG>& parent) const;
|
||||
|
||||
void processFactor(const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable, // input
|
||||
std::vector<GenericGraph>& frontalFactors, NLG& sepFactors, std::vector<std::set<size_t> >& childSeps, // output factor graphs
|
||||
typename SubNLG::Weeklinks& weeklinks) const;
|
||||
void processFactor(const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable, // input
|
||||
std::vector<GenericGraph>& frontalFactors, NLG& sepFactors, std::vector<std::set<size_t> >& childSeps, // output factor graphs
|
||||
typename SubNLG::Weeklinks& weeklinks) const;
|
||||
|
||||
/* recursively partition the generic graph */
|
||||
void partitionFactorsAndVariables(
|
||||
const GenericGraph& fg, const GenericUnaryGraph& unaryFactors,
|
||||
const std::vector<size_t>& keys, const std::vector<int>& partitionTable, const int numSubmaps, // input
|
||||
std::vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors, NLG& sepFactors, // output factor graphs
|
||||
std::vector<std::vector<size_t> >& childFrontals, std::vector<std::vector<size_t> >& childSeps, std::vector<size_t>& localFrontals, // output sub-orderings
|
||||
typename SubNLG::Weeklinks& weeklinks) const;
|
||||
/* recursively partition the generic graph */
|
||||
void partitionFactorsAndVariables(
|
||||
const GenericGraph& fg, const GenericUnaryGraph& unaryFactors,
|
||||
const std::vector<size_t>& keys, const std::vector<int>& partitionTable, const int numSubmaps, // input
|
||||
std::vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors, NLG& sepFactors, // output factor graphs
|
||||
std::vector<std::vector<size_t> >& childFrontals, std::vector<std::vector<size_t> >& childSeps, std::vector<size_t>& localFrontals, // output sub-orderings
|
||||
typename SubNLG::Weeklinks& weeklinks) const;
|
||||
|
||||
NLG collectOriginalFactors(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const;
|
||||
NLG collectOriginalFactors(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const;
|
||||
|
||||
/* recursively partition the generic graph */
|
||||
sharedSubNLG recursivePartition(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& frontals, const std::vector<size_t>& sep,
|
||||
const int numNodeStopPartition, const int minNodesPerMap, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const;
|
||||
/* recursively partition the generic graph */
|
||||
sharedSubNLG recursivePartition(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& frontals, const std::vector<size_t>& sep,
|
||||
const int numNodeStopPartition, const int minNodesPerMap, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const;
|
||||
|
||||
/* recursively partition the generic graph */
|
||||
sharedSubNLG recursivePartition(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& frontals, const std::vector<size_t>& sep,
|
||||
const boost::shared_ptr<Cuts>& cuts, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const;
|
||||
/* recursively partition the generic graph */
|
||||
sharedSubNLG recursivePartition(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& frontals, const std::vector<size_t>& sep,
|
||||
const boost::shared_ptr<Cuts>& cuts, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const;
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
}} //namespace
|
||||
|
|
|
@ -13,32 +13,32 @@
|
|||
|
||||
namespace gtsam { namespace partition {
|
||||
|
||||
typedef std::vector<int> PartitionTable;
|
||||
typedef std::vector<int> PartitionTable;
|
||||
|
||||
// the work space, preallocated memory
|
||||
struct WorkSpace {
|
||||
std::vector<int> dictionary; // a mapping from the integer key in the original graph to 0-based index in the subgraph, useful when handling a subset of keys and graphs
|
||||
boost::shared_ptr<std::vector<size_t> > dsf; // a block memory pre-allocated for DSFVector
|
||||
PartitionTable partitionTable; // a mapping from a key to the submap index, 0 means the separator, i means the ith submap
|
||||
// the work space, preallocated memory
|
||||
struct WorkSpace {
|
||||
std::vector<int> dictionary; // a mapping from the integer key in the original graph to 0-based index in the subgraph, useful when handling a subset of keys and graphs
|
||||
boost::shared_ptr<std::vector<size_t> > dsf; // a block memory pre-allocated for DSFVector
|
||||
PartitionTable partitionTable; // a mapping from a key to the submap index, 0 means the separator, i means the ith submap
|
||||
|
||||
// constructor
|
||||
WorkSpace(const size_t numNodes) : dictionary(numNodes,0),
|
||||
dsf(new std::vector<size_t>(numNodes, 0)), partitionTable(numNodes, -1) { }
|
||||
// constructor
|
||||
WorkSpace(const size_t numNodes) : dictionary(numNodes,0),
|
||||
dsf(new std::vector<size_t>(numNodes, 0)), partitionTable(numNodes, -1) { }
|
||||
|
||||
// set up dictionary: -1: no such key, none-zero: the corresponding 0-based index
|
||||
inline void prepareDictionary(const std::vector<size_t>& keys) {
|
||||
int index = 0;
|
||||
std::fill(dictionary.begin(), dictionary.end(), -1);
|
||||
std::vector<size_t>::const_iterator it=keys.begin(), itLast=keys.end();
|
||||
while(it!=itLast) dictionary[*(it++)] = index++;
|
||||
}
|
||||
};
|
||||
// set up dictionary: -1: no such key, none-zero: the corresponding 0-based index
|
||||
inline void prepareDictionary(const std::vector<size_t>& keys) {
|
||||
int index = 0;
|
||||
std::fill(dictionary.begin(), dictionary.end(), -1);
|
||||
std::vector<size_t>::const_iterator it=keys.begin(), itLast=keys.end();
|
||||
while(it!=itLast) dictionary[*(it++)] = index++;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// manually defined cuts
|
||||
struct Cuts {
|
||||
PartitionTable partitionTable;
|
||||
std::vector<boost::shared_ptr<Cuts> > children;
|
||||
};
|
||||
// manually defined cuts
|
||||
struct Cuts {
|
||||
PartitionTable partitionTable;
|
||||
std::vector<boost::shared_ptr<Cuts> > children;
|
||||
};
|
||||
|
||||
}} // namespace
|
||||
|
|
|
@ -185,45 +185,45 @@ TEST ( Partition, findSeparator2 )
|
|||
// x25 x26 x27 x28
|
||||
TEST ( Partition, findSeparator3_with_reduced_camera )
|
||||
{
|
||||
GenericGraph3D graph;
|
||||
for (int j=1; j<=8; j++)
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(25, j));
|
||||
for (int j=1; j<=16; j++)
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(26, j));
|
||||
for (int j=9; j<=24; j++)
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(27, j));
|
||||
for (int j=17; j<=24; j++)
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(28, j));
|
||||
GenericGraph3D graph;
|
||||
for (int j=1; j<=8; j++)
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(25, j));
|
||||
for (int j=1; j<=16; j++)
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(26, j));
|
||||
for (int j=9; j<=24; j++)
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(27, j));
|
||||
for (int j=17; j<=24; j++)
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(28, j));
|
||||
|
||||
std::vector<size_t> keys;
|
||||
for(int i=1; i<=28; i++)
|
||||
keys.push_back(i);
|
||||
std::vector<size_t> keys;
|
||||
for(int i=1; i<=28; i++)
|
||||
keys.push_back(i);
|
||||
|
||||
vector<Symbol> int2symbol;
|
||||
int2symbol.push_back(Symbol('x',0)); // dummy
|
||||
for(int i=1; i<=24; i++)
|
||||
int2symbol.push_back(Symbol('l',i));
|
||||
int2symbol.push_back(Symbol('x',25));
|
||||
int2symbol.push_back(Symbol('x',26));
|
||||
int2symbol.push_back(Symbol('x',27));
|
||||
int2symbol.push_back(Symbol('x',28));
|
||||
vector<Symbol> int2symbol;
|
||||
int2symbol.push_back(Symbol('x',0)); // dummy
|
||||
for(int i=1; i<=24; i++)
|
||||
int2symbol.push_back(Symbol('l',i));
|
||||
int2symbol.push_back(Symbol('x',25));
|
||||
int2symbol.push_back(Symbol('x',26));
|
||||
int2symbol.push_back(Symbol('x',27));
|
||||
int2symbol.push_back(Symbol('x',28));
|
||||
|
||||
WorkSpace workspace(29);
|
||||
bool reduceGraph = true;
|
||||
int numIsland = findSeparator(graph, keys, 3, workspace, false, int2symbol, reduceGraph, 0, 0);
|
||||
LONGS_EQUAL(2, numIsland);
|
||||
WorkSpace workspace(29);
|
||||
bool reduceGraph = true;
|
||||
int numIsland = findSeparator(graph, keys, 3, workspace, false, int2symbol, reduceGraph, 0, 0);
|
||||
LONGS_EQUAL(2, numIsland);
|
||||
|
||||
partition::PartitionTable& partitionTable = workspace.partitionTable;
|
||||
for (int j=1; j<=8; j++)
|
||||
LONGS_EQUAL(1, partitionTable[j]);
|
||||
for (int j=9; j<=16; j++)
|
||||
LONGS_EQUAL(0, partitionTable[j]);
|
||||
for (int j=17; j<=24; j++)
|
||||
LONGS_EQUAL(2, partitionTable[j]);
|
||||
LONGS_EQUAL(1, partitionTable[25]);
|
||||
LONGS_EQUAL(1, partitionTable[26]);
|
||||
LONGS_EQUAL(2, partitionTable[27]);
|
||||
LONGS_EQUAL(2, partitionTable[28]);
|
||||
partition::PartitionTable& partitionTable = workspace.partitionTable;
|
||||
for (int j=1; j<=8; j++)
|
||||
LONGS_EQUAL(1, partitionTable[j]);
|
||||
for (int j=9; j<=16; j++)
|
||||
LONGS_EQUAL(0, partitionTable[j]);
|
||||
for (int j=17; j<=24; j++)
|
||||
LONGS_EQUAL(2, partitionTable[j]);
|
||||
LONGS_EQUAL(1, partitionTable[25]);
|
||||
LONGS_EQUAL(1, partitionTable[26]);
|
||||
LONGS_EQUAL(2, partitionTable[27]);
|
||||
LONGS_EQUAL(2, partitionTable[28]);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -29,29 +29,29 @@ using namespace gtsam::partition;
|
|||
*/
|
||||
TEST ( GenerciGraph, findIslands )
|
||||
{
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(6, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(6, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
|
||||
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 2, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 6, NODE_POSE_2D));
|
||||
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6, 7, 8, 9;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 2, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 6, NODE_POSE_2D));
|
||||
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6, 7, 8, 9;
|
||||
|
||||
WorkSpace workspace(10); // from 0 to 9
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(2, islands.size());
|
||||
vector<size_t> island1; island1 += 1, 2, 3, 7, 8;
|
||||
vector<size_t> island2; island2 += 4, 5, 6, 9;
|
||||
CHECK(island1 == islands.front());
|
||||
CHECK(island2 == islands.back());
|
||||
WorkSpace workspace(10); // from 0 to 9
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(2, islands.size());
|
||||
vector<size_t> island1; island1 += 1, 2, 3, 7, 8;
|
||||
vector<size_t> island2; island2 += 4, 5, 6, 9;
|
||||
CHECK(island1 == islands.front());
|
||||
CHECK(island2 == islands.back());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -62,27 +62,27 @@ TEST ( GenerciGraph, findIslands )
|
|||
*/
|
||||
TEST( GenerciGraph, findIslands2 )
|
||||
{
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(6, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(6, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
|
||||
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 2, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 6, NODE_POSE_2D));
|
||||
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6, 7, 8;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 2, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 6, NODE_POSE_2D));
|
||||
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6, 7, 8;
|
||||
|
||||
WorkSpace workspace(15); // from 0 to 8, but testing over-allocation here
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(1, islands.size());
|
||||
vector<size_t> island1; island1 += 1, 2, 3, 4, 5, 6, 7, 8;
|
||||
CHECK(island1 == islands.front());
|
||||
WorkSpace workspace(15); // from 0 to 8, but testing over-allocation here
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(1, islands.size());
|
||||
vector<size_t> island1; island1 += 1, 2, 3, 4, 5, 6, 7, 8;
|
||||
CHECK(island1 == islands.front());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -92,21 +92,21 @@ TEST( GenerciGraph, findIslands2 )
|
|||
*/
|
||||
TEST ( GenerciGraph, findIslands3 )
|
||||
{
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 6, NODE_LANDMARK_2D));
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 6, NODE_LANDMARK_2D));
|
||||
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 4, NODE_POSE_2D));
|
||||
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 4, NODE_POSE_2D));
|
||||
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6;
|
||||
|
||||
WorkSpace workspace(7); // from 0 to 9
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(2, islands.size());
|
||||
vector<size_t> island1; island1 += 1, 5;
|
||||
vector<size_t> island2; island2 += 2, 3, 4, 6;
|
||||
CHECK(island1 == islands.front());
|
||||
CHECK(island2 == islands.back());
|
||||
WorkSpace workspace(7); // from 0 to 9
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(2, islands.size());
|
||||
vector<size_t> island1; island1 += 1, 5;
|
||||
vector<size_t> island2; island2 += 2, 3, 4, 6;
|
||||
CHECK(island1 == islands.front());
|
||||
CHECK(island2 == islands.back());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -115,18 +115,18 @@ TEST ( GenerciGraph, findIslands3 )
|
|||
*/
|
||||
TEST ( GenerciGraph, findIslands4 )
|
||||
{
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 4, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(7, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
std::vector<size_t> keys; keys += 3, 4, 7;
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 4, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(7, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
|
||||
std::vector<size_t> keys; keys += 3, 4, 7;
|
||||
|
||||
WorkSpace workspace(8); // from 0 to 7
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(2, islands.size());
|
||||
vector<size_t> island1; island1 += 3, 4;
|
||||
vector<size_t> island2; island2 += 7;
|
||||
CHECK(island1 == islands.front());
|
||||
CHECK(island2 == islands.back());
|
||||
WorkSpace workspace(8); // from 0 to 7
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(2, islands.size());
|
||||
vector<size_t> island1; island1 += 3, 4;
|
||||
vector<size_t> island2; island2 += 7;
|
||||
CHECK(island1 == islands.front());
|
||||
CHECK(island2 == islands.back());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -137,24 +137,24 @@ TEST ( GenerciGraph, findIslands4 )
|
|||
*/
|
||||
TEST ( GenerciGraph, findIslands5 )
|
||||
{
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
GenericGraph2D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
|
||||
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 3, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 4, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 3, NODE_POSE_2D));
|
||||
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 4, NODE_POSE_2D));
|
||||
|
||||
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5;
|
||||
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5;
|
||||
|
||||
WorkSpace workspace(6); // from 0 to 5
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(2, islands.size());
|
||||
vector<size_t> island1; island1 += 1, 3, 5;
|
||||
vector<size_t> island2; island2 += 2, 4;
|
||||
CHECK(island1 == islands.front());
|
||||
CHECK(island2 == islands.back());
|
||||
WorkSpace workspace(6); // from 0 to 5
|
||||
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
|
||||
LONGS_EQUAL(2, islands.size());
|
||||
vector<size_t> island1; island1 += 1, 3, 5;
|
||||
vector<size_t> island2; island2 += 2, 4;
|
||||
CHECK(island1 == islands.front());
|
||||
CHECK(island2 == islands.back());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -165,31 +165,31 @@ TEST ( GenerciGraph, findIslands5 )
|
|||
*/
|
||||
TEST ( GenerciGraph, reduceGenericGraph )
|
||||
{
|
||||
GenericGraph3D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 3));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 4));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 5));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 5));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 6));
|
||||
GenericGraph3D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 3));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 4));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 5));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 5));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 6));
|
||||
|
||||
std::vector<size_t> cameraKeys, landmarkKeys;
|
||||
cameraKeys.push_back(1);
|
||||
cameraKeys.push_back(2);
|
||||
landmarkKeys.push_back(3);
|
||||
landmarkKeys.push_back(4);
|
||||
landmarkKeys.push_back(5);
|
||||
landmarkKeys.push_back(6);
|
||||
std::vector<size_t> cameraKeys, landmarkKeys;
|
||||
cameraKeys.push_back(1);
|
||||
cameraKeys.push_back(2);
|
||||
landmarkKeys.push_back(3);
|
||||
landmarkKeys.push_back(4);
|
||||
landmarkKeys.push_back(5);
|
||||
landmarkKeys.push_back(6);
|
||||
|
||||
std::vector<int> dictionary;
|
||||
dictionary.resize(7, -1); // from 0 to 6
|
||||
dictionary[1] = 0;
|
||||
dictionary[2] = 1;
|
||||
std::vector<int> dictionary;
|
||||
dictionary.resize(7, -1); // from 0 to 6
|
||||
dictionary[1] = 0;
|
||||
dictionary[2] = 1;
|
||||
|
||||
GenericGraph3D reduced;
|
||||
std::map<size_t, vector<size_t> > cameraToLandmarks;
|
||||
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reduced);
|
||||
LONGS_EQUAL(1, reduced.size());
|
||||
LONGS_EQUAL(1, reduced[0]->key1.index); LONGS_EQUAL(2, reduced[0]->key2.index);
|
||||
GenericGraph3D reduced;
|
||||
std::map<size_t, vector<size_t> > cameraToLandmarks;
|
||||
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reduced);
|
||||
LONGS_EQUAL(1, reduced.size());
|
||||
LONGS_EQUAL(1, reduced[0]->key1.index); LONGS_EQUAL(2, reduced[0]->key2.index);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -200,53 +200,53 @@ TEST ( GenerciGraph, reduceGenericGraph )
|
|||
*/
|
||||
TEST ( GenericGraph, reduceGenericGraph2 )
|
||||
{
|
||||
GenericGraph3D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 3, 0, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 4, 1, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 5, 2, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 5, 3, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 6, 4, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 7, 5, NODE_POSE_3D, NODE_POSE_3D));
|
||||
GenericGraph3D graph;
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 3, 0, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 4, 1, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(1, 5, 2, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 5, 3, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 6, 4, NODE_POSE_3D, NODE_LANDMARK_3D));
|
||||
graph.push_back(boost::make_shared<GenericFactor3D>(2, 7, 5, NODE_POSE_3D, NODE_POSE_3D));
|
||||
|
||||
std::vector<size_t> cameraKeys, landmarkKeys;
|
||||
cameraKeys.push_back(1);
|
||||
cameraKeys.push_back(2);
|
||||
cameraKeys.push_back(7);
|
||||
landmarkKeys.push_back(3);
|
||||
landmarkKeys.push_back(4);
|
||||
landmarkKeys.push_back(5);
|
||||
landmarkKeys.push_back(6);
|
||||
std::vector<size_t> cameraKeys, landmarkKeys;
|
||||
cameraKeys.push_back(1);
|
||||
cameraKeys.push_back(2);
|
||||
cameraKeys.push_back(7);
|
||||
landmarkKeys.push_back(3);
|
||||
landmarkKeys.push_back(4);
|
||||
landmarkKeys.push_back(5);
|
||||
landmarkKeys.push_back(6);
|
||||
|
||||
std::vector<int> dictionary;
|
||||
dictionary.resize(8, -1); // from 0 to 7
|
||||
dictionary[1] = 0;
|
||||
dictionary[2] = 1;
|
||||
dictionary[7] = 6;
|
||||
std::vector<int> dictionary;
|
||||
dictionary.resize(8, -1); // from 0 to 7
|
||||
dictionary[1] = 0;
|
||||
dictionary[2] = 1;
|
||||
dictionary[7] = 6;
|
||||
|
||||
GenericGraph3D reduced;
|
||||
std::map<size_t, vector<size_t> > cameraToLandmarks;
|
||||
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reduced);
|
||||
LONGS_EQUAL(2, reduced.size());
|
||||
LONGS_EQUAL(1, reduced[0]->key1.index); LONGS_EQUAL(2, reduced[0]->key2.index);
|
||||
LONGS_EQUAL(2, reduced[1]->key1.index); LONGS_EQUAL(7, reduced[1]->key2.index);
|
||||
GenericGraph3D reduced;
|
||||
std::map<size_t, vector<size_t> > cameraToLandmarks;
|
||||
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reduced);
|
||||
LONGS_EQUAL(2, reduced.size());
|
||||
LONGS_EQUAL(1, reduced[0]->key1.index); LONGS_EQUAL(2, reduced[0]->key2.index);
|
||||
LONGS_EQUAL(2, reduced[1]->key1.index); LONGS_EQUAL(7, reduced[1]->key2.index);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST ( GenerciGraph, hasCommonCamera )
|
||||
{
|
||||
std::set<size_t> cameras1; cameras1 += 1, 2, 3, 4, 5;
|
||||
std::set<size_t> cameras2; cameras2 += 8, 7, 6, 5;
|
||||
bool actual = hasCommonCamera(cameras1, cameras2);
|
||||
CHECK(actual);
|
||||
std::set<size_t> cameras1; cameras1 += 1, 2, 3, 4, 5;
|
||||
std::set<size_t> cameras2; cameras2 += 8, 7, 6, 5;
|
||||
bool actual = hasCommonCamera(cameras1, cameras2);
|
||||
CHECK(actual);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST ( GenerciGraph, hasCommonCamera2 )
|
||||
{
|
||||
std::set<size_t> cameras1; cameras1 += 1, 3, 5, 7;
|
||||
std::set<size_t> cameras2; cameras2 += 2, 4, 6, 8, 10;
|
||||
bool actual = hasCommonCamera(cameras1, cameras2);
|
||||
CHECK(!actual);
|
||||
std::set<size_t> cameras1; cameras1 += 1, 3, 5, 7;
|
||||
std::set<size_t> cameras2; cameras2 += 2, 4, 6, 8, 10;
|
||||
bool actual = hasCommonCamera(cameras1, cameras2);
|
||||
CHECK(!actual);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -32,22 +32,22 @@ using namespace gtsam::partition;
|
|||
// l1
|
||||
TEST ( NestedDissection, oneIsland )
|
||||
{
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
Graph fg;
|
||||
fg.addOdometry(1, 2, Pose2(), odoNoise);
|
||||
fg.addBearingRange(1, 1, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addBearingRange(2, 1, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addPoseConstraint(1, Pose2());
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
Graph fg;
|
||||
fg.addOdometry(1, 2, Pose2(), odoNoise);
|
||||
fg.addBearingRange(1, 1, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addBearingRange(2, 1, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addPoseConstraint(1, Pose2());
|
||||
|
||||
Ordering ordering; ordering += x1, x2, l1;
|
||||
Ordering ordering; ordering += x1, x2, l1;
|
||||
|
||||
int numNodeStopPartition = 1e3;
|
||||
int minNodesPerMap = 1e3;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
LONGS_EQUAL(4, nd.root()->size());
|
||||
LONGS_EQUAL(3, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->children().size());
|
||||
int numNodeStopPartition = 1e3;
|
||||
int minNodesPerMap = 1e3;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
LONGS_EQUAL(4, nd.root()->size());
|
||||
LONGS_EQUAL(3, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->children().size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -56,35 +56,35 @@ TEST ( NestedDissection, oneIsland )
|
|||
// x2/ \x5
|
||||
TEST ( NestedDissection, TwoIslands )
|
||||
{
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
Graph fg;
|
||||
fg.addOdometry(1, 2, Pose2(), odoNoise);
|
||||
fg.addOdometry(1, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(2, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 4, Pose2(), odoNoise);
|
||||
fg.addOdometry(4, 5, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 5, Pose2(), odoNoise);
|
||||
fg.addPoseConstraint(1, Pose2());
|
||||
fg.addPoseConstraint(4, Pose2());
|
||||
Ordering ordering; ordering += x1, x2, x3, x4, x5;
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
Graph fg;
|
||||
fg.addOdometry(1, 2, Pose2(), odoNoise);
|
||||
fg.addOdometry(1, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(2, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 4, Pose2(), odoNoise);
|
||||
fg.addOdometry(4, 5, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 5, Pose2(), odoNoise);
|
||||
fg.addPoseConstraint(1, Pose2());
|
||||
fg.addPoseConstraint(4, Pose2());
|
||||
Ordering ordering; ordering += x1, x2, x3, x4, x5;
|
||||
|
||||
int numNodeStopPartition = 2;
|
||||
int minNodesPerMap = 1;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
// root submap
|
||||
LONGS_EQUAL(0, nd.root()->size());
|
||||
LONGS_EQUAL(1, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
|
||||
int numNodeStopPartition = 2;
|
||||
int minNodesPerMap = 1;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
// root submap
|
||||
LONGS_EQUAL(0, nd.root()->size());
|
||||
LONGS_EQUAL(1, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
|
||||
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->frontal().size());
|
||||
LONGS_EQUAL(4, nd.root()->children()[0]->size());
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->frontal().size());
|
||||
LONGS_EQUAL(4, nd.root()->children()[0]->size());
|
||||
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->frontal().size());
|
||||
LONGS_EQUAL(4, nd.root()->children()[1]->size());
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->frontal().size());
|
||||
LONGS_EQUAL(4, nd.root()->children()[1]->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -93,40 +93,40 @@ TEST ( NestedDissection, TwoIslands )
|
|||
// x2/ \x5
|
||||
TEST ( NestedDissection, FourIslands )
|
||||
{
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
Graph fg;
|
||||
fg.addOdometry(1, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(2, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 4, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 5, Pose2(), odoNoise);
|
||||
fg.addPoseConstraint(1, Pose2());
|
||||
fg.addPoseConstraint(4, Pose2());
|
||||
Ordering ordering; ordering += x1, x2, x3, x4, x5;
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
Graph fg;
|
||||
fg.addOdometry(1, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(2, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 4, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 5, Pose2(), odoNoise);
|
||||
fg.addPoseConstraint(1, Pose2());
|
||||
fg.addPoseConstraint(4, Pose2());
|
||||
Ordering ordering; ordering += x1, x2, x3, x4, x5;
|
||||
|
||||
int numNodeStopPartition = 2;
|
||||
int minNodesPerMap = 1;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
LONGS_EQUAL(0, nd.root()->size());
|
||||
LONGS_EQUAL(1, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(4, nd.root()->children().size()); // 4 leaf submaps
|
||||
int numNodeStopPartition = 2;
|
||||
int minNodesPerMap = 1;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
LONGS_EQUAL(0, nd.root()->size());
|
||||
LONGS_EQUAL(1, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(4, nd.root()->children().size()); // 4 leaf submaps
|
||||
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[0]->frontal().size());
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->size());
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[0]->frontal().size());
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->size());
|
||||
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[1]->frontal().size());
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->size());
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[1]->frontal().size());
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->size());
|
||||
|
||||
// the 3rd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[2]->frontal().size());
|
||||
LONGS_EQUAL(1, nd.root()->children()[2]->size());
|
||||
// the 3rd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[2]->frontal().size());
|
||||
LONGS_EQUAL(1, nd.root()->children()[2]->size());
|
||||
|
||||
// the 4th submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[3]->frontal().size());
|
||||
LONGS_EQUAL(1, nd.root()->children()[3]->size());
|
||||
// the 4th submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[3]->frontal().size());
|
||||
LONGS_EQUAL(1, nd.root()->children()[3]->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -137,41 +137,41 @@ TEST ( NestedDissection, FourIslands )
|
|||
// x5
|
||||
TEST ( NestedDissection, weekLinks )
|
||||
{
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
Graph fg;
|
||||
fg.addOdometry(1, 2, Pose2(), odoNoise);
|
||||
fg.addOdometry(2, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(2, 4, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 4, Pose2(), odoNoise);
|
||||
fg.addBearingRange(1, 6, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addBearingRange(2, 6, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addBearingRange(5, 6, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addPoseConstraint(1, Pose2());
|
||||
fg.addPoseConstraint(4, Pose2());
|
||||
fg.addPoseConstraint(5, Pose2());
|
||||
Ordering ordering; ordering += x1, x2, x3, x4, x5, l6;
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
Graph fg;
|
||||
fg.addOdometry(1, 2, Pose2(), odoNoise);
|
||||
fg.addOdometry(2, 3, Pose2(), odoNoise);
|
||||
fg.addOdometry(2, 4, Pose2(), odoNoise);
|
||||
fg.addOdometry(3, 4, Pose2(), odoNoise);
|
||||
fg.addBearingRange(1, 6, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addBearingRange(2, 6, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addBearingRange(5, 6, Rot2(), 0., bearingRangeNoise);
|
||||
fg.addPoseConstraint(1, Pose2());
|
||||
fg.addPoseConstraint(4, Pose2());
|
||||
fg.addPoseConstraint(5, Pose2());
|
||||
Ordering ordering; ordering += x1, x2, x3, x4, x5, l6;
|
||||
|
||||
int numNodeStopPartition = 2;
|
||||
int minNodesPerMap = 1;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
LONGS_EQUAL(0, nd.root()->size()); // one weeklink
|
||||
LONGS_EQUAL(1, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(3, nd.root()->children().size()); // 4 leaf submaps
|
||||
LONGS_EQUAL(1, nd.root()->weeklinks().size());
|
||||
int numNodeStopPartition = 2;
|
||||
int minNodesPerMap = 1;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
LONGS_EQUAL(0, nd.root()->size()); // one weeklink
|
||||
LONGS_EQUAL(1, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(3, nd.root()->children().size()); // 4 leaf submaps
|
||||
LONGS_EQUAL(1, nd.root()->weeklinks().size());
|
||||
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->frontal().size()); // x3 and x4
|
||||
LONGS_EQUAL(4, nd.root()->children()[0]->size());
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->frontal().size()); // x3 and x4
|
||||
LONGS_EQUAL(4, nd.root()->children()[0]->size());
|
||||
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->frontal().size()); // x1 and l6
|
||||
LONGS_EQUAL(4, nd.root()->children()[1]->size());
|
||||
//
|
||||
// the 3rd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[2]->frontal().size()); // x5
|
||||
LONGS_EQUAL(1, nd.root()->children()[2]->size());
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->frontal().size()); // x1 and l6
|
||||
LONGS_EQUAL(4, nd.root()->children()[1]->size());
|
||||
//
|
||||
// the 3rd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[2]->frontal().size()); // x5
|
||||
LONGS_EQUAL(1, nd.root()->children()[2]->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -184,86 +184,86 @@ TEST ( NestedDissection, weekLinks )
|
|||
*/
|
||||
TEST ( NestedDissection, manual_cuts )
|
||||
{
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef partition::Cuts Cuts;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
typedef partition::PartitionTable PartitionTable;
|
||||
Graph fg;
|
||||
fg.addOdometry(x0, x1, Pose2(1.0, 0, 0), odoNoise);
|
||||
fg.addOdometry(x1, x2, Pose2(1.0, 0, 0), odoNoise);
|
||||
using namespace submapPlanarSLAM;
|
||||
typedef partition::Cuts Cuts;
|
||||
typedef TSAM2D::SubNLG SubNLG;
|
||||
typedef partition::PartitionTable PartitionTable;
|
||||
Graph fg;
|
||||
fg.addOdometry(x0, x1, Pose2(1.0, 0, 0), odoNoise);
|
||||
fg.addOdometry(x1, x2, Pose2(1.0, 0, 0), odoNoise);
|
||||
|
||||
fg.addBearingRange(x0, l1, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x0, l4, Rot2::fromAngle(-M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x0, l2, Rot2::fromAngle( M_PI_4), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x0, l5, Rot2::fromAngle(-M_PI_4), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x0, l1, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x0, l4, Rot2::fromAngle(-M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x0, l2, Rot2::fromAngle( M_PI_4), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x0, l5, Rot2::fromAngle(-M_PI_4), sqrt(2), bearingRangeNoise);
|
||||
|
||||
fg.addBearingRange(x1, l1, Rot2::fromAngle( M_PI_4 * 3), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l2, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l3, Rot2::fromAngle( M_PI_4), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l4, Rot2::fromAngle(-M_PI_4 * 3), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l5, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l6, Rot2::fromAngle(-M_PI_4), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l1, Rot2::fromAngle( M_PI_4 * 3), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l2, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l3, Rot2::fromAngle( M_PI_4), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l4, Rot2::fromAngle(-M_PI_4 * 3), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l5, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x1, l6, Rot2::fromAngle(-M_PI_4), sqrt(2), bearingRangeNoise);
|
||||
|
||||
fg.addBearingRange(x2, l2, Rot2::fromAngle( M_PI_4 * 3), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x2, l5, Rot2::fromAngle(-M_PI_4 * 3), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x2, l3, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x2, l6, Rot2::fromAngle(-M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x2, l2, Rot2::fromAngle( M_PI_4 * 3), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x2, l5, Rot2::fromAngle(-M_PI_4 * 3), sqrt(2), bearingRangeNoise);
|
||||
fg.addBearingRange(x2, l3, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
|
||||
fg.addBearingRange(x2, l6, Rot2::fromAngle(-M_PI_2), 1, bearingRangeNoise);
|
||||
|
||||
fg.addPrior(x0, Pose2(0.1, 0, 0), priorNoise);
|
||||
fg.addPrior(x0, Pose2(0.1, 0, 0), priorNoise);
|
||||
|
||||
// generate ordering
|
||||
Ordering ordering; ordering += x0, x1, x2, l1, l2, l3, l4, l5, l6;
|
||||
// generate ordering
|
||||
Ordering ordering; ordering += x0, x1, x2, l1, l2, l3, l4, l5, l6;
|
||||
|
||||
// define cuts
|
||||
boost::shared_ptr<Cuts> cuts(new Cuts());
|
||||
cuts->partitionTable = PartitionTable(9, -1); PartitionTable* p = &cuts->partitionTable;
|
||||
//x0 x1 x2 l1 l2 l3 l4 l5 l6
|
||||
(*p)[0]=1; (*p)[1]=0; (*p)[2]=2; (*p)[3]=1; (*p)[4]=0; (*p)[5]=2; (*p)[6]=1; (*p)[7]=0; (*p)[8]=2;
|
||||
// define cuts
|
||||
boost::shared_ptr<Cuts> cuts(new Cuts());
|
||||
cuts->partitionTable = PartitionTable(9, -1); PartitionTable* p = &cuts->partitionTable;
|
||||
//x0 x1 x2 l1 l2 l3 l4 l5 l6
|
||||
(*p)[0]=1; (*p)[1]=0; (*p)[2]=2; (*p)[3]=1; (*p)[4]=0; (*p)[5]=2; (*p)[6]=1; (*p)[7]=0; (*p)[8]=2;
|
||||
|
||||
cuts->children.push_back(boost::shared_ptr<Cuts>(new Cuts()));
|
||||
cuts->children[0]->partitionTable = PartitionTable(9, -1); p = &cuts->children[0]->partitionTable;
|
||||
//x0 x1 x2 l1 l2 l3 l4 l5 l6
|
||||
(*p)[0]=0; (*p)[1]=-1; (*p)[2]=-1; (*p)[3]=1; (*p)[4]=-1; (*p)[5]=-1; (*p)[6]=2; (*p)[7]=-1; (*p)[8]=-1;
|
||||
cuts->children.push_back(boost::shared_ptr<Cuts>(new Cuts()));
|
||||
cuts->children[0]->partitionTable = PartitionTable(9, -1); p = &cuts->children[0]->partitionTable;
|
||||
//x0 x1 x2 l1 l2 l3 l4 l5 l6
|
||||
(*p)[0]=0; (*p)[1]=-1; (*p)[2]=-1; (*p)[3]=1; (*p)[4]=-1; (*p)[5]=-1; (*p)[6]=2; (*p)[7]=-1; (*p)[8]=-1;
|
||||
|
||||
cuts->children.push_back(boost::shared_ptr<Cuts>(new Cuts()));
|
||||
cuts->children[1]->partitionTable = PartitionTable(9, -1); p = &cuts->children[1]->partitionTable;
|
||||
//x0 x1 x2 l1 l2 l3 l4 l5 l6
|
||||
(*p)[0]=-1; (*p)[1]=-1; (*p)[2]=0; (*p)[3]=-1; (*p)[4]=-1; (*p)[5]=1; (*p)[6]=-1; (*p)[7]=-1; (*p)[8]=2;
|
||||
cuts->children.push_back(boost::shared_ptr<Cuts>(new Cuts()));
|
||||
cuts->children[1]->partitionTable = PartitionTable(9, -1); p = &cuts->children[1]->partitionTable;
|
||||
//x0 x1 x2 l1 l2 l3 l4 l5 l6
|
||||
(*p)[0]=-1; (*p)[1]=-1; (*p)[2]=0; (*p)[3]=-1; (*p)[4]=-1; (*p)[5]=1; (*p)[6]=-1; (*p)[7]=-1; (*p)[8]=2;
|
||||
|
||||
|
||||
// nested dissection
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, cuts);
|
||||
LONGS_EQUAL(2, nd.root()->size());
|
||||
LONGS_EQUAL(3, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
|
||||
LONGS_EQUAL(0, nd.root()->weeklinks().size());
|
||||
// nested dissection
|
||||
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, cuts);
|
||||
LONGS_EQUAL(2, nd.root()->size());
|
||||
LONGS_EQUAL(3, nd.root()->frontal().size());
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
|
||||
LONGS_EQUAL(0, nd.root()->weeklinks().size());
|
||||
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[0]->frontal().size()); // x0
|
||||
LONGS_EQUAL(4, nd.root()->children()[0]->size());
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->children().size());
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[0]->frontal().size()); // x0
|
||||
LONGS_EQUAL(4, nd.root()->children()[0]->size());
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->children().size());
|
||||
|
||||
// the 1-1st submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[0]->children()[0]->frontal().size()); // l1
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->children()[0]->size());
|
||||
// the 1-1st submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[0]->children()[0]->frontal().size()); // l1
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->children()[0]->size());
|
||||
|
||||
// the 1-2nd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[0]->children()[1]->frontal().size()); // l4
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->children()[1]->size());
|
||||
// the 1-2nd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[0]->children()[1]->frontal().size()); // l4
|
||||
LONGS_EQUAL(2, nd.root()->children()[0]->children()[1]->size());
|
||||
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[1]->frontal().size()); // x2
|
||||
LONGS_EQUAL(3, nd.root()->children()[1]->size());
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->children().size());
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[1]->frontal().size()); // x2
|
||||
LONGS_EQUAL(3, nd.root()->children()[1]->size());
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->children().size());
|
||||
|
||||
// the 2-1st submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[1]->children()[0]->frontal().size()); // l3
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->children()[0]->size());
|
||||
// the 2-1st submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[1]->children()[0]->frontal().size()); // l3
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->children()[0]->size());
|
||||
|
||||
// the 2-2nd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[1]->children()[1]->frontal().size()); // l6
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->children()[1]->size());
|
||||
// the 2-2nd submap
|
||||
LONGS_EQUAL(1, nd.root()->children()[1]->children()[1]->frontal().size()); // l6
|
||||
LONGS_EQUAL(2, nd.root()->children()[1]->children()[1]->size());
|
||||
|
||||
}
|
||||
|
||||
|
@ -272,65 +272,65 @@ TEST ( NestedDissection, manual_cuts )
|
|||
// / | / \ | \
|
||||
// x0 x1 x2 x3
|
||||
TEST( NestedDissection, Graph3D) {
|
||||
using namespace gtsam::submapVisualSLAM;
|
||||
typedef TSAM3D::SubNLG SubNLG;
|
||||
typedef partition::PartitionTable PartitionTable;
|
||||
vector<GeneralCamera> cameras;
|
||||
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3(-2., 0., 0.))));
|
||||
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3(-1., 0., 0.))));
|
||||
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3( 1., 0., 0.))));
|
||||
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3( 2., 0., 0.))));
|
||||
using namespace gtsam::submapVisualSLAM;
|
||||
typedef TSAM3D::SubNLG SubNLG;
|
||||
typedef partition::PartitionTable PartitionTable;
|
||||
vector<GeneralCamera> cameras;
|
||||
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3(-2., 0., 0.))));
|
||||
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3(-1., 0., 0.))));
|
||||
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3( 1., 0., 0.))));
|
||||
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3( 2., 0., 0.))));
|
||||
|
||||
vector<Point3> points;
|
||||
for (int cube_index = 0; cube_index <= 3; cube_index++) {
|
||||
Point3 center((cube_index-1) * 3, 0.5, 10.);
|
||||
points.push_back(center + Point3(-0.5, -0.5, -0.5));
|
||||
points.push_back(center + Point3(-0.5, 0.5, -0.5));
|
||||
points.push_back(center + Point3( 0.5, 0.5, -0.5));
|
||||
points.push_back(center + Point3( 0.5, -0.5, -0.5));
|
||||
points.push_back(center + Point3(-0.5, -0.5, 0.5));
|
||||
points.push_back(center + Point3(-0.5, 0.5, 0.5));
|
||||
points.push_back(center + Point3( 0.5, 0.5, 0.5));
|
||||
points.push_back(center + Point3( 0.5, 0.5, 0.5));
|
||||
}
|
||||
vector<Point3> points;
|
||||
for (int cube_index = 0; cube_index <= 3; cube_index++) {
|
||||
Point3 center((cube_index-1) * 3, 0.5, 10.);
|
||||
points.push_back(center + Point3(-0.5, -0.5, -0.5));
|
||||
points.push_back(center + Point3(-0.5, 0.5, -0.5));
|
||||
points.push_back(center + Point3( 0.5, 0.5, -0.5));
|
||||
points.push_back(center + Point3( 0.5, -0.5, -0.5));
|
||||
points.push_back(center + Point3(-0.5, -0.5, 0.5));
|
||||
points.push_back(center + Point3(-0.5, 0.5, 0.5));
|
||||
points.push_back(center + Point3( 0.5, 0.5, 0.5));
|
||||
points.push_back(center + Point3( 0.5, 0.5, 0.5));
|
||||
}
|
||||
|
||||
Graph graph;
|
||||
SharedDiagonal measurementNoise(gtsam::Vector_(2, 1., 1.));
|
||||
SharedDiagonal measurementZeroNoise(gtsam::Vector_(2, 0., 0.));
|
||||
for (int j=1; j<=8; j++)
|
||||
graph.addMeasurement(0, j, cameras[0].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
|
||||
for (int j=1; j<=16; j++)
|
||||
graph.addMeasurement(1, j, cameras[1].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
|
||||
for (int j=9; j<=24; j++)
|
||||
graph.addMeasurement(2, j, cameras[2].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
|
||||
for (int j=17; j<=24; j++)
|
||||
graph.addMeasurement(3, j, cameras[3].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
|
||||
Graph graph;
|
||||
SharedDiagonal measurementNoise(gtsam::Vector_(2, 1., 1.));
|
||||
SharedDiagonal measurementZeroNoise(gtsam::Vector_(2, 0., 0.));
|
||||
for (int j=1; j<=8; j++)
|
||||
graph.addMeasurement(0, j, cameras[0].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
|
||||
for (int j=1; j<=16; j++)
|
||||
graph.addMeasurement(1, j, cameras[1].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
|
||||
for (int j=9; j<=24; j++)
|
||||
graph.addMeasurement(2, j, cameras[2].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
|
||||
for (int j=17; j<=24; j++)
|
||||
graph.addMeasurement(3, j, cameras[3].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
|
||||
|
||||
// make an easy ordering
|
||||
Ordering ordering; ordering += x0, x1, x2, x3;
|
||||
for (int j=1; j<=24; j++)
|
||||
ordering += Symbol('l', j);
|
||||
// make an easy ordering
|
||||
Ordering ordering; ordering += x0, x1, x2, x3;
|
||||
for (int j=1; j<=24; j++)
|
||||
ordering += Symbol('l', j);
|
||||
|
||||
// nested dissection
|
||||
const int numNodeStopPartition = 10;
|
||||
const int minNodesPerMap = 5;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph3D> nd(graph, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
// nested dissection
|
||||
const int numNodeStopPartition = 10;
|
||||
const int minNodesPerMap = 5;
|
||||
NestedDissection<Graph, SubNLG, GenericGraph3D> nd(graph, ordering, numNodeStopPartition, minNodesPerMap);
|
||||
|
||||
LONGS_EQUAL(0, nd.root()->size());
|
||||
LONGS_EQUAL(8, nd.root()->frontal().size()); // l9-l16
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
|
||||
LONGS_EQUAL(0, nd.root()->weeklinks().size());
|
||||
LONGS_EQUAL(0, nd.root()->size());
|
||||
LONGS_EQUAL(8, nd.root()->frontal().size()); // l9-l16
|
||||
LONGS_EQUAL(0, nd.root()->separator().size());
|
||||
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
|
||||
LONGS_EQUAL(0, nd.root()->weeklinks().size());
|
||||
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(10, nd.root()->children()[0]->frontal().size()); // x0, x1, l1-l8
|
||||
LONGS_EQUAL(24, nd.root()->children()[0]->size()); // 8 + 16
|
||||
LONGS_EQUAL(0, nd.root()->children()[0]->children().size());
|
||||
// the 1st submap
|
||||
LONGS_EQUAL(10, nd.root()->children()[0]->frontal().size()); // x0, x1, l1-l8
|
||||
LONGS_EQUAL(24, nd.root()->children()[0]->size()); // 8 + 16
|
||||
LONGS_EQUAL(0, nd.root()->children()[0]->children().size());
|
||||
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(10, nd.root()->children()[1]->frontal().size()); // x2, x3, l1-l8
|
||||
LONGS_EQUAL(24, nd.root()->children()[1]->size()); // 16 + 8
|
||||
LONGS_EQUAL(0, nd.root()->children()[1]->children().size());
|
||||
// the 2nd submap
|
||||
LONGS_EQUAL(10, nd.root()->children()[1]->frontal().size()); // x2, x3, l1-l8
|
||||
LONGS_EQUAL(24, nd.root()->children()[1]->size()); // 16 + 8
|
||||
LONGS_EQUAL(0, nd.root()->children()[1]->children().size());
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -295,87 +295,87 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************* */
|
||||
SharedGaussian get_model_inlier() const {
|
||||
return model_inlier_;
|
||||
return model_inlier_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
SharedGaussian get_model_outlier() const {
|
||||
return model_outlier_;
|
||||
return model_outlier_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix get_model_inlier_cov() const {
|
||||
return (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||
return (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix get_model_outlier_cov() const {
|
||||
return (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||
return (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph){
|
||||
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
|
||||
* (note these are given in the E step, where indicator probabilities are calculated).
|
||||
*
|
||||
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
|
||||
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
|
||||
*
|
||||
* TODO: improve efficiency (info form)
|
||||
*/
|
||||
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
|
||||
* (note these are given in the E step, where indicator probabilities are calculated).
|
||||
*
|
||||
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
|
||||
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
|
||||
*
|
||||
* TODO: improve efficiency (info form)
|
||||
*/
|
||||
|
||||
// get joint covariance of the involved states
|
||||
std::vector<gtsam::Key> Keys;
|
||||
Keys.push_back(key1_);
|
||||
Keys.push_back(key2_);
|
||||
Marginals marginals( graph, values, Marginals::QR );
|
||||
JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys);
|
||||
Matrix cov1 = joint_marginal12(key1_, key1_);
|
||||
Matrix cov2 = joint_marginal12(key2_, key2_);
|
||||
Matrix cov12 = joint_marginal12(key1_, key2_);
|
||||
// get joint covariance of the involved states
|
||||
std::vector<gtsam::Key> Keys;
|
||||
Keys.push_back(key1_);
|
||||
Keys.push_back(key2_);
|
||||
Marginals marginals( graph, values, Marginals::QR );
|
||||
JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys);
|
||||
Matrix cov1 = joint_marginal12(key1_, key1_);
|
||||
Matrix cov2 = joint_marginal12(key2_, key2_);
|
||||
Matrix cov12 = joint_marginal12(key1_, key2_);
|
||||
|
||||
updateNoiseModels_givenCovs(values, cov1, cov2, cov12);
|
||||
updateNoiseModels_givenCovs(values, cov1, cov2, cov12);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void updateNoiseModels_givenCovs(const gtsam::Values& values, const Matrix& cov1, const Matrix& cov2, const Matrix& cov12){
|
||||
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
|
||||
* (note these are given in the E step, where indicator probabilities are calculated).
|
||||
*
|
||||
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
|
||||
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
|
||||
*
|
||||
* TODO: improve efficiency (info form)
|
||||
*/
|
||||
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
|
||||
* (note these are given in the E step, where indicator probabilities are calculated).
|
||||
*
|
||||
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
|
||||
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
|
||||
*
|
||||
* TODO: improve efficiency (info form)
|
||||
*/
|
||||
|
||||
const T& p1 = values.at<T>(key1_);
|
||||
const T& p2 = values.at<T>(key2_);
|
||||
const T& p1 = values.at<T>(key1_);
|
||||
const T& p2 = values.at<T>(key2_);
|
||||
|
||||
Matrix H1, H2;
|
||||
T hx = p1.between(p2, H1, H2); // h(x)
|
||||
Matrix H1, H2;
|
||||
T hx = p1.between(p2, H1, H2); // h(x)
|
||||
|
||||
Matrix H;
|
||||
H.resize(H1.rows(), H1.rows()+H2.rows());
|
||||
H << H1, H2; // H = [H1 H2]
|
||||
Matrix H;
|
||||
H.resize(H1.rows(), H1.rows()+H2.rows());
|
||||
H << H1, H2; // H = [H1 H2]
|
||||
|
||||
Matrix joint_cov;
|
||||
joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
|
||||
joint_cov << cov1, cov12,
|
||||
cov12.transpose(), cov2;
|
||||
Matrix joint_cov;
|
||||
joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
|
||||
joint_cov << cov1, cov12,
|
||||
cov12.transpose(), cov2;
|
||||
|
||||
Matrix cov_state = H*joint_cov*H.transpose();
|
||||
Matrix cov_state = H*joint_cov*H.transpose();
|
||||
|
||||
// model_inlier_->print("before:");
|
||||
// model_inlier_->print("before:");
|
||||
|
||||
// update inlier and outlier noise models
|
||||
Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||
model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
|
||||
// update inlier and outlier noise models
|
||||
Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||
model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
|
||||
|
||||
Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||
model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
|
||||
Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||
model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
|
||||
|
||||
// model_inlier_->print("after:");
|
||||
// std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
|
||||
// model_inlier_->print("after:");
|
||||
// std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -0,0 +1,105 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file BiasedGPSFactor.h
|
||||
* @author Luca Carlone
|
||||
**/
|
||||
#pragma once
|
||||
|
||||
#include <ostream>
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* A class to model GPS measurements, including a bias term which models
|
||||
* common-mode errors and that can be partially corrected if other sensors are used
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class BiasedGPSFactor: public NoiseModelFactor2<Pose3, Point3> {
|
||||
|
||||
private:
|
||||
|
||||
typedef BiasedGPSFactor This;
|
||||
typedef NoiseModelFactor2<Pose3, Point3> Base;
|
||||
|
||||
Point3 measured_; /** The measurement */
|
||||
|
||||
public:
|
||||
|
||||
// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<BiasedGPSFactor> shared_ptr;
|
||||
|
||||
/** default constructor - only use for serialization */
|
||||
BiasedGPSFactor() {}
|
||||
|
||||
/** Constructor */
|
||||
BiasedGPSFactor(Key posekey, Key biaskey, const Point3 measured,
|
||||
const SharedNoiseModel& model) :
|
||||
Base(model, posekey, biaskey), measured_(measured) {
|
||||
}
|
||||
|
||||
virtual ~BiasedGPSFactor() {}
|
||||
|
||||
/** implement functions needed for Testable */
|
||||
|
||||
/** print */
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << "BiasedGPSFactor("
|
||||
<< keyFormatter(this->key1()) << ","
|
||||
<< keyFormatter(this->key2()) << ")\n";
|
||||
measured_.print(" measured: ");
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) && this->measured_.equals(e->measured_, tol);
|
||||
}
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/** vector of errors */
|
||||
Vector evaluateError(const Pose3& pose, const Point3& bias,
|
||||
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
|
||||
boost::none) const {
|
||||
|
||||
if (H1 || H2){
|
||||
H1->resize(3,6); // jacobian wrt pose
|
||||
(*H1) << Matrix3::Zero(), pose.rotation().matrix();
|
||||
H2->resize(3,3); // jacobian wrt bias
|
||||
(*H2) << Matrix3::Identity();
|
||||
}
|
||||
return pose.translation().vector() + bias.vector() - measured_.vector();
|
||||
}
|
||||
|
||||
/** return the measured */
|
||||
const Point3 measured() const {
|
||||
return measured_;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & boost::serialization::make_nvp("NoiseModelFactor2",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(measured_);
|
||||
}
|
||||
}; // \class BiasedGPSFactor
|
||||
|
||||
} /// namespace gtsam
|
|
@ -0,0 +1,135 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file GaussMarkov1stOrderFactor.h
|
||||
* @author Vadim Indelman, Stephen Williams, Luca Carlone
|
||||
* @date Jan 17, 2012
|
||||
**/
|
||||
#pragma once
|
||||
|
||||
#include <ostream>
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/Lie.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/*
|
||||
* - The 1st order GaussMarkov factor relates two keys of the same type. This relation is given via
|
||||
* key_2 = exp(-1/tau*delta_t) * key1 + w_d
|
||||
* where tau is the time constant and delta_t is the time difference between the two keys.
|
||||
* w_d is the equivalent discrete noise, whose covariance is calculated from the continuous noise model and delta_t.
|
||||
* - w_d is approximated as a Gaussian noise.
|
||||
* - In the multi-dimensional case, tau is a vector, and the above equation is applied on each element
|
||||
* in the state (represented by keys), using the appropriate time constant in the vector tau.
|
||||
*/
|
||||
|
||||
/*
|
||||
* A class for a measurement predicted by "GaussMarkov1stOrderFactor(config[key1],config[key2])"
|
||||
* KEY1::Value is the Lie Group type
|
||||
* T is the measurement type, by default the same
|
||||
*/
|
||||
template<class VALUE>
|
||||
class GaussMarkov1stOrderFactor: public NoiseModelFactor2<VALUE, VALUE> {
|
||||
|
||||
private:
|
||||
|
||||
typedef GaussMarkov1stOrderFactor<VALUE> This;
|
||||
typedef NoiseModelFactor2<VALUE, VALUE> Base;
|
||||
|
||||
double dt_;
|
||||
Vector tau_;
|
||||
|
||||
public:
|
||||
|
||||
// shorthand for a smart pointer to a factor
|
||||
typedef typename boost::shared_ptr<GaussMarkov1stOrderFactor> shared_ptr;
|
||||
|
||||
/** default constructor - only use for serialization */
|
||||
GaussMarkov1stOrderFactor() {}
|
||||
|
||||
/** Constructor */
|
||||
GaussMarkov1stOrderFactor(const Key& key1, const Key& key2, double delta_t, Vector tau,
|
||||
const SharedGaussian& model) :
|
||||
Base(calcDiscreteNoiseModel(model, delta_t), key1, key2), dt_(delta_t), tau_(tau) {
|
||||
}
|
||||
|
||||
virtual ~GaussMarkov1stOrderFactor() {}
|
||||
|
||||
/** implement functions needed for Testable */
|
||||
|
||||
/** print */
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << "GaussMarkov1stOrderFactor("
|
||||
<< keyFormatter(this->key1()) << ","
|
||||
<< keyFormatter(this->key2()) << ")\n";
|
||||
this->noiseModel_->print(" noise model");
|
||||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol);
|
||||
}
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/** vector of errors */
|
||||
Vector evaluateError(const VALUE& p1, const VALUE& p2,
|
||||
boost::optional<Matrix&> H1 = boost::none,
|
||||
boost::optional<Matrix&> H2 = boost::none) const {
|
||||
|
||||
Vector v1( VALUE::Logmap(p1) );
|
||||
Vector v2( VALUE::Logmap(p2) );
|
||||
|
||||
Vector alpha(tau_.size());
|
||||
Vector alpha_v1(tau_.size());
|
||||
for(int i=0; i<tau_.size(); i++){
|
||||
alpha(i) = exp(- 1/tau_(i)*dt_ );
|
||||
alpha_v1(i) = alpha(i) * v1(i);
|
||||
}
|
||||
|
||||
Vector hx(v2 - alpha_v1);
|
||||
|
||||
if(H1) *H1 = - diag(alpha);
|
||||
if(H2) *H2 = eye(v2.size());
|
||||
|
||||
return hx;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar & BOOST_SERIALIZATION_NVP(dt_);
|
||||
ar & BOOST_SERIALIZATION_NVP(tau_);
|
||||
}
|
||||
|
||||
SharedGaussian calcDiscreteNoiseModel(const SharedGaussian& model, double delta_t){
|
||||
/* Q_d (approx)= Q * delta_t */
|
||||
/* In practice, square root of the information matrix is represented, so that:
|
||||
* R_d (approx)= R / sqrt(delta_t)
|
||||
* */
|
||||
noiseModel::Gaussian::shared_ptr gaussian_model = boost::dynamic_pointer_cast<noiseModel::Gaussian>(model);
|
||||
SharedGaussian model_d(noiseModel::Gaussian::SqrtInformation(gaussian_model->R()/sqrt(delta_t)));
|
||||
return model_d;
|
||||
}
|
||||
|
||||
}; // \class GaussMarkov1stOrderFactor
|
||||
|
||||
} /// namespace gtsam
|
|
@ -255,43 +255,43 @@ TEST( BetweenFactorEM, CaseStudy)
|
|||
|
||||
///* ************************************************************************** */
|
||||
TEST (BetweenFactorEM, updateNoiseModel ) {
|
||||
gtsam::Key key1(1);
|
||||
gtsam::Key key2(2);
|
||||
gtsam::Key key1(1);
|
||||
gtsam::Key key2(2);
|
||||
|
||||
gtsam::Pose2 p1(10.0, 15.0, 0.1);
|
||||
gtsam::Pose2 p2(15.0, 15.0, 0.3);
|
||||
gtsam::Pose2 noise(0.5, 0.4, 0.01);
|
||||
gtsam::Pose2 rel_pose_ideal = p1.between(p2);
|
||||
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
|
||||
gtsam::Pose2 p1(10.0, 15.0, 0.1);
|
||||
gtsam::Pose2 p2(15.0, 15.0, 0.3);
|
||||
gtsam::Pose2 noise(0.5, 0.4, 0.01);
|
||||
gtsam::Pose2 rel_pose_ideal = p1.between(p2);
|
||||
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
|
||||
|
||||
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05)));
|
||||
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0)));
|
||||
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05)));
|
||||
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0)));
|
||||
|
||||
gtsam::Values values;
|
||||
values.insert(key1, p1);
|
||||
values.insert(key2, p2);
|
||||
gtsam::Values values;
|
||||
values.insert(key1, p1);
|
||||
values.insert(key2, p2);
|
||||
|
||||
double prior_outlier = 0.0;
|
||||
double prior_inlier = 1.0;
|
||||
double prior_outlier = 0.0;
|
||||
double prior_inlier = 1.0;
|
||||
|
||||
BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
|
||||
prior_inlier, prior_outlier);
|
||||
BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
|
||||
prior_inlier, prior_outlier);
|
||||
|
||||
SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(3, 1e2));
|
||||
SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(3, 1e2));
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(gtsam::PriorFactor<Pose2>(key1, p1, model));
|
||||
graph.push_back(gtsam::PriorFactor<Pose2>(key2, p2, model));
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(gtsam::PriorFactor<Pose2>(key1, p1, model));
|
||||
graph.push_back(gtsam::PriorFactor<Pose2>(key2, p2, model));
|
||||
|
||||
f.updateNoiseModels(values, graph);
|
||||
f.updateNoiseModels(values, graph);
|
||||
|
||||
SharedGaussian model_inlier_new = f.get_model_inlier();
|
||||
SharedGaussian model_outlier_new = f.get_model_outlier();
|
||||
SharedGaussian model_inlier_new = f.get_model_inlier();
|
||||
SharedGaussian model_outlier_new = f.get_model_outlier();
|
||||
|
||||
model_inlier->print("model_inlier:");
|
||||
model_outlier->print("model_outlier:");
|
||||
model_inlier_new->print("model_inlier_new:");
|
||||
model_outlier_new->print("model_outlier_new:");
|
||||
model_inlier->print("model_inlier:");
|
||||
model_outlier->print("model_outlier:");
|
||||
model_inlier_new->print("model_inlier_new:");
|
||||
model_outlier_new->print("model_outlier_new:");
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
/**
|
||||
* @file testBiasedGPSFactor.cpp
|
||||
* @brief
|
||||
* @author Luca Carlone
|
||||
* @date July 30, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam_unstable/slam/BiasedGPSFactor.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace gtsam;
|
||||
using namespace gtsam::symbol_shorthand;
|
||||
using namespace gtsam::noiseModel;
|
||||
// Convenience for named keys
|
||||
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::B;
|
||||
|
||||
TEST(BiasedGPSFactor, errorNoiseless) {
|
||||
|
||||
Rot3 R = Rot3::rodriguez(0.1, 0.2, 0.3);
|
||||
Point3 t(1.0, 0.5, 0.2);
|
||||
Pose3 pose(R,t);
|
||||
Point3 bias(0.0,0.0,0.0);
|
||||
Point3 noise(0.0,0.0,0.0);
|
||||
Point3 measured = t + noise;
|
||||
|
||||
BiasedGPSFactor factor(X(1), B(1), measured, Isotropic::Sigma(3, 0.05));
|
||||
Vector expectedError = (Vector(3) << 0.0, 0.0, 0.0 );
|
||||
Vector actualError = factor.evaluateError(pose,bias);
|
||||
EXPECT(assert_equal(expectedError,actualError, 1E-5));
|
||||
}
|
||||
|
||||
TEST(BiasedGPSFactor, errorNoisy) {
|
||||
|
||||
Rot3 R = Rot3::rodriguez(0.1, 0.2, 0.3);
|
||||
Point3 t(1.0, 0.5, 0.2);
|
||||
Pose3 pose(R,t);
|
||||
Point3 bias(0.0,0.0,0.0);
|
||||
Point3 noise(1.0,2.0,3.0);
|
||||
Point3 measured = t - noise;
|
||||
|
||||
BiasedGPSFactor factor(X(1), B(1), measured, Isotropic::Sigma(3, 0.05));
|
||||
Vector expectedError = (Vector(3) << 1.0, 2.0, 3.0 );
|
||||
Vector actualError = factor.evaluateError(pose,bias);
|
||||
EXPECT(assert_equal(expectedError,actualError, 1E-5));
|
||||
}
|
||||
|
||||
TEST(BiasedGPSFactor, jacobian) {
|
||||
|
||||
Rot3 R = Rot3::rodriguez(0.1, 0.2, 0.3);
|
||||
Point3 t(1.0, 0.5, 0.2);
|
||||
Pose3 pose(R,t);
|
||||
Point3 bias(0.0,0.0,0.0);
|
||||
|
||||
Point3 noise(0.0,0.0,0.0);
|
||||
Point3 measured = t + noise;
|
||||
|
||||
BiasedGPSFactor factor(X(1), B(1), measured, Isotropic::Sigma(3, 0.05));
|
||||
|
||||
Matrix actualH1, actualH2;
|
||||
factor.evaluateError(pose,bias, actualH1, actualH2);
|
||||
|
||||
Matrix numericalH1 = numericalDerivative21(
|
||||
boost::function<Vector(const Pose3&, const Point3&)>(boost::bind(
|
||||
&BiasedGPSFactor::evaluateError, factor, _1, _2, boost::none,
|
||||
boost::none)), pose, bias, 1e-5);
|
||||
EXPECT(assert_equal(numericalH1,actualH1, 1E-5));
|
||||
|
||||
Matrix numericalH2 = numericalDerivative22(
|
||||
boost::function<Vector(const Pose3&, const Point3&)>(boost::bind(
|
||||
&BiasedGPSFactor::evaluateError, factor, _1, _2, boost::none,
|
||||
boost::none)), pose, bias, 1e-5);
|
||||
EXPECT(assert_equal(numericalH2,actualH2, 1E-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -0,0 +1,124 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testGaussMarkov1stOrderFactor.cpp
|
||||
* @brief Unit tests for the GaussMarkov1stOrder factor
|
||||
* @author Vadim Indelman
|
||||
* @date Jan 17, 2012
|
||||
*/
|
||||
|
||||
#include <gtsam_unstable/slam/GaussMarkov1stOrderFactor.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/base/LieVector.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
//! Factors
|
||||
typedef GaussMarkov1stOrderFactor<LieVector> GaussMarkovFactor;
|
||||
|
||||
/* ************************************************************************* */
|
||||
LieVector predictionError(const LieVector& v1, const LieVector& v2, const GaussMarkovFactor factor) {
|
||||
return factor.evaluateError(v1, v2);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussMarkovFactor, equals )
|
||||
{
|
||||
// Create two identical factors and make sure they're equal
|
||||
Key x1(1);
|
||||
Key x2(2);
|
||||
double delta_t = 0.10;
|
||||
Vector tau = (Vector(3) << 100.0, 150.0, 10.0);
|
||||
SharedGaussian model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
|
||||
GaussMarkovFactor factor1(x1, x2, delta_t, tau, model);
|
||||
GaussMarkovFactor factor2(x1, x2, delta_t, tau, model);
|
||||
|
||||
CHECK(assert_equal(factor1, factor2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussMarkovFactor, error )
|
||||
{
|
||||
Values linPoint;
|
||||
Key x1(1);
|
||||
Key x2(2);
|
||||
double delta_t = 0.10;
|
||||
Vector tau = (Vector(3) << 100.0, 150.0, 10.0);
|
||||
SharedGaussian model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
|
||||
LieVector v1 = LieVector((Vector(3) << 10.0, 12.0, 13.0));
|
||||
LieVector v2 = LieVector((Vector(3) << 10.0, 15.0, 14.0));
|
||||
|
||||
// Create two nodes
|
||||
linPoint.insert(x1, v1);
|
||||
linPoint.insert(x2, v2);
|
||||
|
||||
GaussMarkovFactor factor(x1, x2, delta_t, tau, model);
|
||||
Vector Err1( factor.evaluateError(v1, v2) );
|
||||
|
||||
// Manually calculate the error
|
||||
Vector alpha(tau.size());
|
||||
Vector alpha_v1(tau.size());
|
||||
for(int i=0; i<tau.size(); i++){
|
||||
alpha(i) = exp(- 1/tau(i)*delta_t );
|
||||
alpha_v1(i) = alpha(i) * v1(i);
|
||||
}
|
||||
Vector Err2( v2 - alpha_v1 );
|
||||
|
||||
CHECK(assert_equal(Err1, Err2, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST (GaussMarkovFactor, jacobian ) {
|
||||
|
||||
Values linPoint;
|
||||
Key x1(1);
|
||||
Key x2(2);
|
||||
double delta_t = 0.10;
|
||||
Vector tau = (Vector(3) << 100.0, 150.0, 10.0);
|
||||
SharedGaussian model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
|
||||
GaussMarkovFactor factor(x1, x2, delta_t, tau, model);
|
||||
|
||||
// Update the linearization point
|
||||
LieVector v1_upd = LieVector((Vector(3) << 0.5, -0.7, 0.3));
|
||||
LieVector v2_upd = LieVector((Vector(3) << -0.7, 0.4, 0.9));
|
||||
|
||||
// Calculate the Jacobian matrix using the factor
|
||||
Matrix computed_H1, computed_H2;
|
||||
factor.evaluateError(v1_upd, v2_upd, computed_H1, computed_H2);
|
||||
|
||||
// Calculate the Jacobian matrices H1 and H2 using the numerical derivative function
|
||||
Matrix numerical_H1, numerical_H2;
|
||||
numerical_H1 = numericalDerivative21<Vector3, Vector3, Vector3>(
|
||||
boost::bind(&predictionError, _1, _2, factor), v1_upd, v2_upd);
|
||||
numerical_H2 = numericalDerivative22<Vector3, Vector3, Vector3>(
|
||||
boost::bind(&predictionError, _1, _2, factor), v1_upd, v2_upd);
|
||||
|
||||
// Verify they are equal for this choice of state
|
||||
CHECK( assert_equal(numerical_H1, computed_H1, 1e-9));
|
||||
CHECK( assert_equal(numerical_H2, computed_H2, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main()
|
||||
{
|
||||
TestResult tr; return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -26,7 +26,7 @@ using namespace gtsam;
|
|||
|
||||
int main()
|
||||
{
|
||||
int n = 1000000;
|
||||
int n = 1e6;
|
||||
|
||||
const Pose3 pose1((Matrix)(Matrix(3,3) <<
|
||||
1., 0., 0.,
|
||||
|
@ -35,8 +35,6 @@ int main()
|
|||
),
|
||||
Point3(0,0,0.5));
|
||||
|
||||
// static Cal3_S2 K(500, 100, 0.1, 320, 240);
|
||||
// static Cal3DS2 K(500, 100, 0.1, 320, 240, 1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3);
|
||||
static Cal3Bundler K(500, 1e-3, 2.0*1e-3);
|
||||
const PinholeCamera<Cal3Bundler> camera(pose1,K);
|
||||
const Point3 point1(-0.08,-0.08, 0.0);
|
||||
|
@ -63,8 +61,18 @@ int main()
|
|||
camera.project(point1);
|
||||
long timeLog2 = clock();
|
||||
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
|
||||
cout << ((double)n/seconds) << " calls/second" << endl;
|
||||
cout << ((double)seconds*1000000/n) << " musecs/call" << endl;
|
||||
cout << ((double)seconds*1e9/n) << " nanosecs/call" << endl;
|
||||
}
|
||||
|
||||
// Oct 12 2014, Macbook Air
|
||||
{
|
||||
long timeLog = clock();
|
||||
Point2 measurement(0,0);
|
||||
for(int i = 0; i < n; i++)
|
||||
measurement.localCoordinates(camera.project(point1));
|
||||
long timeLog2 = clock();
|
||||
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
|
||||
cout << ((double)seconds*1e9/n) << " nanosecs/call" << endl;
|
||||
}
|
||||
|
||||
// Oct 12 2013, iMac 3.06GHz Core i3
|
||||
|
@ -84,8 +92,7 @@ int main()
|
|||
camera.project(point1, Dpose, Dpoint);
|
||||
long timeLog2 = clock();
|
||||
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
|
||||
cout << ((double)n/seconds) << " calls/second" << endl;
|
||||
cout << ((double)seconds*1000000/n) << " musecs/call" << endl;
|
||||
cout << ((double)seconds*1e9/n) << " nanosecs/call" << endl;
|
||||
}
|
||||
|
||||
// Oct 12 2013, iMac 3.06GHz Core i3
|
||||
|
@ -97,7 +104,7 @@ int main()
|
|||
// Cal3Bundler fix: 2.0946 musecs/call
|
||||
// June 24 2014, Macbook Pro 2.3GHz Core i7
|
||||
// GTSAM 3.1: 0.2294 musecs/call
|
||||
// After project fix: 0.2093 musecs/call
|
||||
// After project fix: 0.2093 nanosecs/call
|
||||
{
|
||||
Matrix Dpose, Dpoint, Dcal;
|
||||
long timeLog = clock();
|
||||
|
@ -105,8 +112,7 @@ int main()
|
|||
camera.project(point1, Dpose, Dpoint, Dcal);
|
||||
long timeLog2 = clock();
|
||||
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
|
||||
cout << ((double)n/seconds) << " calls/second" << endl;
|
||||
cout << ((double)seconds*1000000/n) << " musecs/call" << endl;
|
||||
cout << ((double)seconds*1e9/n) << " nanosecs/call" << endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
|
Loading…
Reference in New Issue