Cherry-picked imuFixed differences
parent
19f823a1fa
commit
a881e8d3ee
114
.cproject
114
.cproject
|
@ -592,7 +592,6 @@
|
|||
</target>
|
||||
<target name="tests/testBayesTree.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>tests/testBayesTree.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -600,7 +599,6 @@
|
|||
</target>
|
||||
<target name="testBinaryBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testBinaryBayesNet.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -648,7 +646,6 @@
|
|||
</target>
|
||||
<target name="testSymbolicBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSymbolicBayesNet.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -656,7 +653,6 @@
|
|||
</target>
|
||||
<target name="tests/testSymbolicFactor.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>tests/testSymbolicFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -664,7 +660,6 @@
|
|||
</target>
|
||||
<target name="testSymbolicFactorGraph.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSymbolicFactorGraph.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -680,7 +675,6 @@
|
|||
</target>
|
||||
<target name="tests/testBayesTree" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>tests/testBayesTree</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -1136,7 +1130,6 @@
|
|||
</target>
|
||||
<target name="testErrors.run" path="linear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testErrors.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -1366,46 +1359,6 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testBTree.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testBTree.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testDSF.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testDSF.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testDSFMap.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testDSFMap.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testDSFVector.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testDSFVector.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testFixedVector.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testFixedVector.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="all" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j2</buildArguments>
|
||||
|
@ -1488,6 +1441,7 @@
|
|||
</target>
|
||||
<target name="testSimulated2DOriented.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSimulated2DOriented.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -1527,6 +1481,7 @@
|
|||
</target>
|
||||
<target name="testSimulated2D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSimulated2D.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -1534,6 +1489,7 @@
|
|||
</target>
|
||||
<target name="testSimulated3D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSimulated3D.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -1547,6 +1503,46 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testBTree.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testBTree.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testDSF.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testDSF.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testDSFMap.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testDSFMap.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testDSFVector.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testDSFVector.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testFixedVector.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testFixedVector.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testEliminationTree.run" path="build/gtsam/inference/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
|
@ -1804,7 +1800,6 @@
|
|||
</target>
|
||||
<target name="Generate DEB Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>cpack</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>-G DEB</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -1812,7 +1807,6 @@
|
|||
</target>
|
||||
<target name="Generate RPM Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>cpack</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>-G RPM</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -1820,7 +1814,6 @@
|
|||
</target>
|
||||
<target name="Generate TGZ Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>cpack</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>-G TGZ</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -1828,7 +1821,6 @@
|
|||
</target>
|
||||
<target name="Generate TGZ Source Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>cpack</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>--config CPackSourceConfig.cmake</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -2002,6 +1994,14 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="check.navigation" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j2 VERBOSE=1</buildArguments>
|
||||
<buildTarget>check.navigation</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="check" path="build" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j2</buildArguments>
|
||||
|
@ -2683,7 +2683,6 @@
|
|||
</target>
|
||||
<target name="testGraph.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testGraph.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -2691,7 +2690,6 @@
|
|||
</target>
|
||||
<target name="testJunctionTree.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testJunctionTree.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -2699,7 +2697,6 @@
|
|||
</target>
|
||||
<target name="testSymbolicBayesNetB.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSymbolicBayesNetB.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
@ -2809,14 +2806,6 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testBasisDecompositions.run" path="build/gtsam_unstable/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j4</buildArguments>
|
||||
<buildTarget>testBasisDecompositions.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testCustomChartExpression.run" path="build/gtsam_unstable/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j4</buildArguments>
|
||||
|
@ -3251,6 +3240,7 @@
|
|||
</target>
|
||||
<target name="tests/testGaussianISAM2" path="build/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>tests/testGaussianISAM2</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
126
gtsam.h
126
gtsam.h
|
@ -2404,25 +2404,24 @@ class ConstantBias {
|
|||
}///\namespace imuBias
|
||||
|
||||
#include <gtsam/navigation/ImuFactor.h>
|
||||
class PoseVelocity{
|
||||
PoseVelocity(const gtsam::Pose3& pose, Vector velocity);
|
||||
class PoseVelocityBias{
|
||||
PoseVelocityBias(const gtsam::Pose3& pose, Vector velocity, const gtsam::imuBias::ConstantBias& bias);
|
||||
};
|
||||
class ImuFactorPreintegratedMeasurements {
|
||||
// Standard Constructor
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance, bool use2ndOrderIntegration);
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance);
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::ImuFactorPreintegratedMeasurements& rhs);
|
||||
// ImuFactorPreintegratedMeasurements(const gtsam::ImuFactorPreintegratedMeasurements& rhs);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::ImuFactorPreintegratedMeasurements& expected, double tol);
|
||||
|
||||
Matrix measurementCovariance() const;
|
||||
Matrix deltaRij() const;
|
||||
double deltaTij() const;
|
||||
Matrix deltaRij() const;
|
||||
Vector deltaPij() const;
|
||||
Vector deltaVij() const;
|
||||
Vector biasHat() const;
|
||||
Vector biasHatVector() const;
|
||||
Matrix delPdelBiasAcc() const;
|
||||
Matrix delPdelBiasOmega() const;
|
||||
Matrix delVdelBiasAcc() const;
|
||||
|
@ -2430,10 +2429,11 @@ class ImuFactorPreintegratedMeasurements {
|
|||
Matrix delRdelBiasOmega() const;
|
||||
Matrix preintMeasCov() const;
|
||||
|
||||
|
||||
// Standard Interface
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
|
||||
gtsam::PoseVelocityBias predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias,
|
||||
Vector gravity, Vector omegaCoriolis) const;
|
||||
};
|
||||
|
||||
virtual class ImuFactor : gtsam::NonlinearFactor {
|
||||
|
@ -2444,11 +2444,60 @@ virtual class ImuFactor : gtsam::NonlinearFactor {
|
|||
const gtsam::Pose3& body_P_sensor);
|
||||
// Standard Interface
|
||||
gtsam::ImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
|
||||
gtsam::PoseVelocity Predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias,
|
||||
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements,
|
||||
};
|
||||
|
||||
#include <gtsam/navigation/CombinedImuFactor.h>
|
||||
class CombinedImuFactorPreintegratedMeasurements {
|
||||
// Standard Constructor
|
||||
CombinedImuFactorPreintegratedMeasurements(
|
||||
const gtsam::imuBias::ConstantBias& bias,
|
||||
Matrix measuredAccCovariance,
|
||||
Matrix measuredOmegaCovariance,
|
||||
Matrix integrationErrorCovariance,
|
||||
Matrix biasAccCovariance,
|
||||
Matrix biasOmegaCovariance,
|
||||
Matrix biasAccOmegaInit);
|
||||
CombinedImuFactorPreintegratedMeasurements(
|
||||
const gtsam::imuBias::ConstantBias& bias,
|
||||
Matrix measuredAccCovariance,
|
||||
Matrix measuredOmegaCovariance,
|
||||
Matrix integrationErrorCovariance,
|
||||
Matrix biasAccCovariance,
|
||||
Matrix biasOmegaCovariance,
|
||||
Matrix biasAccOmegaInit,
|
||||
bool use2ndOrderIntegration);
|
||||
// CombinedImuFactorPreintegratedMeasurements(const gtsam::CombinedImuFactorPreintegratedMeasurements& rhs);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::CombinedImuFactorPreintegratedMeasurements& expected, double tol);
|
||||
|
||||
double deltaTij() const;
|
||||
Matrix deltaRij() const;
|
||||
Vector deltaPij() const;
|
||||
Vector deltaVij() const;
|
||||
Vector biasHatVector() const;
|
||||
Matrix delPdelBiasAcc() const;
|
||||
Matrix delPdelBiasOmega() const;
|
||||
Matrix delVdelBiasAcc() const;
|
||||
Matrix delVdelBiasOmega() const;
|
||||
Matrix delRdelBiasOmega() const;
|
||||
Matrix preintMeasCov() const;
|
||||
|
||||
// Standard Interface
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
|
||||
gtsam::PoseVelocityBias predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias,
|
||||
Vector gravity, Vector omegaCoriolis) const;
|
||||
};
|
||||
|
||||
virtual class CombinedImuFactor : gtsam::NonlinearFactor {
|
||||
CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias_i, size_t bias_j,
|
||||
const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis);
|
||||
// Standard Interface
|
||||
gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
|
||||
};
|
||||
|
||||
#include <gtsam/navigation/AHRSFactor.h>
|
||||
class AHRSFactorPreintegratedMeasurements {
|
||||
// Standard Constructor
|
||||
|
@ -2461,7 +2510,6 @@ class AHRSFactorPreintegratedMeasurements {
|
|||
bool equals(const gtsam::AHRSFactorPreintegratedMeasurements& expected, double tol);
|
||||
|
||||
// get Data
|
||||
Matrix measurementCovariance() const;
|
||||
Matrix deltaRij() const;
|
||||
double deltaTij() const;
|
||||
Vector biasHat() const;
|
||||
|
@ -2488,64 +2536,6 @@ virtual class AHRSFactor : gtsam::NonlinearFactor {
|
|||
Vector omegaCoriolis) const;
|
||||
};
|
||||
|
||||
#include <gtsam/navigation/CombinedImuFactor.h>
|
||||
class PoseVelocityBias{
|
||||
PoseVelocityBias(const gtsam::Pose3& pose, Vector velocity, const gtsam::imuBias::ConstantBias& bias);
|
||||
};
|
||||
class CombinedImuFactorPreintegratedMeasurements {
|
||||
// Standard Constructor
|
||||
CombinedImuFactorPreintegratedMeasurements(
|
||||
const gtsam::imuBias::ConstantBias& bias,
|
||||
Matrix measuredAccCovariance,
|
||||
Matrix measuredOmegaCovariance,
|
||||
Matrix integrationErrorCovariance,
|
||||
Matrix biasAccCovariance,
|
||||
Matrix biasOmegaCovariance,
|
||||
Matrix biasAccOmegaInit);
|
||||
CombinedImuFactorPreintegratedMeasurements(
|
||||
const gtsam::imuBias::ConstantBias& bias,
|
||||
Matrix measuredAccCovariance,
|
||||
Matrix measuredOmegaCovariance,
|
||||
Matrix integrationErrorCovariance,
|
||||
Matrix biasAccCovariance,
|
||||
Matrix biasOmegaCovariance,
|
||||
Matrix biasAccOmegaInit,
|
||||
bool use2ndOrderIntegration);
|
||||
CombinedImuFactorPreintegratedMeasurements(const gtsam::CombinedImuFactorPreintegratedMeasurements& rhs);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::CombinedImuFactorPreintegratedMeasurements& expected, double tol);
|
||||
|
||||
// Standard Interface
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
|
||||
|
||||
Matrix measurementCovariance() const;
|
||||
Matrix deltaRij() const;
|
||||
double deltaTij() const;
|
||||
Vector deltaPij() const;
|
||||
Vector deltaVij() const;
|
||||
Vector biasHat() const;
|
||||
Matrix delPdelBiasAcc() const;
|
||||
Matrix delPdelBiasOmega() const;
|
||||
Matrix delVdelBiasAcc() const;
|
||||
Matrix delVdelBiasOmega() const;
|
||||
Matrix delRdelBiasOmega() const;
|
||||
Matrix PreintMeasCov() const;
|
||||
};
|
||||
|
||||
virtual class CombinedImuFactor : gtsam::NonlinearFactor {
|
||||
CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias_i, size_t bias_j,
|
||||
const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis);
|
||||
|
||||
// Standard Interface
|
||||
gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
|
||||
gtsam::PoseVelocityBias Predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias_i,
|
||||
const gtsam::CombinedImuFactorPreintegratedMeasurements& preintegratedMeasurements,
|
||||
Vector gravity, Vector omegaCoriolis);
|
||||
};
|
||||
|
||||
#include <gtsam/navigation/AttitudeFactor.h>
|
||||
//virtual class AttitudeFactor : gtsam::NonlinearFactor {
|
||||
// AttitudeFactor(const Unit3& nZ, const Unit3& bRef);
|
||||
|
|
|
@ -18,9 +18,9 @@
|
|||
**/
|
||||
|
||||
#include <gtsam/navigation/AHRSFactor.h>
|
||||
#include <iostream>
|
||||
|
||||
/* External or standard includes */
|
||||
#include <ostream>
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -29,47 +29,35 @@ namespace gtsam {
|
|||
//------------------------------------------------------------------------------
|
||||
AHRSFactor::PreintegratedMeasurements::PreintegratedMeasurements(
|
||||
const Vector3& bias, const Matrix3& measuredOmegaCovariance) :
|
||||
biasHat_(bias), deltaTij_(0.0) {
|
||||
measurementCovariance_ << measuredOmegaCovariance;
|
||||
delRdelBiasOmega_.setZero();
|
||||
PreintegratedRotation(measuredOmegaCovariance), biasHat_(bias)
|
||||
{
|
||||
preintMeasCov_.setZero();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
AHRSFactor::PreintegratedMeasurements::PreintegratedMeasurements() :
|
||||
biasHat_(Vector3()), deltaTij_(0.0) {
|
||||
measurementCovariance_.setZero();
|
||||
delRdelBiasOmega_.setZero();
|
||||
delRdelBiasOmega_.setZero();
|
||||
PreintegratedRotation(I_3x3), biasHat_(Vector3())
|
||||
{
|
||||
preintMeasCov_.setZero();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void AHRSFactor::PreintegratedMeasurements::print(const std::string& s) const {
|
||||
std::cout << s << std::endl;
|
||||
std::cout << "biasHat [" << biasHat_.transpose() << "]" << std::endl;
|
||||
deltaRij_.print(" deltaRij ");
|
||||
std::cout << " measurementCovariance [" << measurementCovariance_ << " ]"
|
||||
<< std::endl;
|
||||
std::cout << " PreintMeasCov [ " << preintMeasCov_ << " ]" << std::endl;
|
||||
void AHRSFactor::PreintegratedMeasurements::print(const string& s) const {
|
||||
PreintegratedRotation::print(s);
|
||||
cout << "biasHat [" << biasHat_.transpose() << "]" << endl;
|
||||
cout << " PreintMeasCov [ " << preintMeasCov_ << " ]" << endl;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
bool AHRSFactor::PreintegratedMeasurements::equals(
|
||||
const PreintegratedMeasurements& other, double tol) const {
|
||||
return equal_with_abs_tol(biasHat_, other.biasHat_, tol)
|
||||
&& equal_with_abs_tol(measurementCovariance_,
|
||||
other.measurementCovariance_, tol)
|
||||
&& deltaRij_.equals(other.deltaRij_, tol)
|
||||
&& std::fabs(deltaTij_ - other.deltaTij_) < tol
|
||||
&& equal_with_abs_tol(delRdelBiasOmega_, other.delRdelBiasOmega_, tol);
|
||||
return PreintegratedRotation::equals(other, tol)
|
||||
&& equal_with_abs_tol(biasHat_, other.biasHat_, tol);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void AHRSFactor::PreintegratedMeasurements::resetIntegration() {
|
||||
deltaRij_ = Rot3();
|
||||
deltaTij_ = 0.0;
|
||||
delRdelBiasOmega_.setZero();
|
||||
PreintegratedRotation::resetIntegration();
|
||||
preintMeasCov_.setZero();
|
||||
}
|
||||
|
||||
|
@ -78,7 +66,6 @@ void AHRSFactor::PreintegratedMeasurements::integrateMeasurement(
|
|||
const Vector3& measuredOmega, double deltaT,
|
||||
boost::optional<const Pose3&> body_P_sensor) {
|
||||
|
||||
// NOTE: order is important here because each update uses old values.
|
||||
// First we compensate the measurements for the bias
|
||||
Vector3 correctedOmega = measuredOmega - biasHat_;
|
||||
|
||||
|
@ -93,64 +80,27 @@ void AHRSFactor::PreintegratedMeasurements::integrateMeasurement(
|
|||
// rotation vector describing rotation increment computed from the
|
||||
// current rotation rate measurement
|
||||
const Vector3 theta_incr = correctedOmega * deltaT;
|
||||
Matrix3 D_Rincr_integratedOmega;
|
||||
const Rot3 incrR = Rot3::Expmap(theta_incr, D_Rincr_integratedOmega); // expensive !!
|
||||
|
||||
// rotation increment computed from the current rotation rate measurement
|
||||
const Rot3 incrR = Rot3::Expmap(theta_incr);
|
||||
const Matrix3 incrRt = incrR.transpose();
|
||||
// Update Jacobian
|
||||
update_delRdelBiasOmega(D_Rincr_integratedOmega, incrR, deltaT);
|
||||
|
||||
// Right Jacobian computed at theta_incr
|
||||
const Matrix3 Jr_theta_incr = Rot3::ExpmapDerivative(theta_incr);
|
||||
|
||||
// Update Jacobians
|
||||
// ---------------------------------------------------------------------------
|
||||
delRdelBiasOmega_ = incrRt * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
|
||||
|
||||
// Update preintegrated measurements covariance
|
||||
// ---------------------------------------------------------------------------
|
||||
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // Parameterization of so(3)
|
||||
const Matrix3 Jr_theta_i = Rot3::LogmapDerivative(theta_i);
|
||||
|
||||
Rot3 Rot_j = deltaRij_ * incrR;
|
||||
const Vector3 theta_j = Rot3::Logmap(Rot_j); // Parameterization of so(3)
|
||||
const Matrix3 Jrinv_theta_j = Rot3::LogmapDerivative(theta_j);
|
||||
|
||||
// Update preintegrated measurements covariance: as in [2] we consider a first
|
||||
// order propagation that can be seen as a prediction phase in an EKF framework
|
||||
Matrix3 H_angles_angles = Jrinv_theta_j * incrRt * Jr_theta_i;
|
||||
// analytic expression corresponding to the following numerical derivative
|
||||
// Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>
|
||||
// (boost::bind(&DeltaAngles, correctedOmega, deltaT, _1), thetaij);
|
||||
|
||||
// overall Jacobian wrpt preintegrated measurements (df/dx)
|
||||
const Matrix3& F = H_angles_angles;
|
||||
// Update rotation and deltaTij.
|
||||
Matrix3 Fr; // Jacobian of the update
|
||||
updateIntegratedRotationAndDeltaT(incrR, deltaT, Fr);
|
||||
|
||||
// first order uncertainty propagation
|
||||
// the deltaT allows to pass from continuous time noise to discrete time noise
|
||||
preintMeasCov_ = F * preintMeasCov_ * F.transpose()
|
||||
+ measurementCovariance_ * deltaT;
|
||||
|
||||
// Update preintegrated measurements
|
||||
// ---------------------------------------------------------------------------
|
||||
deltaRij_ = deltaRij_ * incrR;
|
||||
deltaTij_ += deltaT;
|
||||
preintMeasCov_ = Fr * preintMeasCov_ * Fr.transpose()
|
||||
+ gyroscopeCovariance() * deltaT;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
Vector3 AHRSFactor::PreintegratedMeasurements::predict(const Vector3& bias,
|
||||
boost::optional<Matrix&> H) const {
|
||||
const Vector3 biasOmegaIncr = bias - biasHat_;
|
||||
Vector3 delRdelBiasOmega_biasOmegaIncr = delRdelBiasOmega_ * biasOmegaIncr;
|
||||
const Rot3 deltaRij_biascorrected = deltaRij_.retract(
|
||||
delRdelBiasOmega_biasOmegaIncr, Rot3::EXPMAP);
|
||||
const Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
|
||||
if (H) {
|
||||
const Matrix3 Jrinv_theta_bc = //
|
||||
Rot3::LogmapDerivative(theta_biascorrected);
|
||||
const Matrix3 Jr_JbiasOmegaIncr = //
|
||||
Rot3::ExpmapDerivative(delRdelBiasOmega_biasOmegaIncr);
|
||||
(*H) = Jrinv_theta_bc * Jr_JbiasOmegaIncr * delRdelBiasOmega_;
|
||||
}
|
||||
return theta_biascorrected;
|
||||
return biascorrectedThetaRij(biasOmegaIncr, H);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
Vector AHRSFactor::PreintegratedMeasurements::DeltaAngles(
|
||||
|
@ -172,7 +122,7 @@ Vector AHRSFactor::PreintegratedMeasurements::DeltaAngles(
|
|||
// AHRSFactor methods
|
||||
//------------------------------------------------------------------------------
|
||||
AHRSFactor::AHRSFactor() :
|
||||
preintegratedMeasurements_(Vector3(), Matrix3::Zero()) {
|
||||
_PIM_(Vector3(), Z_3x3) {
|
||||
}
|
||||
|
||||
AHRSFactor::AHRSFactor(Key rot_i, Key rot_j, Key bias,
|
||||
|
@ -180,7 +130,7 @@ AHRSFactor::AHRSFactor(Key rot_i, Key rot_j, Key bias,
|
|||
const Vector3& omegaCoriolis, boost::optional<const Pose3&> body_P_sensor) :
|
||||
Base(
|
||||
noiseModel::Gaussian::Covariance(
|
||||
preintegratedMeasurements.preintMeasCov_), rot_i, rot_j, bias), preintegratedMeasurements_(
|
||||
preintegratedMeasurements.preintMeasCov_), rot_i, rot_j, bias), _PIM_(
|
||||
preintegratedMeasurements), omegaCoriolis_(omegaCoriolis), body_P_sensor_(
|
||||
body_P_sensor) {
|
||||
}
|
||||
|
@ -192,13 +142,12 @@ gtsam::NonlinearFactor::shared_ptr AHRSFactor::clone() const {
|
|||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void AHRSFactor::print(const std::string& s,
|
||||
void AHRSFactor::print(const string& s,
|
||||
const KeyFormatter& keyFormatter) const {
|
||||
std::cout << s << "AHRSFactor(" << keyFormatter(this->key1()) << ","
|
||||
cout << s << "AHRSFactor(" << keyFormatter(this->key1()) << ","
|
||||
<< keyFormatter(this->key2()) << "," << keyFormatter(this->key3()) << ",";
|
||||
preintegratedMeasurements_.print(" preintegrated measurements:");
|
||||
std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]"
|
||||
<< std::endl;
|
||||
_PIM_.print(" preintegrated measurements:");
|
||||
cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
|
||||
noiseModel_->print(" noise model: ");
|
||||
if (body_P_sensor_)
|
||||
body_P_sensor_->print(" sensor pose in body frame: ");
|
||||
|
@ -207,8 +156,7 @@ void AHRSFactor::print(const std::string& s,
|
|||
//------------------------------------------------------------------------------
|
||||
bool AHRSFactor::equals(const NonlinearFactor& other, double tol) const {
|
||||
const This *e = dynamic_cast<const This*>(&other);
|
||||
return e != NULL && Base::equals(*e, tol)
|
||||
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
|
||||
return e != NULL && Base::equals(*e, tol) && _PIM_.equals(e->_PIM_, tol)
|
||||
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
|
||||
&& ((!body_P_sensor_ && !e->body_P_sensor_)
|
||||
|| (body_P_sensor_ && e->body_P_sensor_
|
||||
|
@ -216,50 +164,49 @@ bool AHRSFactor::equals(const NonlinearFactor& other, double tol) const {
|
|||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
Vector AHRSFactor::evaluateError(const Rot3& rot_i, const Rot3& rot_j,
|
||||
Vector AHRSFactor::evaluateError(const Rot3& Ri, const Rot3& Rj,
|
||||
const Vector3& bias, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2, boost::optional<Matrix&> H3) const {
|
||||
|
||||
// Do bias correction, if (H3) will contain 3*3 derivative used below
|
||||
const Vector3 theta_biascorrected = //
|
||||
preintegratedMeasurements_.predict(bias, H3);
|
||||
const Vector3 biascorrectedOmega = _PIM_.predict(bias, H3);
|
||||
|
||||
// Coriolis term
|
||||
const Vector3 coriolis = //
|
||||
preintegratedMeasurements_.integrateCoriolis(rot_i, omegaCoriolis_);
|
||||
const Vector3 theta_corrected = theta_biascorrected - coriolis;
|
||||
const Vector3 coriolis = _PIM_.integrateCoriolis(Ri, omegaCoriolis_);
|
||||
const Matrix3 coriolisHat = skewSymmetric(coriolis);
|
||||
const Vector3 correctedOmega = biascorrectedOmega - coriolis;
|
||||
|
||||
// Prediction
|
||||
const Rot3 deltaRij_corrected = Rot3::Expmap(theta_corrected);
|
||||
const Rot3 correctedDeltaRij = Rot3::Expmap(correctedOmega);
|
||||
|
||||
// Get error between actual and prediction
|
||||
const Rot3 actualRij = rot_i.between(rot_j);
|
||||
const Rot3 fRhat = deltaRij_corrected.between(actualRij);
|
||||
Vector3 fR = Rot3::Logmap(fRhat);
|
||||
const Rot3 actualRij = Ri.between(Rj);
|
||||
const Rot3 fRrot = correctedDeltaRij.between(actualRij);
|
||||
Vector3 fR = Rot3::Logmap(fRrot);
|
||||
|
||||
// Terms common to derivatives
|
||||
const Matrix3 Jr_theta_bcc = Rot3::ExpmapDerivative(theta_corrected);
|
||||
const Matrix3 Jrinv_fRhat = Rot3::LogmapDerivative(fR);
|
||||
const Matrix3 D_cDeltaRij_cOmega = Rot3::ExpmapDerivative(correctedOmega);
|
||||
const Matrix3 D_fR_fRrot = Rot3::LogmapDerivative(fR);
|
||||
|
||||
if (H1) {
|
||||
// dfR/dRi
|
||||
H1->resize(3, 3);
|
||||
Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(coriolis);
|
||||
Matrix3 D_coriolis = -D_cDeltaRij_cOmega * coriolisHat;
|
||||
(*H1)
|
||||
<< Jrinv_fRhat * (-actualRij.transpose() - fRhat.transpose() * Jtheta);
|
||||
<< D_fR_fRrot * (-actualRij.transpose() - fRrot.transpose() * D_coriolis);
|
||||
}
|
||||
|
||||
if (H2) {
|
||||
// dfR/dPosej
|
||||
H2->resize(3, 3);
|
||||
(*H2) << Jrinv_fRhat * Matrix3::Identity();
|
||||
(*H2) << D_fR_fRrot * Matrix3::Identity();
|
||||
}
|
||||
|
||||
if (H3) {
|
||||
// dfR/dBias, note H3 contains derivative of predict
|
||||
const Matrix3 JbiasOmega = Jr_theta_bcc * (*H3);
|
||||
const Matrix3 JbiasOmega = D_cDeltaRij_cOmega * (*H3);
|
||||
H3->resize(3, 3);
|
||||
(*H3) << Jrinv_fRhat * (-fRhat.transpose() * JbiasOmega);
|
||||
(*H3) << D_fR_fRrot * (-fRrot.transpose() * JbiasOmega);
|
||||
}
|
||||
|
||||
Vector error(3);
|
||||
|
@ -272,16 +219,16 @@ Rot3 AHRSFactor::predict(const Rot3& rot_i, const Vector3& bias,
|
|||
const PreintegratedMeasurements preintegratedMeasurements,
|
||||
const Vector3& omegaCoriolis, boost::optional<const Pose3&> body_P_sensor) {
|
||||
|
||||
const Vector3 theta_biascorrected = preintegratedMeasurements.predict(bias);
|
||||
const Vector3 biascorrectedOmega = preintegratedMeasurements.predict(bias);
|
||||
|
||||
// Coriolis term
|
||||
const Vector3 coriolis = //
|
||||
preintegratedMeasurements.integrateCoriolis(rot_i, omegaCoriolis);
|
||||
|
||||
const Vector3 theta_corrected = theta_biascorrected - coriolis;
|
||||
const Rot3 deltaRij_corrected = Rot3::Expmap(theta_corrected);
|
||||
const Vector3 correctedOmega = biascorrectedOmega - coriolis;
|
||||
const Rot3 correctedDeltaRij = Rot3::Expmap(correctedOmega);
|
||||
|
||||
return rot_i.compose(deltaRij_corrected);
|
||||
return rot_i.compose(correctedDeltaRij);
|
||||
}
|
||||
|
||||
} //namespace gtsam
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#pragma once
|
||||
|
||||
/* GTSAM includes */
|
||||
#include <gtsam/navigation/PreintegratedRotation.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
|
||||
|
@ -35,17 +36,12 @@ public:
|
|||
* Can be built incrementally so as to avoid costly integration at time of
|
||||
* factor construction.
|
||||
*/
|
||||
class PreintegratedMeasurements {
|
||||
class PreintegratedMeasurements : public PreintegratedRotation {
|
||||
|
||||
friend class AHRSFactor;
|
||||
|
||||
protected:
|
||||
Vector3 biasHat_; ///< Acceleration and angular rate bias values used during preintegration. Note that we won't be using the accelerometer
|
||||
Matrix3 measurementCovariance_; ///< (Raw measurements uncertainty) Covariance of the vector [measuredOmega] in R^(3X3)
|
||||
|
||||
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
|
||||
double deltaTij_; ///< Time interval from i to j
|
||||
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
|
||||
Matrix3 preintMeasCov_; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
|
||||
|
||||
public:
|
||||
|
@ -61,31 +57,19 @@ public:
|
|||
PreintegratedMeasurements(const Vector3& bias,
|
||||
const Matrix3& measuredOmegaCovariance);
|
||||
|
||||
Vector3 biasHat() const {
|
||||
return biasHat_;
|
||||
}
|
||||
const Matrix3& preintMeasCov() const {
|
||||
return preintMeasCov_;
|
||||
}
|
||||
|
||||
/// print
|
||||
void print(const std::string& s = "Preintegrated Measurements: ") const;
|
||||
|
||||
/// equals
|
||||
bool equals(const PreintegratedMeasurements&, double tol = 1e-9) const;
|
||||
|
||||
const Matrix3& measurementCovariance() const {
|
||||
return measurementCovariance_;
|
||||
}
|
||||
Matrix3 deltaRij() const {
|
||||
return deltaRij_.matrix();
|
||||
}
|
||||
double deltaTij() const {
|
||||
return deltaTij_;
|
||||
}
|
||||
Vector3 biasHat() const {
|
||||
return biasHat_;
|
||||
}
|
||||
const Matrix3& delRdelBiasOmega() const {
|
||||
return delRdelBiasOmega_;
|
||||
}
|
||||
const Matrix3& preintMeasCov() const {
|
||||
return preintMeasCov_;
|
||||
}
|
||||
|
||||
/// TODO: Document
|
||||
void resetIntegration();
|
||||
|
||||
|
@ -103,12 +87,6 @@ public:
|
|||
Vector3 predict(const Vector3& bias, boost::optional<Matrix&> H =
|
||||
boost::none) const;
|
||||
|
||||
/// Integrate coriolis correction in body frame rot_i
|
||||
Vector3 integrateCoriolis(const Rot3& rot_i,
|
||||
const Vector3& omegaCoriolis) const {
|
||||
return rot_i.transpose() * omegaCoriolis * deltaTij_;
|
||||
}
|
||||
|
||||
// This function is only used for test purposes
|
||||
// (compare numerical derivatives wrt analytic ones)
|
||||
static Vector DeltaAngles(const Vector& msr_gyro_t, const double msr_dt,
|
||||
|
@ -120,11 +98,8 @@ public:
|
|||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegratedRotation);
|
||||
ar & BOOST_SERIALIZATION_NVP(biasHat_);
|
||||
ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -132,7 +107,7 @@ private:
|
|||
typedef AHRSFactor This;
|
||||
typedef NoiseModelFactor3<Rot3, Rot3, Vector3> Base;
|
||||
|
||||
PreintegratedMeasurements preintegratedMeasurements_;
|
||||
PreintegratedMeasurements _PIM_;
|
||||
Vector3 gravity_;
|
||||
Vector3 omegaCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
|
||||
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
|
||||
|
@ -178,7 +153,7 @@ public:
|
|||
|
||||
/// Access the preintegrated measurements.
|
||||
const PreintegratedMeasurements& preintegratedMeasurements() const {
|
||||
return preintegratedMeasurements_;
|
||||
return _PIM_;
|
||||
}
|
||||
|
||||
const Vector3& omegaCoriolis() const {
|
||||
|
@ -208,7 +183,7 @@ private:
|
|||
ar
|
||||
& boost::serialization::make_nvp("NoiseModelFactor3",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
|
||||
ar & BOOST_SERIALIZATION_NVP(_PIM_);
|
||||
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
|
||||
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
|
||||
}
|
||||
|
|
|
@ -36,197 +36,136 @@ CombinedImuFactor::CombinedPreintegratedMeasurements::CombinedPreintegratedMeasu
|
|||
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
|
||||
const Matrix3& biasAccCovariance, const Matrix3& biasOmegaCovariance,
|
||||
const Matrix& biasAccOmegaInit, const bool use2ndOrderIntegration) :
|
||||
biasHat_(bias), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
|
||||
deltaRij_(Rot3()), deltaTij_(0.0),
|
||||
delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
|
||||
delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
|
||||
delRdelBiasOmega_(Z_3x3), use2ndOrderIntegration_(use2ndOrderIntegration)
|
||||
PreintegrationBase(bias, measuredAccCovariance, measuredOmegaCovariance,
|
||||
integrationErrorCovariance, use2ndOrderIntegration),
|
||||
biasAccCovariance_(biasAccCovariance), biasOmegaCovariance_(biasOmegaCovariance),
|
||||
biasAccOmegaInit_(biasAccOmegaInit)
|
||||
{
|
||||
measurementCovariance_.setZero();
|
||||
measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
|
||||
measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
|
||||
measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
|
||||
measurementCovariance_.block<3,3>(9,9) = biasAccCovariance;
|
||||
measurementCovariance_.block<3,3>(12,12) = biasOmegaCovariance;
|
||||
measurementCovariance_.block<6,6>(15,15) = biasAccOmegaInit;
|
||||
PreintMeasCov_.setZero();
|
||||
preintMeasCov_.setZero();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void CombinedImuFactor::CombinedPreintegratedMeasurements::print(const string& s) const{
|
||||
cout << s << endl;
|
||||
biasHat_.print(" biasHat");
|
||||
cout << " deltaTij " << deltaTij_ << endl;
|
||||
cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << endl;
|
||||
cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << endl;
|
||||
deltaRij_.print(" deltaRij ");
|
||||
cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << endl;
|
||||
cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << endl;
|
||||
PreintegrationBase::print(s);
|
||||
cout << " biasAccCovariance [ " << biasAccCovariance_ << " ]" << endl;
|
||||
cout << " biasOmegaCovariance [ " << biasOmegaCovariance_ << " ]" << endl;
|
||||
cout << " biasAccOmegaInit [ " << biasAccOmegaInit_ << " ]" << endl;
|
||||
cout << " preintMeasCov [ " << preintMeasCov_ << " ]" << endl;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
bool CombinedImuFactor::CombinedPreintegratedMeasurements::equals(const CombinedPreintegratedMeasurements& expected, double tol) const{
|
||||
return biasHat_.equals(expected.biasHat_, tol)
|
||||
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
|
||||
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
|
||||
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
|
||||
&& deltaRij_.equals(expected.deltaRij_, tol)
|
||||
&& fabs(deltaTij_ - expected.deltaTij_) < tol
|
||||
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
|
||||
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
|
||||
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
|
||||
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
|
||||
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
|
||||
return equal_with_abs_tol(biasAccCovariance_, expected.biasAccCovariance_, tol)
|
||||
&& equal_with_abs_tol(biasOmegaCovariance_, expected.biasOmegaCovariance_, tol)
|
||||
&&equal_with_abs_tol(biasAccOmegaInit_, expected.biasAccOmegaInit_, tol)
|
||||
&& equal_with_abs_tol(preintMeasCov_, expected.preintMeasCov_, tol)
|
||||
&& PreintegrationBase::equals(expected, tol);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void CombinedImuFactor::CombinedPreintegratedMeasurements::resetIntegration(){
|
||||
deltaPij_ = Vector3::Zero();
|
||||
deltaVij_ = Vector3::Zero();
|
||||
deltaRij_ = Rot3();
|
||||
deltaTij_ = 0.0;
|
||||
delPdelBiasAcc_ = Z_3x3;
|
||||
delPdelBiasOmega_ = Z_3x3;
|
||||
delVdelBiasAcc_ = Z_3x3;
|
||||
delVdelBiasOmega_ = Z_3x3;
|
||||
delRdelBiasOmega_ = Z_3x3;
|
||||
PreintMeasCov_.setZero();
|
||||
PreintegrationBase::resetIntegration();
|
||||
preintMeasCov_.setZero();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
|
||||
const Vector3& measuredAcc, const Vector3& measuredOmega,
|
||||
double deltaT, boost::optional<const Pose3&> body_P_sensor) {
|
||||
double deltaT, boost::optional<const Pose3&> body_P_sensor,
|
||||
boost::optional<Matrix&> F_test, boost::optional<Matrix&> G_test) {
|
||||
|
||||
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
|
||||
// (i.e., we have to update jacobians and covariances before updating preintegrated measurements).
|
||||
|
||||
// First we compensate the measurements for the bias: since we have only an estimate of the bias, the covariance includes the corresponding uncertainty
|
||||
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
|
||||
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
|
||||
Vector3 correctedAcc, correctedOmega;
|
||||
correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, correctedAcc, correctedOmega, body_P_sensor);
|
||||
|
||||
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
|
||||
if(body_P_sensor){
|
||||
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
|
||||
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
|
||||
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
|
||||
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
|
||||
// linear acceleration vector in the body frame
|
||||
}
|
||||
|
||||
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
||||
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
|
||||
const Matrix3 Jr_theta_incr = Rot3::ExpmapDerivative(theta_incr); // Right jacobian computed at theta_incr
|
||||
const Vector3 integratedOmega = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
||||
Matrix3 D_Rincr_integratedOmega; // Right jacobian computed at theta_incr
|
||||
const Rot3 Rincr = Rot3::Expmap(integratedOmega, D_Rincr_integratedOmega); // rotation increment computed from the current rotation rate measurement
|
||||
|
||||
// Update Jacobians
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
if(!use2ndOrderIntegration_){
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
|
||||
}else{
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
|
||||
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
|
||||
}
|
||||
|
||||
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
|
||||
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
|
||||
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
|
||||
updatePreintegratedJacobians(correctedAcc, D_Rincr_integratedOmega, Rincr, deltaT);
|
||||
|
||||
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
|
||||
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
|
||||
// consider the uncertainty of the bias selection and we keep correlation between biases and preintegrated measurements
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
|
||||
const Matrix3 Jr_theta_i = Rot3::ExpmapDerivative(theta_i);
|
||||
|
||||
Rot3 Rot_j = deltaRij_ * Rincr;
|
||||
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
|
||||
const Matrix3 Jrinv_theta_j = Rot3::LogmapDerivative(theta_j);
|
||||
const Matrix3 R_i = deltaRij(); // store this
|
||||
// Update preintegrated measurements. TODO Frank moved from end of this function !!!
|
||||
Matrix9 F_9x9;
|
||||
updatePreintegratedMeasurements(correctedAcc, Rincr, deltaT, F_9x9);
|
||||
|
||||
// Single Jacobians to propagate covariance
|
||||
Matrix3 H_pos_pos = I_3x3;
|
||||
Matrix3 H_pos_vel = I_3x3 * deltaT;
|
||||
Matrix3 H_pos_angles = Z_3x3;
|
||||
|
||||
Matrix3 H_vel_pos = Z_3x3;
|
||||
Matrix3 H_vel_vel = I_3x3;
|
||||
Matrix3 H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
|
||||
// analytic expression corresponding to the following numerical derivative
|
||||
// Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
|
||||
Matrix3 H_vel_biasacc = - deltaRij_.matrix() * deltaT;
|
||||
|
||||
Matrix3 H_angles_pos = Z_3x3;
|
||||
Matrix3 H_angles_vel = Z_3x3;
|
||||
Matrix3 H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
|
||||
Matrix3 H_angles_biasomega =- Jrinv_theta_j * Jr_theta_incr * deltaT;
|
||||
// analytic expression corresponding to the following numerical derivative
|
||||
// Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
|
||||
Matrix3 H_vel_biasacc = - R_i * deltaT;
|
||||
Matrix3 H_angles_biasomega =- D_Rincr_integratedOmega * deltaT;
|
||||
|
||||
// overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Matrix F(15,15);
|
||||
F << H_pos_pos, H_pos_vel, H_pos_angles, Z_3x3, Z_3x3,
|
||||
H_vel_pos, H_vel_vel, H_vel_angles, H_vel_biasacc, Z_3x3,
|
||||
H_angles_pos, H_angles_vel, H_angles_angles, Z_3x3, H_angles_biasomega,
|
||||
Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
|
||||
Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
|
||||
// for documentation:
|
||||
// F << I_3x3, I_3x3 * deltaT, Z_3x3, Z_3x3, Z_3x3,
|
||||
// Z_3x3, I_3x3, H_vel_angles, H_vel_biasacc, Z_3x3,
|
||||
// Z_3x3, Z_3x3, H_angles_angles, Z_3x3, H_angles_biasomega,
|
||||
// Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
|
||||
// Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
|
||||
F.setZero();
|
||||
F.block<9,9>(0,0) = F_9x9;
|
||||
F.block<6,6>(9,9) = I_6x6;
|
||||
F.block<3,3>(3,9) = H_vel_biasacc;
|
||||
F.block<3,3>(6,12) = H_angles_biasomega;
|
||||
|
||||
// first order uncertainty propagation
|
||||
// Optimized matrix multiplication (1/deltaT) * G * measurementCovariance * G.transpose()
|
||||
|
||||
Matrix G_measCov_Gt = Matrix::Zero(15,15);
|
||||
// BLOCK DIAGONAL TERMS
|
||||
G_measCov_Gt.block<3,3>(0,0) = deltaT * measurementCovariance_.block<3,3>(0,0);
|
||||
|
||||
// BLOCK DIAGONAL TERMS
|
||||
G_measCov_Gt.block<3,3>(0,0) = deltaT * integrationCovariance();
|
||||
G_measCov_Gt.block<3,3>(3,3) = (1/deltaT) * (H_vel_biasacc) *
|
||||
(measurementCovariance_.block<3,3>(3,3) + measurementCovariance_.block<3,3>(15,15) ) *
|
||||
(accelerometerCovariance() + biasAccOmegaInit_.block<3,3>(0,0) ) *
|
||||
(H_vel_biasacc.transpose());
|
||||
|
||||
G_measCov_Gt.block<3,3>(6,6) = (1/deltaT) * (H_angles_biasomega) *
|
||||
(measurementCovariance_.block<3,3>(6,6) + measurementCovariance_.block<3,3>(18,18) ) *
|
||||
(gyroscopeCovariance() + biasAccOmegaInit_.block<3,3>(3,3) ) *
|
||||
(H_angles_biasomega.transpose());
|
||||
|
||||
G_measCov_Gt.block<3,3>(9,9) = deltaT * measurementCovariance_.block<3,3>(9,9);
|
||||
|
||||
G_measCov_Gt.block<3,3>(12,12) = deltaT * measurementCovariance_.block<3,3>(12,12);
|
||||
|
||||
// NEW OFF BLOCK DIAGONAL TERMS
|
||||
Matrix3 block23 = H_vel_biasacc * measurementCovariance_.block<3,3>(18,15) * H_angles_biasomega.transpose();
|
||||
G_measCov_Gt.block<3,3>(9,9) = (1/deltaT) * biasAccCovariance_;
|
||||
G_measCov_Gt.block<3,3>(12,12) = (1/deltaT) * biasOmegaCovariance_;
|
||||
// OFF BLOCK DIAGONAL TERMS
|
||||
Matrix3 block23 = H_vel_biasacc * biasAccOmegaInit_.block<3,3>(3,0) * H_angles_biasomega.transpose();
|
||||
G_measCov_Gt.block<3,3>(3,6) = block23;
|
||||
G_measCov_Gt.block<3,3>(6,3) = block23.transpose();
|
||||
preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
|
||||
|
||||
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + G_measCov_Gt;
|
||||
|
||||
// Update preintegrated measurements
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
if(!use2ndOrderIntegration_){
|
||||
deltaPij_ += deltaVij_ * deltaT;
|
||||
}else{
|
||||
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
|
||||
// F_test and G_test are used for testing purposes and are not needed by the factor
|
||||
if(F_test){
|
||||
F_test->resize(15,15);
|
||||
(*F_test) << F;
|
||||
}
|
||||
if(G_test){
|
||||
G_test->resize(15,21);
|
||||
// This is for testing & documentation
|
||||
///< measurementCovariance_ : cov[integrationError measuredAcc measuredOmega biasAccRandomWalk biasOmegaRandomWalk biasAccInit biasOmegaInit] in R^(21 x 21)
|
||||
(*G_test) << I_3x3 * deltaT, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3,
|
||||
Z_3x3, -H_vel_biasacc, Z_3x3, Z_3x3, Z_3x3, H_vel_biasacc, Z_3x3,
|
||||
Z_3x3, Z_3x3, -H_angles_biasomega, Z_3x3, Z_3x3, Z_3x3, H_angles_biasomega,
|
||||
Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3, Z_3x3, Z_3x3,
|
||||
Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3, Z_3x3;
|
||||
}
|
||||
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
|
||||
deltaRij_ = deltaRij_ * Rincr;
|
||||
deltaTij_ += deltaT;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// CombinedImuFactor methods
|
||||
//------------------------------------------------------------------------------
|
||||
CombinedImuFactor::CombinedImuFactor() :
|
||||
preintegratedMeasurements_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Matrix::Zero(6,6)) {}
|
||||
ImuFactorBase(), _PIM_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_6x6) {}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
CombinedImuFactor::CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
|
||||
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
|
||||
const Vector3& gravity, const Vector3& omegaCoriolis,
|
||||
boost::optional<const Pose3&> body_P_sensor, const bool use2ndOrderCoriolis) :
|
||||
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
|
||||
preintegratedMeasurements_(preintegratedMeasurements),
|
||||
gravity_(gravity),
|
||||
omegaCoriolis_(omegaCoriolis),
|
||||
body_P_sensor_(body_P_sensor),
|
||||
use2ndOrderCoriolis_(use2ndOrderCoriolis){
|
||||
}
|
||||
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.preintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
|
||||
ImuFactorBase(gravity, omegaCoriolis, body_P_sensor, use2ndOrderCoriolis),
|
||||
_PIM_(preintegratedMeasurements) {}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
gtsam::NonlinearFactor::shared_ptr CombinedImuFactor::clone() const {
|
||||
|
@ -243,22 +182,17 @@ void CombinedImuFactor::print(const string& s, const KeyFormatter& keyFormatter)
|
|||
<< keyFormatter(this->key4()) << ","
|
||||
<< keyFormatter(this->key5()) << ","
|
||||
<< keyFormatter(this->key6()) << ")\n";
|
||||
preintegratedMeasurements_.print(" preintegrated measurements:");
|
||||
cout << " gravity: [ " << gravity_.transpose() << " ]" << endl;
|
||||
cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
|
||||
ImuFactorBase::print("");
|
||||
_PIM_.print(" preintegrated measurements:");
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
if(this->body_P_sensor_)
|
||||
this->body_P_sensor_->print(" sensor pose in body frame: ");
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
bool CombinedImuFactor::equals(const NonlinearFactor& expected, double tol) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol)
|
||||
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
|
||||
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
|
||||
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
|
||||
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
|
||||
&& _PIM_.equals(e->_PIM_, tol)
|
||||
&& ImuFactorBase::equals(*e, tol);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
@ -268,230 +202,69 @@ Vector CombinedImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_
|
|||
boost::optional<Matrix&> H3, boost::optional<Matrix&> H4,
|
||||
boost::optional<Matrix&> H5, boost::optional<Matrix&> H6) const {
|
||||
|
||||
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
|
||||
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
|
||||
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
|
||||
// if we need the jacobians
|
||||
if(H1 || H2 || H3 || H4 || H5 || H6){
|
||||
Matrix H1_pvR, H2_pvR, H3_pvR, H4_pvR, H5_pvR, Hbias_i, Hbias_j; // pvR = mnemonic: position (p), velocity (v), rotation (R)
|
||||
|
||||
// we give some shorter name to rotations and translations
|
||||
const Rot3 Rot_i = pose_i.rotation();
|
||||
const Rot3 Rot_j = pose_j.rotation();
|
||||
const Vector3 pos_i = pose_i.translation().vector();
|
||||
const Vector3 pos_j = pose_j.translation().vector();
|
||||
// error wrt preintegrated measurements
|
||||
Vector r_pvR(9);
|
||||
r_pvR = _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
|
||||
gravity_, omegaCoriolis_, use2ndOrderCoriolis_, //
|
||||
H1_pvR, H2_pvR, H3_pvR, H4_pvR, H5_pvR);
|
||||
|
||||
// We compute factor's Jacobians, according to [3]
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
|
||||
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
|
||||
// error wrt bias evolution model (random walk)
|
||||
Vector6 fbias = bias_j.between(bias_i, Hbias_j, Hbias_i).vector(); // [bias_j.acc - bias_i.acc; bias_j.gyr - bias_i.gyr]
|
||||
|
||||
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
|
||||
|
||||
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
|
||||
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
|
||||
|
||||
const Rot3 deltaRij_biascorrected_corioliscorrected =
|
||||
Rot3::Expmap( theta_biascorrected_corioliscorrected );
|
||||
|
||||
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
|
||||
|
||||
const Matrix3 Jr_theta_bcc = Rot3::ExpmapDerivative(theta_biascorrected_corioliscorrected);
|
||||
|
||||
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
|
||||
|
||||
const Matrix3 Jrinv_fRhat = Rot3::LogmapDerivative(Rot3::Logmap(fRhat));
|
||||
|
||||
if(H1) {
|
||||
H1->resize(15,6);
|
||||
|
||||
Matrix3 dfPdPi;
|
||||
Matrix3 dfVdPi;
|
||||
if(use2ndOrderCoriolis_){
|
||||
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
|
||||
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
|
||||
if(H1) {
|
||||
H1->resize(15,6);
|
||||
H1->block<9,6>(0,0) = H1_pvR;
|
||||
// adding: [dBiasAcc/dPi ; dBiasOmega/dPi]
|
||||
H1->block<6,6>(9,0) = Z_6x6;
|
||||
}
|
||||
else{
|
||||
dfPdPi = - Rot_i.matrix();
|
||||
dfVdPi = Z_3x3;
|
||||
if(H2) {
|
||||
H2->resize(15,3);
|
||||
H2->block<9,3>(0,0) = H2_pvR;
|
||||
// adding: [dBiasAcc/dVi ; dBiasOmega/dVi]
|
||||
H2->block<6,3>(9,0) = Matrix::Zero(6,3);
|
||||
}
|
||||
|
||||
(*H1) <<
|
||||
// dfP/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
|
||||
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
|
||||
// dfP/dPi
|
||||
dfPdPi,
|
||||
// dfV/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
|
||||
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
|
||||
// dfV/dPi
|
||||
dfVdPi,
|
||||
// dfR/dRi
|
||||
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
|
||||
// dfR/dPi
|
||||
Z_3x3,
|
||||
//dBiasAcc/dPi
|
||||
Z_3x3, Z_3x3,
|
||||
//dBiasOmega/dPi
|
||||
Z_3x3, Z_3x3;
|
||||
if(H3) {
|
||||
H3->resize(15,6);
|
||||
H3->block<9,6>(0,0) = H3_pvR;
|
||||
// adding: [dBiasAcc/dPj ; dBiasOmega/dPj]
|
||||
H3->block<6,6>(9,0) = Z_6x6;
|
||||
}
|
||||
if(H4) {
|
||||
H4->resize(15,3);
|
||||
H4->block<9,3>(0,0) = H4_pvR;
|
||||
// adding: [dBiasAcc/dVi ; dBiasOmega/dVi]
|
||||
H4->block<6,3>(9,0) = Matrix::Zero(6,3);
|
||||
}
|
||||
if(H5) {
|
||||
H5->resize(15,6);
|
||||
H5->block<9,6>(0,0) = H5_pvR;
|
||||
// adding: [dBiasAcc/dBias_i ; dBiasOmega/dBias_i]
|
||||
H5->block<6,6>(9,0) = Hbias_i;
|
||||
}
|
||||
if(H6) {
|
||||
H6->resize(15,6);
|
||||
H6->block<9,6>(0,0) = Matrix::Zero(9,6);
|
||||
// adding: [dBiasAcc/dBias_j ; dBiasOmega/dBias_j]
|
||||
H6->block<6,6>(9,0) = Hbias_j;
|
||||
}
|
||||
Vector r(15); r << r_pvR, fbias; // vector of size 15
|
||||
return r;
|
||||
}
|
||||
|
||||
if(H2) {
|
||||
H2->resize(15,3);
|
||||
(*H2) <<
|
||||
// dfP/dVi
|
||||
- I_3x3 * deltaTij
|
||||
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
// dfV/dVi
|
||||
- I_3x3
|
||||
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
|
||||
// dfR/dVi
|
||||
Z_3x3,
|
||||
//dBiasAcc/dVi
|
||||
Z_3x3,
|
||||
//dBiasOmega/dVi
|
||||
Z_3x3;
|
||||
}
|
||||
|
||||
if(H3) {
|
||||
H3->resize(15,6);
|
||||
(*H3) <<
|
||||
// dfP/dPosej
|
||||
Z_3x3, Rot_j.matrix(),
|
||||
// dfV/dPosej
|
||||
Matrix::Zero(3,6),
|
||||
// dfR/dPosej
|
||||
Jrinv_fRhat * ( I_3x3 ), Z_3x3,
|
||||
//dBiasAcc/dPosej
|
||||
Z_3x3, Z_3x3,
|
||||
//dBiasOmega/dPosej
|
||||
Z_3x3, Z_3x3;
|
||||
}
|
||||
|
||||
if(H4) {
|
||||
H4->resize(15,3);
|
||||
(*H4) <<
|
||||
// dfP/dVj
|
||||
Z_3x3,
|
||||
// dfV/dVj
|
||||
I_3x3,
|
||||
// dfR/dVj
|
||||
Z_3x3,
|
||||
//dBiasAcc/dVj
|
||||
Z_3x3,
|
||||
//dBiasOmega/dVj
|
||||
Z_3x3;
|
||||
}
|
||||
|
||||
if(H5) {
|
||||
const Matrix3 Jrinv_theta_bc = Rot3::LogmapDerivative(theta_biascorrected);
|
||||
const Matrix3 Jr_JbiasOmegaIncr = Rot3::ExpmapDerivative(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
|
||||
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
|
||||
|
||||
H5->resize(15,6);
|
||||
(*H5) <<
|
||||
// dfP/dBias_i
|
||||
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
|
||||
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
|
||||
// dfV/dBias_i
|
||||
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
|
||||
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
|
||||
// dfR/dBias_i
|
||||
Matrix::Zero(3,3),
|
||||
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega),
|
||||
//dBiasAcc/dBias_i
|
||||
-I_3x3, Z_3x3,
|
||||
//dBiasOmega/dBias_i
|
||||
Z_3x3, -I_3x3;
|
||||
}
|
||||
|
||||
if(H6) {
|
||||
H6->resize(15,6);
|
||||
(*H6) <<
|
||||
// dfP/dBias_j
|
||||
Z_3x3, Z_3x3,
|
||||
// dfV/dBias_j
|
||||
Z_3x3, Z_3x3,
|
||||
// dfR/dBias_j
|
||||
Z_3x3, Z_3x3,
|
||||
//dBiasAcc/dBias_j
|
||||
I_3x3, Z_3x3,
|
||||
//dBiasOmega/dBias_j
|
||||
Z_3x3, I_3x3;
|
||||
}
|
||||
|
||||
// Evaluate residual error, according to [3]
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
const Vector3 fp =
|
||||
pos_j - pos_i
|
||||
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
|
||||
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
|
||||
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
|
||||
- vel_i * deltaTij
|
||||
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
- 0.5 * gravity_ * deltaTij*deltaTij;
|
||||
|
||||
const Vector3 fv =
|
||||
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
|
||||
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
|
||||
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
|
||||
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
|
||||
- gravity_ * deltaTij;
|
||||
|
||||
const Vector3 fR = Rot3::Logmap(fRhat);
|
||||
|
||||
const Vector3 fbiasAcc = bias_j.accelerometer() - bias_i.accelerometer();
|
||||
|
||||
const Vector3 fbiasOmega = bias_j.gyroscope() - bias_i.gyroscope();
|
||||
|
||||
Vector r(15); r << fp, fv, fR, fbiasAcc, fbiasOmega; // vector of size 15
|
||||
|
||||
// else, only compute the error vector:
|
||||
// error wrt preintegrated measurements
|
||||
Vector r_pvR(9);
|
||||
r_pvR = _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
|
||||
gravity_, omegaCoriolis_, use2ndOrderCoriolis_, //
|
||||
boost::none, boost::none, boost::none, boost::none, boost::none);
|
||||
// error wrt bias evolution model (random walk)
|
||||
Vector6 fbias = bias_j.between(bias_i).vector(); // [bias_j.acc - bias_i.acc; bias_j.gyr - bias_i.gyr]
|
||||
// overall error
|
||||
Vector r(15); r << r_pvR, fbias; // vector of size 15
|
||||
return r;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
PoseVelocityBias CombinedImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i,
|
||||
const imuBias::ConstantBias& bias_i,
|
||||
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
|
||||
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis){
|
||||
|
||||
const double& deltaTij = preintegratedMeasurements.deltaTij_;
|
||||
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
|
||||
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
|
||||
|
||||
const Rot3 Rot_i = pose_i.rotation();
|
||||
const Vector3 pos_i = pose_i.translation().vector();
|
||||
|
||||
// Predict state at time j
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
|
||||
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
|
||||
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
|
||||
+ vel_i * deltaTij
|
||||
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
+ 0.5 * gravity * deltaTij*deltaTij;
|
||||
|
||||
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
|
||||
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
|
||||
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
|
||||
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
|
||||
+ gravity * deltaTij);
|
||||
|
||||
if(use2ndOrderCoriolis){
|
||||
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
|
||||
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
|
||||
}
|
||||
|
||||
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
|
||||
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
|
||||
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
|
||||
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
|
||||
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
|
||||
const Rot3 deltaRij_biascorrected_corioliscorrected =
|
||||
Rot3::Expmap( theta_biascorrected_corioliscorrected );
|
||||
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
|
||||
|
||||
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
|
||||
|
||||
return PoseVelocityBias(pose_j, vel_j, bias_i);
|
||||
}
|
||||
|
||||
} /// namespace gtsam
|
||||
|
|
|
@ -23,7 +23,8 @@
|
|||
|
||||
/* GTSAM includes */
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
#include <gtsam/navigation/PreintegrationBase.h>
|
||||
#include <gtsam/navigation/ImuFactorBase.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -33,78 +34,63 @@ namespace gtsam {
|
|||
* @addtogroup SLAM
|
||||
*
|
||||
* If you are using the factor, please cite:
|
||||
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
|
||||
* independent sets in factor graphs: a unifying perspective based on smart factors,
|
||||
* Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating
|
||||
* conditionally independent sets in factor graphs: a unifying perspective based
|
||||
* on smart factors, Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
*
|
||||
* REFERENCES:
|
||||
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
|
||||
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
|
||||
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
** REFERENCES:
|
||||
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
|
||||
* Volume 2, 2008.
|
||||
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
|
||||
* High-Dynamic Motion in Built Environments Without Initial Conditions",
|
||||
* TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
|
||||
* Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Struct to hold all state variables of CombinedImuFactor returned by Predict function
|
||||
* CombinedImuFactor is a 6-ways factor involving previous state (pose and
|
||||
* velocity of the vehicle, as well as bias at previous time step), and current
|
||||
* state (pose, velocity, bias at current time step). Following the pre-
|
||||
* integration scheme proposed in [2], the CombinedImuFactor includes many IMU
|
||||
* measurements, which are "summarized" using the CombinedPreintegratedMeasurements
|
||||
* class. There are 3 main differences wrpt the ImuFactor class:
|
||||
* 1) The factor is 6-ways, meaning that it also involves both biases (previous
|
||||
* and current time step).Therefore, the factor internally imposes the biases
|
||||
* to be slowly varying; in particular, the matrices "biasAccCovariance" and
|
||||
* "biasOmegaCovariance" described the random walk that models bias evolution.
|
||||
* 2) The preintegration covariance takes into account the noise in the bias
|
||||
* estimate used for integration.
|
||||
* 3) The covariance matrix of the CombinedPreintegratedMeasurements preserves
|
||||
* the correlation between the bias uncertainty and the preintegrated
|
||||
* measurements uncertainty.
|
||||
*/
|
||||
struct PoseVelocityBias {
|
||||
Pose3 pose;
|
||||
Vector3 velocity;
|
||||
imuBias::ConstantBias bias;
|
||||
|
||||
PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
|
||||
const imuBias::ConstantBias _bias) :
|
||||
pose(_pose), velocity(_velocity), bias(_bias) {
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* CombinedImuFactor is a 6-ways factor involving previous state (pose and velocity of the vehicle, as well as bias
|
||||
* at previous time step), and current state (pose, velocity, bias at current time step). According to the
|
||||
* preintegration scheme proposed in [2], the CombinedImuFactor includes many IMU measurements, which are
|
||||
* "summarized" using the CombinedPreintegratedMeasurements class. There are 3 main differences wrt ImuFactor:
|
||||
* 1) The factor is 6-ways, meaning that it also involves both biases (previous and current time step).
|
||||
* Therefore, the factor internally imposes the biases to be slowly varying; in particular, the matrices
|
||||
* "biasAccCovariance" and "biasOmegaCovariance" described the random walk that models bias evolution.
|
||||
* 2) The preintegration covariance takes into account the noise in the bias estimate used for integration.
|
||||
* 3) The covariance matrix of the CombinedPreintegratedMeasurements preserves the correlation between the bias uncertainty
|
||||
* and the preintegrated measurements uncertainty.
|
||||
*/
|
||||
class CombinedImuFactor: public NoiseModelFactor6<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias,imuBias::ConstantBias> {
|
||||
class CombinedImuFactor: public NoiseModelFactor6<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias,imuBias::ConstantBias>, public ImuFactorBase{
|
||||
public:
|
||||
|
||||
/** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
|
||||
* and the corresponding covariance matrix. The measurements are then used to build the CombinedPreintegrated IMU factor (CombinedImuFactor).
|
||||
* Integration is done incrementally (ideally, one integrates the measurement as soon as it is received
|
||||
* from the IMU) so as to avoid costly integration at time of factor construction.
|
||||
/**
|
||||
* CombinedPreintegratedMeasurements integrates the IMU measurements
|
||||
* (rotation rates and accelerations) and the corresponding covariance matrix.
|
||||
* The measurements are then used to build the CombinedImuFactor. Integration
|
||||
* is done incrementally (ideally, one integrates the measurement as soon as
|
||||
* it is received from the IMU) so as to avoid costly integration at time of
|
||||
* factor construction.
|
||||
*/
|
||||
class CombinedPreintegratedMeasurements {
|
||||
class CombinedPreintegratedMeasurements: public PreintegrationBase {
|
||||
|
||||
friend class CombinedImuFactor;
|
||||
|
||||
protected:
|
||||
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
|
||||
Eigen::Matrix<double,21,21> measurementCovariance_; ///< (Raw measurements uncertainty) Covariance of the vector
|
||||
///< [integrationError measuredAcc measuredOmega biasAccRandomWalk biasOmegaRandomWalk biasAccInit biasOmegaInit] in R^(21 x 21)
|
||||
|
||||
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
|
||||
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
|
||||
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
|
||||
double deltaTij_; ///< Time interval from i to j
|
||||
Matrix3 biasAccCovariance_; ///< continuous-time "Covariance" describing accelerometer bias random walk
|
||||
Matrix3 biasOmegaCovariance_; ///< continuous-time "Covariance" describing gyroscope bias random walk
|
||||
Matrix6 biasAccOmegaInit_; ///< covariance of bias used for pre-integration
|
||||
|
||||
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
|
||||
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
|
||||
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
|
||||
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
|
||||
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
|
||||
|
||||
Eigen::Matrix<double,15,15> PreintMeasCov_; ///< Covariance matrix of the preintegrated measurements
|
||||
Eigen::Matrix<double,15,15> preintMeasCov_; ///< Covariance matrix of the preintegrated measurements
|
||||
///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION BiasAcc BiasOmega]
|
||||
///< (first-order propagation from *measurementCovariance*). CombinedPreintegratedMeasurements also include the biases and keep the correlation
|
||||
///< between the preintegrated measurements and the biases
|
||||
|
||||
bool use2ndOrderIntegration_; ///< Controls the order of integration
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
|
@ -141,60 +127,20 @@ public:
|
|||
* @param body_P_sensor Optional sensor frame (pose of the IMU in the body frame)
|
||||
*/
|
||||
void integrateMeasurement(const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none);
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none,
|
||||
boost::optional<Matrix&> F_test = boost::none, boost::optional<Matrix&> G_test = boost::none);
|
||||
|
||||
/// methods to access class variables
|
||||
Matrix measurementCovariance() const {return measurementCovariance_;}
|
||||
Matrix deltaRij() const {return deltaRij_.matrix();}
|
||||
double deltaTij() const{return deltaTij_;}
|
||||
Vector deltaPij() const {return deltaPij_;}
|
||||
Vector deltaVij() const {return deltaVij_;}
|
||||
Vector biasHat() const { return biasHat_.vector();}
|
||||
Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
|
||||
Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
|
||||
Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
|
||||
Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
|
||||
Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
|
||||
Matrix PreintMeasCov() const { return PreintMeasCov_;}
|
||||
|
||||
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
|
||||
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
|
||||
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
|
||||
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
|
||||
// Note: all delta terms refer to an IMU\sensor system at t0
|
||||
Vector body_t_a_body = msr_acc_t;
|
||||
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
|
||||
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
|
||||
}
|
||||
|
||||
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
|
||||
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
|
||||
const Vector3& delta_angles){
|
||||
// Note: all delta terms refer to an IMU\sensor system at t0
|
||||
// Calculate the corrected measurements using the Bias object
|
||||
Vector body_t_omega_body= msr_gyro_t;
|
||||
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
|
||||
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
|
||||
return Rot3::Logmap(R_t_to_t0);
|
||||
}
|
||||
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
|
||||
Matrix preintMeasCov() const { return preintMeasCov_;}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
|
||||
/// Serialization function
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_NVP(biasHat_);
|
||||
ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaPij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaVij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegrationBase);
|
||||
ar & BOOST_SERIALIZATION_NVP(preintMeasCov_);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -203,12 +149,7 @@ private:
|
|||
typedef CombinedImuFactor This;
|
||||
typedef NoiseModelFactor6<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias,imuBias::ConstantBias> Base;
|
||||
|
||||
CombinedPreintegratedMeasurements preintegratedMeasurements_;
|
||||
Vector3 gravity_;
|
||||
Vector3 omegaCoriolis_;
|
||||
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
|
||||
|
||||
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
|
||||
CombinedPreintegratedMeasurements _PIM_;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -257,11 +198,7 @@ public:
|
|||
/** Access the preintegrated measurements. */
|
||||
|
||||
const CombinedPreintegratedMeasurements& preintegratedMeasurements() const {
|
||||
return preintegratedMeasurements_; }
|
||||
|
||||
const Vector3& gravity() const { return gravity_; }
|
||||
|
||||
const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
|
||||
return _PIM_; }
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
|
@ -275,12 +212,6 @@ public:
|
|||
boost::optional<Matrix&> H5 = boost::none,
|
||||
boost::optional<Matrix&> H6 = boost::none) const;
|
||||
|
||||
/// predicted states from IMU
|
||||
static PoseVelocityBias Predict(const Pose3& pose_i, const Vector3& vel_i,
|
||||
const imuBias::ConstantBias& bias_i,
|
||||
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
|
||||
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false);
|
||||
|
||||
private:
|
||||
|
||||
/** Serialization function */
|
||||
|
@ -289,7 +220,7 @@ private:
|
|||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & boost::serialization::make_nvp("NoiseModelFactor6",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
|
||||
ar & BOOST_SERIALIZATION_NVP(_PIM_);
|
||||
ar & BOOST_SERIALIZATION_NVP(gravity_);
|
||||
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
|
||||
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
|
||||
|
|
|
@ -35,165 +35,82 @@ ImuFactor::PreintegratedMeasurements::PreintegratedMeasurements(
|
|||
const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
|
||||
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
|
||||
const bool use2ndOrderIntegration) :
|
||||
biasHat_(bias), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
|
||||
deltaRij_(Rot3()), deltaTij_(0.0),
|
||||
delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
|
||||
delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
|
||||
delRdelBiasOmega_(Z_3x3), use2ndOrderIntegration_(use2ndOrderIntegration)
|
||||
PreintegrationBase(bias,
|
||||
measuredAccCovariance, measuredOmegaCovariance,
|
||||
integrationErrorCovariance, use2ndOrderIntegration)
|
||||
{
|
||||
measurementCovariance_.setZero();
|
||||
measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
|
||||
measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
|
||||
measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
|
||||
PreintMeasCov_.setZero(9,9);
|
||||
preintMeasCov_.setZero();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void ImuFactor::PreintegratedMeasurements::print(const string& s) const {
|
||||
cout << s << endl;
|
||||
biasHat_.print(" biasHat");
|
||||
cout << " deltaTij " << deltaTij_ << endl;
|
||||
cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << endl;
|
||||
cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << endl;
|
||||
deltaRij_.print(" deltaRij ");
|
||||
cout << " measurementCovariance = \n [ " << measurementCovariance_ << " ]" << endl;
|
||||
cout << " PreintMeasCov = \n [ " << PreintMeasCov_ << " ]" << endl;
|
||||
PreintegrationBase::print(s);
|
||||
cout << " preintMeasCov = \n [ " << preintMeasCov_ << " ]" << endl;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
bool ImuFactor::PreintegratedMeasurements::equals(const PreintegratedMeasurements& expected, double tol) const {
|
||||
return biasHat_.equals(expected.biasHat_, tol)
|
||||
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
|
||||
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
|
||||
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
|
||||
&& deltaRij_.equals(expected.deltaRij_, tol)
|
||||
&& fabs(deltaTij_ - expected.deltaTij_) < tol
|
||||
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
|
||||
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
|
||||
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
|
||||
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
|
||||
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
|
||||
return equal_with_abs_tol(preintMeasCov_, expected.preintMeasCov_, tol)
|
||||
&& PreintegrationBase::equals(expected, tol);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void ImuFactor::PreintegratedMeasurements::resetIntegration(){
|
||||
deltaPij_ = Vector3::Zero();
|
||||
deltaVij_ = Vector3::Zero();
|
||||
deltaRij_ = Rot3();
|
||||
deltaTij_ = 0.0;
|
||||
delPdelBiasAcc_ = Z_3x3;
|
||||
delPdelBiasOmega_ = Z_3x3;
|
||||
delVdelBiasAcc_ = Z_3x3;
|
||||
delVdelBiasOmega_ = Z_3x3;
|
||||
delRdelBiasOmega_ = Z_3x3;
|
||||
PreintMeasCov_.setZero();
|
||||
PreintegrationBase::resetIntegration();
|
||||
preintMeasCov_.setZero();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void ImuFactor::PreintegratedMeasurements::integrateMeasurement(
|
||||
const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
|
||||
boost::optional<const Pose3&> body_P_sensor) {
|
||||
boost::optional<const Pose3&> body_P_sensor,
|
||||
OptionalJacobian<9, 9> F_test, OptionalJacobian<9, 9> G_test) {
|
||||
|
||||
// NOTE: order is important here because each update uses old values (i.e., we have to update
|
||||
// jacobians and covariances before updating preintegrated measurements).
|
||||
Vector3 correctedAcc, correctedOmega;
|
||||
correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, correctedAcc, correctedOmega, body_P_sensor);
|
||||
|
||||
// First we compensate the measurements for the bias
|
||||
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
|
||||
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
|
||||
|
||||
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
|
||||
if(body_P_sensor){
|
||||
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
|
||||
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
|
||||
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
|
||||
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
|
||||
// linear acceleration vector in the body frame
|
||||
}
|
||||
|
||||
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
||||
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
|
||||
|
||||
const Matrix3 Jr_theta_incr = Rot3::ExpmapDerivative(theta_incr); // Right jacobian computed at theta_incr
|
||||
const Vector3 integratedOmega = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
||||
Matrix3 D_Rincr_integratedOmega; // Right jacobian computed at theta_incr
|
||||
const Rot3 Rincr = Rot3::Expmap(integratedOmega, D_Rincr_integratedOmega); // rotation increment computed from the current rotation rate measurement
|
||||
|
||||
// Update Jacobians
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
if(!use2ndOrderIntegration_){
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
|
||||
}else{
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
|
||||
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
|
||||
}
|
||||
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
|
||||
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
|
||||
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
|
||||
updatePreintegratedJacobians(correctedAcc, D_Rincr_integratedOmega, Rincr, deltaT);
|
||||
|
||||
// Update preintegrated measurements covariance
|
||||
// Update preintegrated measurements (also get Jacobian)
|
||||
const Matrix3 R_i = deltaRij(); // store this, which is useful to compute G_test
|
||||
Matrix9 F; // overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
updatePreintegratedMeasurements(correctedAcc, Rincr, deltaT, F);
|
||||
|
||||
// first order covariance propagation:
|
||||
// as in [2] we consider a first order propagation that can be seen as a prediction phase in an EKF framework
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
|
||||
const Matrix3 Jr_theta_i = Rot3::ExpmapDerivative(theta_i);
|
||||
|
||||
Rot3 Rot_j = deltaRij_ * Rincr;
|
||||
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
|
||||
const Matrix3 Jrinv_theta_j = Rot3::LogmapDerivative(theta_j);
|
||||
|
||||
Matrix H_pos_pos = I_3x3;
|
||||
Matrix H_pos_vel = I_3x3 * deltaT;
|
||||
Matrix H_pos_angles = Z_3x3;
|
||||
|
||||
Matrix H_vel_pos = Z_3x3;
|
||||
Matrix H_vel_vel = I_3x3;
|
||||
Matrix H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
|
||||
// analytic expression corresponding to the following numerical derivative
|
||||
// Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
|
||||
|
||||
Matrix H_angles_pos = Z_3x3;
|
||||
Matrix H_angles_vel = Z_3x3;
|
||||
Matrix H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
|
||||
// analytic expression corresponding to the following numerical derivative
|
||||
// Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
|
||||
|
||||
// overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Matrix F(9,9);
|
||||
F << H_pos_pos, H_pos_vel, H_pos_angles,
|
||||
H_vel_pos, H_vel_vel, H_vel_angles,
|
||||
H_angles_pos, H_angles_vel, H_angles_angles;
|
||||
|
||||
// first order uncertainty propagation:
|
||||
// the deltaT allows to pass from continuous time noise to discrete time noise
|
||||
// preintMeasCov = F * preintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G.transpose();
|
||||
// NOTE 1: (1/deltaT) allows to pass from continuous time noise to discrete time noise
|
||||
// measurementCovariance_discrete = measurementCovariance_contTime * (1/deltaT)
|
||||
// Gt * Qt * G =(approx)= measurementCovariance_discrete * deltaT^2 = measurementCovariance_contTime * deltaT
|
||||
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + measurementCovariance_ * deltaT ;
|
||||
// NOTE 2: the computation of G * (1/deltaT) * measurementCovariance * G.transpose() is done blockwise,
|
||||
// as G and measurementCovariance are blockdiagonal matrices
|
||||
preintMeasCov_ = F * preintMeasCov_ * F.transpose();
|
||||
preintMeasCov_.block<3,3>(0,0) += integrationCovariance() * deltaT;
|
||||
preintMeasCov_.block<3,3>(3,3) += R_i * accelerometerCovariance() * R_i.transpose() * deltaT;
|
||||
preintMeasCov_.block<3,3>(6,6) += D_Rincr_integratedOmega * gyroscopeCovariance() * D_Rincr_integratedOmega.transpose() * deltaT;
|
||||
|
||||
// Extended version, without approximation: Gt * Qt * G =(approx)= measurementCovariance_contTime * deltaT
|
||||
// This in only kept for documentation.
|
||||
//
|
||||
// Matrix G(9,9);
|
||||
// G << I_3x3 * deltaT, Z_3x3, Z_3x3,
|
||||
// Z_3x3, deltaRij.matrix() * deltaT, Z_3x3,
|
||||
// Z_3x3, Z_3x3, Jrinv_theta_j * Jr_theta_incr * deltaT;
|
||||
//
|
||||
// PreintMeasCov = F * PreintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G.transpose();
|
||||
|
||||
// Update preintegrated measurements (this has to be done after the update of covariances and jacobians!)
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
if(!use2ndOrderIntegration_){
|
||||
deltaPij_ += deltaVij_ * deltaT;
|
||||
}else{
|
||||
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
|
||||
// F_test and G_test are given as output for testing purposes and are not needed by the factor
|
||||
if(F_test){ // This in only for testing
|
||||
(*F_test) << F;
|
||||
}
|
||||
if(G_test){ // This in only for testing & documentation, while the actual computation is done block-wise
|
||||
// intNoise accNoise omegaNoise
|
||||
(*G_test) << I_3x3 * deltaT, Z_3x3, Z_3x3, // pos
|
||||
Z_3x3, R_i * deltaT, Z_3x3, // vel
|
||||
Z_3x3, Z_3x3, D_Rincr_integratedOmega * deltaT; // angle
|
||||
}
|
||||
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
|
||||
deltaRij_ = deltaRij_ * Rincr;
|
||||
deltaTij_ += deltaT;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// ImuFactor methods
|
||||
//------------------------------------------------------------------------------
|
||||
ImuFactor::ImuFactor() :
|
||||
preintegratedMeasurements_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3), use2ndOrderCoriolis_(false){}
|
||||
ImuFactorBase(), _PIM_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3) {}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
ImuFactor::ImuFactor(
|
||||
|
@ -202,13 +119,10 @@ ImuFactor::ImuFactor(
|
|||
const Vector3& gravity, const Vector3& omegaCoriolis,
|
||||
boost::optional<const Pose3&> body_P_sensor,
|
||||
const bool use2ndOrderCoriolis) :
|
||||
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias),
|
||||
preintegratedMeasurements_(preintegratedMeasurements),
|
||||
gravity_(gravity),
|
||||
omegaCoriolis_(omegaCoriolis),
|
||||
body_P_sensor_(body_P_sensor),
|
||||
use2ndOrderCoriolis_(use2ndOrderCoriolis){
|
||||
}
|
||||
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.preintMeasCov_),
|
||||
pose_i, vel_i, pose_j, vel_j, bias),
|
||||
ImuFactorBase(gravity, omegaCoriolis, body_P_sensor, use2ndOrderCoriolis),
|
||||
_PIM_(preintegratedMeasurements) {}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
gtsam::NonlinearFactor::shared_ptr ImuFactor::clone() const {
|
||||
|
@ -224,215 +138,28 @@ void ImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
|
|||
<< keyFormatter(this->key3()) << ","
|
||||
<< keyFormatter(this->key4()) << ","
|
||||
<< keyFormatter(this->key5()) << ")\n";
|
||||
preintegratedMeasurements_.print(" preintegrated measurements:");
|
||||
cout << " gravity: [ " << gravity_.transpose() << " ]" << endl;
|
||||
cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
|
||||
ImuFactorBase::print("");
|
||||
_PIM_.print(" preintegrated measurements:");
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
if(this->body_P_sensor_)
|
||||
this->body_P_sensor_->print(" sensor pose in body frame: ");
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
bool ImuFactor::equals(const NonlinearFactor& expected, double tol) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol)
|
||||
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
|
||||
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
|
||||
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
|
||||
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
|
||||
&& _PIM_.equals(e->_PIM_, tol)
|
||||
&& ImuFactorBase::equals(*e, tol);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
Vector ImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
|
||||
const imuBias::ConstantBias& bias,
|
||||
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2,
|
||||
boost::optional<Matrix&> H3, boost::optional<Matrix&> H4,
|
||||
boost::optional<Matrix&> H5) const
|
||||
{
|
||||
Vector ImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i,
|
||||
const Pose3& pose_j, const Vector3& vel_j,
|
||||
const imuBias::ConstantBias& bias_i, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2, boost::optional<Matrix&> H3,
|
||||
boost::optional<Matrix&> H4, boost::optional<Matrix&> H5) const {
|
||||
|
||||
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
|
||||
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
|
||||
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
|
||||
|
||||
// we give some shorter name to rotations and translations
|
||||
const Rot3 Rot_i = pose_i.rotation();
|
||||
const Rot3 Rot_j = pose_j.rotation();
|
||||
const Vector3 pos_i = pose_i.translation().vector();
|
||||
const Vector3 pos_j = pose_j.translation().vector();
|
||||
|
||||
// We compute factor's Jacobians
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
|
||||
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
|
||||
|
||||
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
|
||||
|
||||
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
|
||||
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
|
||||
|
||||
const Rot3 deltaRij_biascorrected_corioliscorrected =
|
||||
Rot3::Expmap( theta_biascorrected_corioliscorrected );
|
||||
|
||||
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
|
||||
|
||||
const Matrix3 Jr_theta_bcc = Rot3::ExpmapDerivative(theta_biascorrected_corioliscorrected);
|
||||
|
||||
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
|
||||
|
||||
const Matrix3 Jrinv_fRhat = Rot3::LogmapDerivative(Rot3::Logmap(fRhat));
|
||||
|
||||
if(H1) {
|
||||
H1->resize(9,6);
|
||||
|
||||
Matrix3 dfPdPi;
|
||||
Matrix3 dfVdPi;
|
||||
if(use2ndOrderCoriolis_){
|
||||
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
|
||||
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
|
||||
}
|
||||
else{
|
||||
dfPdPi = - Rot_i.matrix();
|
||||
dfVdPi = Z_3x3;
|
||||
}
|
||||
|
||||
(*H1) <<
|
||||
// dfP/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
|
||||
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
|
||||
// dfP/dPi
|
||||
dfPdPi,
|
||||
// dfV/dRi
|
||||
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
|
||||
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
|
||||
// dfV/dPi
|
||||
dfVdPi,
|
||||
// dfR/dRi
|
||||
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
|
||||
// dfR/dPi
|
||||
Z_3x3;
|
||||
}
|
||||
|
||||
if(H2) {
|
||||
H2->resize(9,3);
|
||||
(*H2) <<
|
||||
// dfP/dVi
|
||||
- I_3x3 * deltaTij
|
||||
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
// dfV/dVi
|
||||
- I_3x3
|
||||
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
|
||||
// dfR/dVi
|
||||
Z_3x3;
|
||||
}
|
||||
|
||||
if(H3) {
|
||||
H3->resize(9,6);
|
||||
(*H3) <<
|
||||
// dfP/dPosej
|
||||
Z_3x3, Rot_j.matrix(),
|
||||
// dfV/dPosej
|
||||
Matrix::Zero(3,6),
|
||||
// dfR/dPosej
|
||||
Jrinv_fRhat * ( I_3x3 ), Z_3x3;
|
||||
}
|
||||
|
||||
if(H4) {
|
||||
H4->resize(9,3);
|
||||
(*H4) <<
|
||||
// dfP/dVj
|
||||
Z_3x3,
|
||||
// dfV/dVj
|
||||
I_3x3,
|
||||
// dfR/dVj
|
||||
Z_3x3;
|
||||
}
|
||||
|
||||
if(H5) {
|
||||
const Matrix3 Jrinv_theta_bc = Rot3::LogmapDerivative(theta_biascorrected);
|
||||
const Matrix3 Jr_JbiasOmegaIncr = Rot3::ExpmapDerivative(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
|
||||
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
|
||||
|
||||
H5->resize(9,6);
|
||||
(*H5) <<
|
||||
// dfP/dBias
|
||||
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
|
||||
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
|
||||
// dfV/dBias
|
||||
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
|
||||
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
|
||||
// dfR/dBias
|
||||
Matrix::Zero(3,3),
|
||||
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega);
|
||||
}
|
||||
|
||||
// Evaluate residual error, according to [3]
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
const Vector3 fp =
|
||||
pos_j - pos_i
|
||||
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
|
||||
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
|
||||
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
|
||||
- vel_i * deltaTij
|
||||
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
- 0.5 * gravity_ * deltaTij*deltaTij;
|
||||
|
||||
const Vector3 fv =
|
||||
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
|
||||
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
|
||||
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
|
||||
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
|
||||
- gravity_ * deltaTij;
|
||||
|
||||
const Vector3 fR = Rot3::Logmap(fRhat);
|
||||
|
||||
Vector r(9); r << fp, fv, fR;
|
||||
return r;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
PoseVelocity ImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i,
|
||||
const imuBias::ConstantBias& bias, const PreintegratedMeasurements preintegratedMeasurements,
|
||||
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis)
|
||||
{
|
||||
|
||||
const double& deltaTij = preintegratedMeasurements.deltaTij_;
|
||||
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
|
||||
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
|
||||
|
||||
const Rot3 Rot_i = pose_i.rotation();
|
||||
const Vector3 pos_i = pose_i.translation().vector();
|
||||
|
||||
// Predict state at time j
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
|
||||
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
|
||||
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
|
||||
+ vel_i * deltaTij
|
||||
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
+ 0.5 * gravity * deltaTij*deltaTij;
|
||||
|
||||
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
|
||||
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
|
||||
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
|
||||
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
|
||||
+ gravity * deltaTij);
|
||||
|
||||
if(use2ndOrderCoriolis){
|
||||
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
|
||||
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
|
||||
}
|
||||
|
||||
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
|
||||
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
|
||||
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
|
||||
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
|
||||
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
|
||||
const Rot3 deltaRij_biascorrected_corioliscorrected =
|
||||
Rot3::Expmap( theta_biascorrected_corioliscorrected );
|
||||
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
|
||||
|
||||
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
|
||||
return PoseVelocity(pose_j, vel_j);
|
||||
return _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
|
||||
gravity_, omegaCoriolis_, use2ndOrderCoriolis_, H1, H2, H3, H4, H5);
|
||||
}
|
||||
|
||||
} /// namespace gtsam
|
||||
|
|
|
@ -23,7 +23,8 @@
|
|||
|
||||
/* GTSAM includes */
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
#include <gtsam/navigation/PreintegrationBase.h>
|
||||
#include <gtsam/navigation/ImuFactorBase.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -38,66 +39,46 @@ namespace gtsam {
|
|||
* Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
*
|
||||
** REFERENCES:
|
||||
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
|
||||
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
|
||||
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
|
||||
* Volume 2, 2008.
|
||||
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
|
||||
* High-Dynamic Motion in Built Environments Without Initial Conditions",
|
||||
* TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
|
||||
* Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Struct to hold return variables by the Predict Function
|
||||
* ImuFactor is a 5-ways factor involving previous state (pose and velocity of
|
||||
* the vehicle at previous time step), current state (pose and velocity at
|
||||
* current time step), and the bias estimate. Following the preintegration
|
||||
* scheme proposed in [2], the ImuFactor includes many IMU measurements, which
|
||||
* are "summarized" using the PreintegratedMeasurements class.
|
||||
* Note that this factor does not model "temporal consistency" of the biases
|
||||
* (which are usually slowly varying quantities), which is up to the caller.
|
||||
* See also CombinedImuFactor for a class that does this for you.
|
||||
*/
|
||||
struct PoseVelocity {
|
||||
Pose3 pose;
|
||||
Vector3 velocity;
|
||||
PoseVelocity(const Pose3& _pose, const Vector3& _velocity) :
|
||||
pose(_pose), velocity(_velocity) {
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* ImuFactor is a 5-ways factor involving previous state (pose and velocity of the vehicle at previous time step),
|
||||
* current state (pose and velocity at current time step), and the bias estimate. According to the
|
||||
* preintegration scheme proposed in [2], the ImuFactor includes many IMU measurements, which are
|
||||
* "summarized" using the PreintegratedMeasurements class.
|
||||
* Note that this factor does not force "temporal consistency" of the biases (which are usually
|
||||
* slowly varying quantities), see also CombinedImuFactor for more details.
|
||||
*/
|
||||
class ImuFactor: public NoiseModelFactor5<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias> {
|
||||
class ImuFactor: public NoiseModelFactor5<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias>, public ImuFactorBase {
|
||||
public:
|
||||
|
||||
/**
|
||||
* PreintegratedMeasurements accumulates (integrates) the IMU measurements
|
||||
* (rotation rates and accelerations) and the corresponding covariance matrix.
|
||||
* The measurements are then used to build the Preintegrated IMU factor (ImuFactor).
|
||||
* Integration is done incrementally (ideally, one integrates the measurement as soon as it is received
|
||||
* from the IMU) so as to avoid costly integration at time of factor construction.
|
||||
* The measurements are then used to build the Preintegrated IMU factor.
|
||||
* Integration is done incrementally (ideally, one integrates the measurement
|
||||
* as soon as it is received from the IMU) so as to avoid costly integration
|
||||
* at time of factor construction.
|
||||
*/
|
||||
class PreintegratedMeasurements {
|
||||
class PreintegratedMeasurements: public PreintegrationBase {
|
||||
|
||||
friend class ImuFactor;
|
||||
|
||||
protected:
|
||||
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
|
||||
Eigen::Matrix<double,9,9> measurementCovariance_; ///< (continuous-time uncertainty) "Covariance" of the vector [integrationError measuredAcc measuredOmega] in R^(9X9)
|
||||
|
||||
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
|
||||
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
|
||||
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
|
||||
double deltaTij_; ///< Time interval from i to j
|
||||
|
||||
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
|
||||
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
|
||||
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
|
||||
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
|
||||
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
|
||||
|
||||
Eigen::Matrix<double,9,9> PreintMeasCov_; ///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION]
|
||||
Eigen::Matrix<double,9,9> preintMeasCov_; ///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION]
|
||||
///< (first-order propagation from *measurementCovariance*).
|
||||
|
||||
bool use2ndOrderIntegration_; ///< Controls the order of integration
|
||||
|
||||
public:
|
||||
public:
|
||||
|
||||
/**
|
||||
* Default constructor, initializes the class with no measurements
|
||||
|
@ -127,160 +108,107 @@ public:
|
|||
* @param measuredOmega Measured angular velocity (as given by the sensor)
|
||||
* @param deltaT Time interval between two consecutive IMU measurements
|
||||
* @param body_P_sensor Optional sensor frame (pose of the IMU in the body frame)
|
||||
* @param Fout, Gout Jacobians used internally (only needed for testing)
|
||||
*/
|
||||
void integrateMeasurement(const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none);
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none,
|
||||
OptionalJacobian<9, 9> Fout = boost::none, OptionalJacobian<9, 9> Gout = boost::none);
|
||||
|
||||
/// methods to access class variables
|
||||
Matrix measurementCovariance() const {return measurementCovariance_;}
|
||||
Matrix deltaRij() const {return deltaRij_.matrix();}
|
||||
double deltaTij() const{return deltaTij_;}
|
||||
Vector deltaPij() const {return deltaPij_;}
|
||||
Vector deltaVij() const {return deltaVij_;}
|
||||
Vector biasHat() const { return biasHat_.vector();}
|
||||
Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
|
||||
Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
|
||||
Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
|
||||
Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
|
||||
Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
|
||||
Matrix preintMeasCov() const { return PreintMeasCov_;}
|
||||
|
||||
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
|
||||
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
|
||||
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
|
||||
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
|
||||
// Note: all delta terms refer to an IMU\sensor system at t0
|
||||
Vector body_t_a_body = msr_acc_t;
|
||||
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
|
||||
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
|
||||
}
|
||||
|
||||
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
|
||||
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
|
||||
const Vector3& delta_angles){
|
||||
// Note: all delta terms refer to an IMU\sensor system at t0
|
||||
// Calculate the corrected measurements using the Bias object
|
||||
Vector body_t_omega_body= msr_gyro_t;
|
||||
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
|
||||
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
|
||||
return Rot3::Logmap(R_t_to_t0);
|
||||
}
|
||||
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_NVP(biasHat_);
|
||||
ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaPij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaVij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
|
||||
}
|
||||
};
|
||||
Matrix preintMeasCov() const { return preintMeasCov_;}
|
||||
|
||||
private:
|
||||
|
||||
typedef ImuFactor This;
|
||||
typedef NoiseModelFactor5<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias> Base;
|
||||
|
||||
PreintegratedMeasurements preintegratedMeasurements_;
|
||||
Vector3 gravity_;
|
||||
Vector3 omegaCoriolis_;
|
||||
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
|
||||
|
||||
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
|
||||
|
||||
public:
|
||||
|
||||
/** Shorthand for a smart pointer to a factor */
|
||||
#if !defined(_MSC_VER) && __GNUC__ == 4 && __GNUC_MINOR__ > 5
|
||||
typedef typename boost::shared_ptr<ImuFactor> shared_ptr;
|
||||
#else
|
||||
typedef boost::shared_ptr<ImuFactor> shared_ptr;
|
||||
#endif
|
||||
|
||||
/** Default constructor - only use for serialization */
|
||||
ImuFactor();
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param pose_i Previous pose key
|
||||
* @param vel_i Previous velocity key
|
||||
* @param pose_j Current pose key
|
||||
* @param vel_j Current velocity key
|
||||
* @param bias Previous bias key
|
||||
* @param preintegratedMeasurements Preintegrated IMU measurements
|
||||
* @param gravity Gravity vector expressed in the global frame
|
||||
* @param omegaCoriolis Rotation rate of the global frame w.r.t. an inertial frame
|
||||
* @param body_P_sensor Optional pose of the sensor frame in the body frame
|
||||
* @param use2ndOrderCoriolis When true, the second-order term is used in the calculation of the Coriolis Effect
|
||||
*/
|
||||
ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
|
||||
const PreintegratedMeasurements& preintegratedMeasurements,
|
||||
const Vector3& gravity, const Vector3& omegaCoriolis,
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false);
|
||||
|
||||
virtual ~ImuFactor() {}
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
virtual gtsam::NonlinearFactor::shared_ptr clone() const;
|
||||
|
||||
/** implement functions needed for Testable */
|
||||
|
||||
/// print
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
|
||||
|
||||
/// equals
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const;
|
||||
|
||||
/** Access the preintegrated measurements. */
|
||||
|
||||
const PreintegratedMeasurements& preintegratedMeasurements() const {
|
||||
return preintegratedMeasurements_; }
|
||||
|
||||
const Vector3& gravity() const { return gravity_; }
|
||||
|
||||
const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/// vector of errors
|
||||
Vector evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
|
||||
const imuBias::ConstantBias& bias,
|
||||
boost::optional<Matrix&> H1 = boost::none,
|
||||
boost::optional<Matrix&> H2 = boost::none,
|
||||
boost::optional<Matrix&> H3 = boost::none,
|
||||
boost::optional<Matrix&> H4 = boost::none,
|
||||
boost::optional<Matrix&> H5 = boost::none) const;
|
||||
|
||||
/// predicted states from IMU
|
||||
static PoseVelocity Predict(const Pose3& pose_i, const Vector3& vel_i,
|
||||
const imuBias::ConstantBias& bias, const PreintegratedMeasurements preintegratedMeasurements,
|
||||
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false);
|
||||
|
||||
private:
|
||||
|
||||
/** Serialization function */
|
||||
/// Serialization function
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & boost::serialization::make_nvp("NoiseModelFactor5",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
|
||||
ar & BOOST_SERIALIZATION_NVP(gravity_);
|
||||
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
|
||||
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegrationBase);
|
||||
ar & BOOST_SERIALIZATION_NVP(preintMeasCov_);
|
||||
}
|
||||
}; // class ImuFactor
|
||||
};
|
||||
|
||||
typedef ImuFactor::PreintegratedMeasurements ImuFactorPreintegratedMeasurements;
|
||||
private:
|
||||
|
||||
typedef ImuFactor This;
|
||||
typedef NoiseModelFactor5<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias> Base;
|
||||
|
||||
PreintegratedMeasurements _PIM_;
|
||||
|
||||
public:
|
||||
|
||||
/** Shorthand for a smart pointer to a factor */
|
||||
#if !defined(_MSC_VER) && __GNUC__ == 4 && __GNUC_MINOR__ > 5
|
||||
typedef typename boost::shared_ptr<ImuFactor> shared_ptr;
|
||||
#else
|
||||
typedef boost::shared_ptr<ImuFactor> shared_ptr;
|
||||
#endif
|
||||
|
||||
/** Default constructor - only use for serialization */
|
||||
ImuFactor();
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param pose_i Previous pose key
|
||||
* @param vel_i Previous velocity key
|
||||
* @param pose_j Current pose key
|
||||
* @param vel_j Current velocity key
|
||||
* @param bias Previous bias key
|
||||
* @param preintegratedMeasurements Preintegrated IMU measurements
|
||||
* @param gravity Gravity vector expressed in the global frame
|
||||
* @param omegaCoriolis Rotation rate of the global frame w.r.t. an inertial frame
|
||||
* @param body_P_sensor Optional pose of the sensor frame in the body frame
|
||||
* @param use2ndOrderCoriolis When true, the second-order term is used in the calculation of the Coriolis Effect
|
||||
*/
|
||||
ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
|
||||
const PreintegratedMeasurements& preintegratedMeasurements,
|
||||
const Vector3& gravity, const Vector3& omegaCoriolis,
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false);
|
||||
|
||||
virtual ~ImuFactor() {}
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
virtual gtsam::NonlinearFactor::shared_ptr clone() const;
|
||||
|
||||
/** implement functions needed for Testable */
|
||||
|
||||
/// print
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
|
||||
|
||||
/// equals
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const;
|
||||
|
||||
/** Access the preintegrated measurements. */
|
||||
|
||||
const PreintegratedMeasurements& preintegratedMeasurements() const {
|
||||
return _PIM_; }
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/// vector of errors
|
||||
Vector evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
|
||||
const imuBias::ConstantBias& bias,
|
||||
boost::optional<Matrix&> H1 = boost::none,
|
||||
boost::optional<Matrix&> H2 = boost::none,
|
||||
boost::optional<Matrix&> H3 = boost::none,
|
||||
boost::optional<Matrix&> H4 = boost::none,
|
||||
boost::optional<Matrix&> H5 = boost::none) const;
|
||||
|
||||
private:
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & boost::serialization::make_nvp("NoiseModelFactor5",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(_PIM_);
|
||||
ar & BOOST_SERIALIZATION_NVP(gravity_);
|
||||
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
|
||||
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
|
||||
}
|
||||
}; // class ImuFactor
|
||||
|
||||
typedef ImuFactor::PreintegratedMeasurements ImuFactorPreintegratedMeasurements;
|
||||
|
||||
} /// namespace gtsam
|
||||
|
|
|
@ -0,0 +1,84 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file PreintegrationBase.h
|
||||
* @author Luca Carlone
|
||||
* @author Stephen Williams
|
||||
* @author Richard Roberts
|
||||
* @author Vadim Indelman
|
||||
* @author David Jensen
|
||||
* @author Frank Dellaert
|
||||
**/
|
||||
|
||||
#pragma once
|
||||
|
||||
/* GTSAM includes */
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
#include <gtsam/navigation/PreintegrationBase.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
class ImuFactorBase {
|
||||
|
||||
protected:
|
||||
|
||||
Vector3 gravity_;
|
||||
Vector3 omegaCoriolis_;
|
||||
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
|
||||
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor - only use for serialization */
|
||||
ImuFactorBase() :
|
||||
gravity_(Vector3(0.0,0.0,9.81)), omegaCoriolis_(Vector3(0.0,0.0,0.0)),
|
||||
body_P_sensor_(boost::none), use2ndOrderCoriolis_(false) {}
|
||||
|
||||
/**
|
||||
* Default constructor, stores basic quantities required by the Imu factors
|
||||
* @param gravity Gravity vector expressed in the global frame
|
||||
* @param omegaCoriolis Rotation rate of the global frame w.r.t. an inertial frame
|
||||
* @param body_P_sensor Optional pose of the sensor frame in the body frame
|
||||
* @param use2ndOrderCoriolis When true, the second-order term is used in the calculation of the Coriolis Effect
|
||||
*/
|
||||
ImuFactorBase(const Vector3& gravity, const Vector3& omegaCoriolis,
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false) :
|
||||
gravity_(gravity), omegaCoriolis_(omegaCoriolis),
|
||||
body_P_sensor_(body_P_sensor), use2ndOrderCoriolis_(use2ndOrderCoriolis) {}
|
||||
|
||||
/// Methods to access class variables
|
||||
const Vector3& gravity() const { return gravity_; }
|
||||
const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
|
||||
|
||||
/// Needed for testable
|
||||
//------------------------------------------------------------------------------
|
||||
void print(const std::string& s) const {
|
||||
std::cout << " gravity: [ " << gravity_.transpose() << " ]" << std::endl;
|
||||
std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << std::endl;
|
||||
std::cout << " use2ndOrderCoriolis: [ " << use2ndOrderCoriolis_ << " ]" << std::endl;
|
||||
if(this->body_P_sensor_)
|
||||
this->body_P_sensor_->print(" sensor pose in body frame: ");
|
||||
}
|
||||
|
||||
/// Needed for testable
|
||||
//------------------------------------------------------------------------------
|
||||
bool equals(const ImuFactorBase& expected, double tol) const {
|
||||
return equal_with_abs_tol(gravity_, expected.gravity_, tol)
|
||||
&& equal_with_abs_tol(omegaCoriolis_, expected.omegaCoriolis_, tol)
|
||||
&& (use2ndOrderCoriolis_ == expected.use2ndOrderCoriolis_)
|
||||
&& ((!body_P_sensor_ && !expected.body_P_sensor_) ||
|
||||
(body_P_sensor_ && expected.body_P_sensor_ && body_P_sensor_->equals(*expected.body_P_sensor_)));
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} /// namespace gtsam
|
|
@ -0,0 +1,141 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file PreintegratedRotation.h
|
||||
* @author Luca Carlone
|
||||
* @author Stephen Williams
|
||||
* @author Richard Roberts
|
||||
* @author Vadim Indelman
|
||||
* @author David Jensen
|
||||
* @author Frank Dellaert
|
||||
**/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* PreintegratedRotation is the base class for all PreintegratedMeasurements
|
||||
* classes (in AHRSFactor, ImuFactor, and CombinedImuFactor).
|
||||
* It includes the definitions of the preintegrated rotation.
|
||||
*/
|
||||
class PreintegratedRotation {
|
||||
|
||||
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
|
||||
double deltaTij_; ///< Time interval from i to j
|
||||
|
||||
/// Jacobian of preintegrated rotation w.r.t. angular rate bias
|
||||
Matrix3 delRdelBiasOmega_;
|
||||
Matrix3 gyroscopeCovariance_; ///< continuous-time "Covariance" of gyroscope measurements
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Default constructor, initializes the variables in the base class
|
||||
*/
|
||||
PreintegratedRotation(const Matrix3& measuredOmegaCovariance) :
|
||||
deltaRij_(Rot3()), deltaTij_(0.0),
|
||||
delRdelBiasOmega_(Z_3x3), gyroscopeCovariance_(measuredOmegaCovariance) {}
|
||||
|
||||
/// methods to access class variables
|
||||
Matrix3 deltaRij() const {return deltaRij_.matrix();} // expensive
|
||||
Vector3 thetaRij(boost::optional<Matrix3&> H = boost::none) const {return Rot3::Logmap(deltaRij_, H);} // super-expensive
|
||||
const double& deltaTij() const{return deltaTij_;}
|
||||
const Matrix3& delRdelBiasOmega() const{ return delRdelBiasOmega_;}
|
||||
const Matrix3& gyroscopeCovariance() const { return gyroscopeCovariance_;}
|
||||
|
||||
/// Needed for testable
|
||||
void print(const std::string& s) const {
|
||||
std::cout << s << std::endl;
|
||||
std::cout << "deltaTij [" << deltaTij_ << "]" << std::endl;
|
||||
deltaRij_.print(" deltaRij ");
|
||||
std::cout << "delRdelBiasOmega [" << delRdelBiasOmega_ << "]" << std::endl;
|
||||
std::cout << "gyroscopeCovariance [" << gyroscopeCovariance_ << "]" << std::endl;
|
||||
}
|
||||
|
||||
/// Needed for testable
|
||||
bool equals(const PreintegratedRotation& expected, double tol) const {
|
||||
return deltaRij_.equals(expected.deltaRij_, tol)
|
||||
&& fabs(deltaTij_ - expected.deltaTij_) < tol
|
||||
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol)
|
||||
&& equal_with_abs_tol(gyroscopeCovariance_, expected.gyroscopeCovariance_, tol);
|
||||
}
|
||||
|
||||
/// Re-initialize PreintegratedMeasurements
|
||||
void resetIntegration(){
|
||||
deltaRij_ = Rot3();
|
||||
deltaTij_ = 0.0;
|
||||
delRdelBiasOmega_ = Z_3x3;
|
||||
}
|
||||
|
||||
/// Update preintegrated measurements
|
||||
void updateIntegratedRotationAndDeltaT(const Rot3& incrR, const double deltaT,
|
||||
OptionalJacobian<3, 3> H = boost::none){
|
||||
deltaRij_ = deltaRij_.compose(incrR, H, boost::none);
|
||||
deltaTij_ += deltaT;
|
||||
}
|
||||
|
||||
/**
|
||||
* Update Jacobians to be used during preintegration
|
||||
* TODO: explain arguments
|
||||
*/
|
||||
void update_delRdelBiasOmega(const Matrix3& D_Rincr_integratedOmega, const Rot3& incrR,
|
||||
double deltaT) {
|
||||
const Matrix3 incrRt = incrR.transpose();
|
||||
delRdelBiasOmega_ = incrRt * delRdelBiasOmega_ - D_Rincr_integratedOmega * deltaT;
|
||||
}
|
||||
|
||||
/// Return a bias corrected version of the integrated rotation - expensive
|
||||
Rot3 biascorrectedDeltaRij(const Vector3& biasOmegaIncr) const {
|
||||
return deltaRij_*Rot3::Expmap(delRdelBiasOmega_ * biasOmegaIncr);
|
||||
}
|
||||
|
||||
/// Get so<3> version of bias corrected rotation, with optional Jacobian
|
||||
// Implements: log( deltaRij_ * expmap(delRdelBiasOmega_ * biasOmegaIncr) )
|
||||
Vector3 biascorrectedThetaRij(const Vector3& biasOmegaIncr,
|
||||
OptionalJacobian<3, 3> H = boost::none) const {
|
||||
// First, we correct deltaRij using the biasOmegaIncr, rotated
|
||||
const Rot3 deltaRij_biascorrected = biascorrectedDeltaRij(biasOmegaIncr);
|
||||
|
||||
if (H) {
|
||||
Matrix3 Jrinv_theta_bc;
|
||||
// This was done via an expmap, now we go *back* to so<3>
|
||||
const Vector3 biascorrectedOmega = Rot3::Logmap(deltaRij_biascorrected, Jrinv_theta_bc);
|
||||
const Matrix3 Jr_JbiasOmegaIncr = //
|
||||
Rot3::ExpmapDerivative(delRdelBiasOmega_ * biasOmegaIncr);
|
||||
(*H) = Jrinv_theta_bc * Jr_JbiasOmegaIncr * delRdelBiasOmega_;
|
||||
return biascorrectedOmega;
|
||||
}
|
||||
//else
|
||||
return Rot3::Logmap(deltaRij_biascorrected);
|
||||
}
|
||||
|
||||
/// Integrate coriolis correction in body frame rot_i
|
||||
Vector3 integrateCoriolis(const Rot3& rot_i,
|
||||
const Vector3& omegaCoriolis) const {
|
||||
return rot_i.transpose() * omegaCoriolis * deltaTij();
|
||||
}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
|
||||
}
|
||||
};
|
||||
|
||||
} /// namespace gtsam
|
|
@ -0,0 +1,425 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file PreintegrationBase.h
|
||||
* @author Luca Carlone
|
||||
* @author Stephen Williams
|
||||
* @author Richard Roberts
|
||||
* @author Vadim Indelman
|
||||
* @author David Jensen
|
||||
* @author Frank Dellaert
|
||||
**/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/navigation/PreintegratedRotation.h>
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Struct to hold all state variables of returned by Predict function
|
||||
*/
|
||||
struct PoseVelocityBias {
|
||||
Pose3 pose;
|
||||
Vector3 velocity;
|
||||
imuBias::ConstantBias bias;
|
||||
|
||||
PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
|
||||
const imuBias::ConstantBias _bias) :
|
||||
pose(_pose), velocity(_velocity), bias(_bias) {
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* PreintegrationBase is the base class for PreintegratedMeasurements
|
||||
* (in ImuFactor) and CombinedPreintegratedMeasurements (in CombinedImuFactor).
|
||||
* It includes the definitions of the preintegrated variables and the methods
|
||||
* to access, print, and compare them.
|
||||
*/
|
||||
class PreintegrationBase : public PreintegratedRotation {
|
||||
|
||||
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
|
||||
bool use2ndOrderIntegration_; ///< Controls the order of integration
|
||||
|
||||
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
|
||||
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
|
||||
|
||||
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
|
||||
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
|
||||
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
|
||||
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
|
||||
|
||||
Matrix3 accelerometerCovariance_; ///< continuous-time "Covariance" of accelerometer measurements
|
||||
Matrix3 integrationCovariance_; ///< continuous-time "Covariance" describing integration uncertainty
|
||||
/// (to compensate errors in Euler integration)
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Default constructor, initializes the variables in the base class
|
||||
* @param bias Current estimate of acceleration and rotation rate biases
|
||||
* @param use2ndOrderIntegration Controls the order of integration
|
||||
* (if false: p(t+1) = p(t) + v(t) deltaT ; if true: p(t+1) = p(t) + v(t) deltaT + 0.5 * acc(t) deltaT^2)
|
||||
*/
|
||||
PreintegrationBase(const imuBias::ConstantBias& bias,
|
||||
const Matrix3& measuredAccCovariance, const Matrix3& measuredOmegaCovariance,
|
||||
const Matrix3&integrationErrorCovariance, const bool use2ndOrderIntegration) :
|
||||
PreintegratedRotation(measuredOmegaCovariance),
|
||||
biasHat_(bias), use2ndOrderIntegration_(use2ndOrderIntegration),
|
||||
deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
|
||||
delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
|
||||
delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
|
||||
accelerometerCovariance_(measuredAccCovariance),
|
||||
integrationCovariance_(integrationErrorCovariance) {}
|
||||
|
||||
/// methods to access class variables
|
||||
const Vector3& deltaPij() const {return deltaPij_;}
|
||||
const Vector3& deltaVij() const {return deltaVij_;}
|
||||
const imuBias::ConstantBias& biasHat() const { return biasHat_;}
|
||||
Vector6 biasHatVector() const { return biasHat_.vector();} // expensive
|
||||
const Matrix3& delPdelBiasAcc() const { return delPdelBiasAcc_;}
|
||||
const Matrix3& delPdelBiasOmega() const { return delPdelBiasOmega_;}
|
||||
const Matrix3& delVdelBiasAcc() const { return delVdelBiasAcc_;}
|
||||
const Matrix3& delVdelBiasOmega() const { return delVdelBiasOmega_;}
|
||||
|
||||
const Matrix3& accelerometerCovariance() const { return accelerometerCovariance_;}
|
||||
const Matrix3& integrationCovariance() const { return integrationCovariance_;}
|
||||
|
||||
/// Needed for testable
|
||||
void print(const std::string& s) const {
|
||||
PreintegratedRotation::print(s);
|
||||
std::cout << " accelerometerCovariance [ " << accelerometerCovariance_ << " ]" << std::endl;
|
||||
std::cout << " integrationCovariance [ " << integrationCovariance_ << " ]" << std::endl;
|
||||
std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
|
||||
std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
|
||||
biasHat_.print(" biasHat");
|
||||
}
|
||||
|
||||
/// Needed for testable
|
||||
bool equals(const PreintegrationBase& expected, double tol) const {
|
||||
return PreintegratedRotation::equals(expected, tol)
|
||||
&& biasHat_.equals(expected.biasHat_, tol)
|
||||
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
|
||||
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
|
||||
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
|
||||
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
|
||||
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
|
||||
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
|
||||
&& equal_with_abs_tol(accelerometerCovariance_, expected.accelerometerCovariance_, tol)
|
||||
&& equal_with_abs_tol(integrationCovariance_, expected.integrationCovariance_, tol);
|
||||
}
|
||||
|
||||
/// Re-initialize PreintegratedMeasurements
|
||||
void resetIntegration(){
|
||||
PreintegratedRotation::resetIntegration();
|
||||
deltaPij_ = Vector3::Zero();
|
||||
deltaVij_ = Vector3::Zero();
|
||||
delPdelBiasAcc_ = Z_3x3;
|
||||
delPdelBiasOmega_ = Z_3x3;
|
||||
delVdelBiasAcc_ = Z_3x3;
|
||||
delVdelBiasOmega_ = Z_3x3;
|
||||
}
|
||||
|
||||
/// Update preintegrated measurements
|
||||
void updatePreintegratedMeasurements(const Vector3& correctedAcc,
|
||||
const Rot3& incrR, const double deltaT, OptionalJacobian<9, 9> F) {
|
||||
|
||||
Matrix3 dRij = deltaRij(); // expensive
|
||||
Vector3 temp = dRij * correctedAcc * deltaT;
|
||||
if(!use2ndOrderIntegration_){
|
||||
deltaPij_ += deltaVij_ * deltaT;
|
||||
}else{
|
||||
deltaPij_ += deltaVij_ * deltaT + 0.5 * temp * deltaT;
|
||||
}
|
||||
deltaVij_ += temp;
|
||||
|
||||
Matrix3 R_i, F_angles_angles;
|
||||
if (F) R_i = deltaRij(); // has to be executed before updateIntegratedRotationAndDeltaT as that updates deltaRij
|
||||
updateIntegratedRotationAndDeltaT(incrR,deltaT, F ? &F_angles_angles : 0);
|
||||
|
||||
if(F){
|
||||
Matrix3 F_vel_angles = - R_i * skewSymmetric(correctedAcc) * deltaT;
|
||||
// pos vel angle
|
||||
*F << I_3x3, I_3x3 * deltaT, Z_3x3, // pos
|
||||
Z_3x3, I_3x3, F_vel_angles, // vel
|
||||
Z_3x3, Z_3x3, F_angles_angles;// angle
|
||||
}
|
||||
}
|
||||
|
||||
/// Update Jacobians to be used during preintegration
|
||||
void updatePreintegratedJacobians(const Vector3& correctedAcc,
|
||||
const Matrix3& D_Rincr_integratedOmega, const Rot3& incrR, double deltaT){
|
||||
Matrix3 dRij = deltaRij(); // expensive
|
||||
Matrix3 temp = -dRij * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega();
|
||||
if (!use2ndOrderIntegration_) {
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
|
||||
} else {
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * dRij * deltaT * deltaT;
|
||||
delPdelBiasOmega_ += deltaT*(delVdelBiasOmega_ + temp * 0.5);
|
||||
}
|
||||
delVdelBiasAcc_ += -dRij * deltaT;
|
||||
delVdelBiasOmega_ += temp;
|
||||
update_delRdelBiasOmega(D_Rincr_integratedOmega,incrR,deltaT);
|
||||
}
|
||||
|
||||
void correctMeasurementsByBiasAndSensorPose(const Vector3& measuredAcc,
|
||||
const Vector3& measuredOmega, Vector3& correctedAcc,
|
||||
Vector3& correctedOmega, boost::optional<const Pose3&> body_P_sensor) {
|
||||
correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
|
||||
correctedOmega = biasHat_.correctGyroscope(measuredOmega);
|
||||
|
||||
// Then compensate for sensor-body displacement: we express the quantities
|
||||
// (originally in the IMU frame) into the body frame
|
||||
if(body_P_sensor){
|
||||
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
|
||||
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
|
||||
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
|
||||
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
|
||||
// linear acceleration vector in the body frame
|
||||
}
|
||||
}
|
||||
|
||||
/// Predict state at time j
|
||||
//------------------------------------------------------------------------------
|
||||
PoseVelocityBias predict(const Pose3& pose_i, const Vector3& vel_i,
|
||||
const imuBias::ConstantBias& bias_i, const Vector3& gravity,
|
||||
const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false,
|
||||
boost::optional<Vector3&> deltaPij_biascorrected_out = boost::none,
|
||||
boost::optional<Vector3&> deltaVij_biascorrected_out = boost::none) const {
|
||||
|
||||
const Vector3 biasAccIncr = bias_i.accelerometer() - biasHat().accelerometer();
|
||||
const Vector3 biasOmegaIncr = bias_i.gyroscope() - biasHat().gyroscope();
|
||||
|
||||
const Rot3& Rot_i = pose_i.rotation();
|
||||
const Vector3& pos_i = pose_i.translation().vector();
|
||||
|
||||
// Predict state at time j
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
Vector3 deltaPij_biascorrected = deltaPij() + delPdelBiasAcc() * biasAccIncr + delPdelBiasOmega() * biasOmegaIncr;
|
||||
if(deltaPij_biascorrected_out)// if desired, store this
|
||||
*deltaPij_biascorrected_out = deltaPij_biascorrected;
|
||||
|
||||
Vector3 pos_j = pos_i + Rot_i.matrix() * deltaPij_biascorrected
|
||||
+ vel_i * deltaTij()
|
||||
- omegaCoriolis.cross(vel_i) * deltaTij()*deltaTij() // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
+ 0.5 * gravity * deltaTij()*deltaTij();
|
||||
|
||||
Vector3 deltaVij_biascorrected = deltaVij() + delVdelBiasAcc() * biasAccIncr + delVdelBiasOmega() * biasOmegaIncr;
|
||||
if(deltaVij_biascorrected_out)// if desired, store this
|
||||
*deltaVij_biascorrected_out = deltaVij_biascorrected;
|
||||
|
||||
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * deltaVij_biascorrected
|
||||
- 2 * omegaCoriolis.cross(vel_i) * deltaTij() // Coriolis term
|
||||
+ gravity * deltaTij());
|
||||
|
||||
if(use2ndOrderCoriolis){
|
||||
pos_j += - 0.5 * omegaCoriolis.cross(omegaCoriolis.cross(pos_i)) * deltaTij()*deltaTij(); // 2nd order coriolis term for position
|
||||
vel_j += - omegaCoriolis.cross(omegaCoriolis.cross(pos_i)) * deltaTij(); // 2nd order term for velocity
|
||||
}
|
||||
|
||||
const Rot3 deltaRij_biascorrected = biascorrectedDeltaRij(biasOmegaIncr);
|
||||
// deltaRij_biascorrected = deltaRij * expmap(delRdelBiasOmega * biasOmegaIncr)
|
||||
|
||||
Vector3 biascorrectedOmega = Rot3::Logmap(deltaRij_biascorrected);
|
||||
Vector3 correctedOmega = biascorrectedOmega -
|
||||
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij(); // Coriolis term
|
||||
const Rot3 correctedDeltaRij =
|
||||
Rot3::Expmap( correctedOmega );
|
||||
const Rot3 Rot_j = Rot_i.compose( correctedDeltaRij );
|
||||
|
||||
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
|
||||
return PoseVelocityBias(pose_j, vel_j, bias_i); // bias is predicted as a constant
|
||||
}
|
||||
|
||||
/// Compute errors w.r.t. preintegrated measurements and jacobians wrt pose_i, vel_i, bias_i, pose_j, bias_j
|
||||
//------------------------------------------------------------------------------
|
||||
Vector9 computeErrorAndJacobians(const Pose3& pose_i, const Vector3& vel_i,
|
||||
const Pose3& pose_j, const Vector3& vel_j,
|
||||
const imuBias::ConstantBias& bias_i, const Vector3& gravity,
|
||||
const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis,
|
||||
OptionalJacobian<9, 6> H1 = boost::none,
|
||||
OptionalJacobian<9, 3> H2 = boost::none,
|
||||
OptionalJacobian<9, 6> H3 = boost::none,
|
||||
OptionalJacobian<9, 3> H4 = boost::none,
|
||||
OptionalJacobian<9, 6> H5 = boost::none) const {
|
||||
|
||||
// We need the mismatch w.r.t. the biases used for preintegration
|
||||
// const Vector3 biasAccIncr = bias_i.accelerometer() - biasHat().accelerometer(); // this is not necessary
|
||||
const Vector3 biasOmegaIncr = bias_i.gyroscope() - biasHat().gyroscope();
|
||||
|
||||
// we give some shorter name to rotations and translations
|
||||
const Rot3& Ri = pose_i.rotation();
|
||||
const Rot3& Rj = pose_j.rotation();
|
||||
const Vector3& pos_j = pose_j.translation().vector();
|
||||
|
||||
// Evaluate residual error, according to [3]
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
Vector3 deltaPij_biascorrected, deltaVij_biascorrected;
|
||||
PoseVelocityBias predictedState_j = predict(pose_i, vel_i, bias_i, gravity,
|
||||
omegaCoriolis, use2ndOrderCoriolis, deltaPij_biascorrected, deltaVij_biascorrected);
|
||||
|
||||
// Ri.transpose() is important here to preserve a model with *additive* Gaussian noise of correct covariance
|
||||
const Vector3 fp = Ri.transpose() * ( pos_j - predictedState_j.pose.translation().vector() );
|
||||
|
||||
// Ri.transpose() is important here to preserve a model with *additive* Gaussian noise of correct covariance
|
||||
const Vector3 fv = Ri.transpose() * ( vel_j - predictedState_j.velocity );
|
||||
|
||||
// fR will be computed later. Note: it is the same as: fR = (predictedState_j.pose.translation()).between(Rot_j)
|
||||
|
||||
// Jacobian computation
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
// Get Get so<3> version of bias corrected rotation
|
||||
// If H5 is asked for, we will need the Jacobian, which we store in H5
|
||||
// H5 will then be corrected below to take into account the Coriolis effect
|
||||
Matrix3 D_cThetaRij_biasOmegaIncr;
|
||||
Vector3 biascorrectedOmega = biascorrectedThetaRij(biasOmegaIncr, H5 ? &D_cThetaRij_biasOmegaIncr : 0);
|
||||
|
||||
// Coriolis term, note inconsistent with AHRS, where coriolisHat is *after* integration
|
||||
const Matrix3 Ritranspose_omegaCoriolisHat = Ri.transpose() * skewSymmetric(omegaCoriolis);
|
||||
const Vector3 coriolis = integrateCoriolis(Ri, omegaCoriolis);
|
||||
Vector3 correctedOmega = biascorrectedOmega - coriolis;
|
||||
|
||||
Rot3 correctedDeltaRij, fRrot;
|
||||
Vector3 fR;
|
||||
|
||||
// Accessory matrix, used to build the jacobians
|
||||
Matrix3 D_cDeltaRij_cOmega, D_coriolis, D_fR_fRrot;
|
||||
|
||||
// This is done to save computation: we ask for the jacobians only when they are needed
|
||||
if(H1 || H2 || H3 || H4 || H5){
|
||||
correctedDeltaRij = Rot3::Expmap( correctedOmega, D_cDeltaRij_cOmega);
|
||||
// Residual rotation error
|
||||
fRrot = correctedDeltaRij.between(Ri.between(Rj));
|
||||
fR = Rot3::Logmap(fRrot, D_fR_fRrot);
|
||||
D_coriolis = -D_cDeltaRij_cOmega * skewSymmetric(coriolis);
|
||||
}else{
|
||||
correctedDeltaRij = Rot3::Expmap( correctedOmega);
|
||||
// Residual rotation error
|
||||
fRrot = correctedDeltaRij.between(Ri.between(Rj));
|
||||
fR = Rot3::Logmap(fRrot);
|
||||
}
|
||||
if(H1) {
|
||||
H1->resize(9,6);
|
||||
Matrix3 dfPdPi = -I_3x3;
|
||||
Matrix3 dfVdPi = Z_3x3;
|
||||
if(use2ndOrderCoriolis){
|
||||
// this is the same as: Ri.transpose() * omegaCoriolisHat * omegaCoriolisHat * Ri.matrix()
|
||||
Matrix3 temp = Ritranspose_omegaCoriolisHat * (-Ritranspose_omegaCoriolisHat.transpose());
|
||||
dfPdPi += 0.5 * temp * deltaTij()*deltaTij();
|
||||
dfVdPi += temp * deltaTij();
|
||||
}
|
||||
(*H1) <<
|
||||
// dfP/dRi
|
||||
skewSymmetric(fp + deltaPij_biascorrected),
|
||||
// dfP/dPi
|
||||
dfPdPi,
|
||||
// dfV/dRi
|
||||
skewSymmetric(fv + deltaVij_biascorrected),
|
||||
// dfV/dPi
|
||||
dfVdPi,
|
||||
// dfR/dRi
|
||||
D_fR_fRrot * (- Rj.between(Ri).matrix() - fRrot.inverse().matrix() * D_coriolis),
|
||||
// dfR/dPi
|
||||
Z_3x3;
|
||||
}
|
||||
if(H2) {
|
||||
H2->resize(9,3);
|
||||
(*H2) <<
|
||||
// dfP/dVi
|
||||
- Ri.transpose() * deltaTij()
|
||||
+ Ritranspose_omegaCoriolisHat * deltaTij() * deltaTij(), // Coriolis term - we got rid of the 2 wrt ins paper
|
||||
// dfV/dVi
|
||||
- Ri.transpose()
|
||||
+ 2 * Ritranspose_omegaCoriolisHat * deltaTij(), // Coriolis term
|
||||
// dfR/dVi
|
||||
Z_3x3;
|
||||
}
|
||||
if(H3) {
|
||||
H3->resize(9,6);
|
||||
(*H3) <<
|
||||
// dfP/dPosej
|
||||
Z_3x3, Ri.transpose() * Rj.matrix(),
|
||||
// dfV/dPosej
|
||||
Matrix::Zero(3,6),
|
||||
// dfR/dPosej
|
||||
D_fR_fRrot * ( I_3x3 ), Z_3x3;
|
||||
}
|
||||
if(H4) {
|
||||
H4->resize(9,3);
|
||||
(*H4) <<
|
||||
// dfP/dVj
|
||||
Z_3x3,
|
||||
// dfV/dVj
|
||||
Ri.transpose(),
|
||||
// dfR/dVj
|
||||
Z_3x3;
|
||||
}
|
||||
if(H5) {
|
||||
// H5 by this point already contains 3*3 biascorrectedThetaRij derivative
|
||||
const Matrix3 JbiasOmega = D_cDeltaRij_cOmega * D_cThetaRij_biasOmegaIncr;
|
||||
H5->resize(9,6);
|
||||
(*H5) <<
|
||||
// dfP/dBias
|
||||
- delPdelBiasAcc(), - delPdelBiasOmega(),
|
||||
// dfV/dBias
|
||||
- delVdelBiasAcc(), - delVdelBiasOmega(),
|
||||
// dfR/dBias
|
||||
Z_3x3, D_fR_fRrot * ( - fRrot.inverse().matrix() * JbiasOmega);
|
||||
}
|
||||
Vector9 r; r << fp, fv, fR;
|
||||
return r;
|
||||
}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegratedRotation);
|
||||
ar & BOOST_SERIALIZATION_NVP(biasHat_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaPij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(deltaVij_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
|
||||
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
|
||||
}
|
||||
};
|
||||
|
||||
class ImuBase {
|
||||
|
||||
protected:
|
||||
|
||||
Vector3 gravity_;
|
||||
Vector3 omegaCoriolis_;
|
||||
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
|
||||
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
|
||||
|
||||
public:
|
||||
|
||||
ImuBase() :
|
||||
gravity_(Vector3(0.0,0.0,9.81)), omegaCoriolis_(Vector3(0.0,0.0,0.0)),
|
||||
body_P_sensor_(boost::none), use2ndOrderCoriolis_(false) {}
|
||||
|
||||
ImuBase(const Vector3& gravity, const Vector3& omegaCoriolis,
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false) :
|
||||
gravity_(gravity), omegaCoriolis_(omegaCoriolis),
|
||||
body_P_sensor_(body_P_sensor), use2ndOrderCoriolis_(use2ndOrderCoriolis) {}
|
||||
|
||||
const Vector3& gravity() const { return gravity_; }
|
||||
const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
|
||||
|
||||
};
|
||||
|
||||
} /// namespace gtsam
|
|
@ -116,7 +116,7 @@ TEST( AHRSFactor, PreintegratedMeasurements ) {
|
|||
/* ************************************************************************* */
|
||||
TEST(AHRSFactor, Error) {
|
||||
// Linearization point
|
||||
Vector3 bias; // Bias
|
||||
Vector3 bias(0.,0.,0.); // Bias
|
||||
Rot3 x1(Rot3::RzRyRx(M_PI / 12.0, M_PI / 6.0, M_PI / 4.0));
|
||||
Rot3 x2(Rot3::RzRyRx(M_PI / 12.0 + M_PI / 100.0, M_PI / 6.0, M_PI / 4.0));
|
||||
|
||||
|
|
|
@ -39,19 +39,55 @@ using symbol_shorthand::X;
|
|||
using symbol_shorthand::V;
|
||||
using symbol_shorthand::B;
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace {
|
||||
/* ************************************************************************* */
|
||||
// Auxiliary functions to test Jacobians F and G used for
|
||||
// covariance propagation during preintegration
|
||||
/* ************************************************************************* */
|
||||
Vector updatePreintegratedMeasurementsTest(
|
||||
const Vector3 deltaPij_old, const Vector3& deltaVij_old, const Rot3& deltaRij_old,
|
||||
const imuBias::ConstantBias& bias_old,
|
||||
const Vector3& correctedAcc, const Vector3& correctedOmega, const double deltaT,
|
||||
const bool use2ndOrderIntegration) {
|
||||
|
||||
ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
|
||||
Matrix3 dRij = deltaRij_old.matrix();
|
||||
Vector3 temp = dRij * (correctedAcc - bias_old.accelerometer()) * deltaT;
|
||||
Vector3 deltaPij_new;
|
||||
if(!use2ndOrderIntegration){
|
||||
deltaPij_new = deltaPij_old + deltaVij_old * deltaT;
|
||||
}else{
|
||||
deltaPij_new += deltaPij_old + deltaVij_old * deltaT + 0.5 * temp * deltaT;
|
||||
}
|
||||
Vector3 deltaVij_new = deltaVij_old + temp;
|
||||
Rot3 deltaRij_new = deltaRij_old * Rot3::Expmap((correctedOmega-bias_old.gyroscope()) * deltaT);
|
||||
Vector3 logDeltaRij_new = Rot3::Logmap(deltaRij_new); // not important any more
|
||||
imuBias::ConstantBias bias_new(bias_old);
|
||||
Vector result(15); result << deltaPij_new, deltaVij_new, logDeltaRij_new, bias_new.vector();
|
||||
return result;
|
||||
}
|
||||
|
||||
Rot3 updatePreintegratedMeasurementsRot(
|
||||
const Vector3 deltaPij_old, const Vector3& deltaVij_old, const Rot3& deltaRij_old,
|
||||
const imuBias::ConstantBias& bias_old,
|
||||
const Vector3& correctedAcc, const Vector3& correctedOmega, const double deltaT,
|
||||
const bool use2ndOrderIntegration){
|
||||
|
||||
Vector result = updatePreintegratedMeasurementsTest(deltaPij_old, deltaVij_old, deltaRij_old,
|
||||
bias_old, correctedAcc, correctedOmega, deltaT, use2ndOrderIntegration);
|
||||
|
||||
return Rot3::Expmap(result.segment<3>(6));
|
||||
}
|
||||
|
||||
// Auxiliary functions to test preintegrated Jacobians
|
||||
// delPdelBiasAcc_ delPdelBiasOmega_ delVdelBiasAcc_ delVdelBiasOmega_ delRdelBiasOmega_
|
||||
/* ************************************************************************* */
|
||||
CombinedImuFactor::CombinedPreintegratedMeasurements evaluatePreintegratedMeasurements(
|
||||
const imuBias::ConstantBias& bias,
|
||||
const list<Vector3>& measuredAccs,
|
||||
const list<Vector3>& measuredOmegas,
|
||||
const list<double>& deltaTs,
|
||||
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0)
|
||||
)
|
||||
{
|
||||
ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
|
||||
Matrix3::Identity(), Matrix3::Identity());
|
||||
const list<double>& deltaTs){
|
||||
CombinedImuFactor::CombinedPreintegratedMeasurements result(bias, Matrix3::Identity(),
|
||||
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix::Identity(6,6), false);
|
||||
|
||||
list<Vector3>::const_iterator itAcc = measuredAccs.begin();
|
||||
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
|
||||
|
@ -59,7 +95,6 @@ ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
|
|||
for( ; itAcc != measuredAccs.end(); ++itAcc, ++itOmega, ++itDeltaT) {
|
||||
result.integrateMeasurement(*itAcc, *itOmega, *itDeltaT);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -67,20 +102,16 @@ Vector3 evaluatePreintegratedMeasurementsPosition(
|
|||
const imuBias::ConstantBias& bias,
|
||||
const list<Vector3>& measuredAccs,
|
||||
const list<Vector3>& measuredOmegas,
|
||||
const list<double>& deltaTs,
|
||||
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
|
||||
{
|
||||
const list<double>& deltaTs){
|
||||
return evaluatePreintegratedMeasurements(bias,
|
||||
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaPij();
|
||||
measuredAccs, measuredOmegas, deltaTs).deltaPij();
|
||||
}
|
||||
|
||||
Vector3 evaluatePreintegratedMeasurementsVelocity(
|
||||
const imuBias::ConstantBias& bias,
|
||||
const list<Vector3>& measuredAccs,
|
||||
const list<Vector3>& measuredOmegas,
|
||||
const list<double>& deltaTs,
|
||||
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
|
||||
{
|
||||
const list<double>& deltaTs){
|
||||
return evaluatePreintegratedMeasurements(bias,
|
||||
measuredAccs, measuredOmegas, deltaTs).deltaVij();
|
||||
}
|
||||
|
@ -89,9 +120,7 @@ Rot3 evaluatePreintegratedMeasurementsRotation(
|
|||
const imuBias::ConstantBias& bias,
|
||||
const list<Vector3>& measuredAccs,
|
||||
const list<Vector3>& measuredOmegas,
|
||||
const list<double>& deltaTs,
|
||||
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
|
||||
{
|
||||
const list<double>& deltaTs){
|
||||
return Rot3(evaluatePreintegratedMeasurements(bias,
|
||||
measuredAccs, measuredOmegas, deltaTs).deltaRij());
|
||||
}
|
||||
|
@ -101,7 +130,6 @@ Rot3 evaluatePreintegratedMeasurementsRotation(
|
|||
/* ************************************************************************* */
|
||||
TEST( CombinedImuFactor, PreintegratedMeasurements )
|
||||
{
|
||||
//cout << "++++++++++++++++++++++++++++++ PreintegratedMeasurements +++++++++++++++++++++++++++++++++++++++ " << endl;
|
||||
// Linearization point
|
||||
imuBias::ConstantBias bias(Vector3(0,0,0), Vector3(0,0,0)); ///< Current estimate of acceleration and angular rate biases
|
||||
|
||||
|
@ -120,28 +148,17 @@ TEST( CombinedImuFactor, PreintegratedMeasurements )
|
|||
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
|
||||
Matrix3::Zero(), Matrix3::Zero(), Matrix::Zero(6,6));
|
||||
|
||||
// const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
|
||||
// const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
|
||||
// const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
|
||||
// const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
|
||||
// const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
|
||||
// const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
|
||||
// const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
|
||||
|
||||
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
|
||||
EXPECT(assert_equal(Vector(expected1.deltaPij()), Vector(actual1.deltaPij()), tol));
|
||||
// EXPECT(assert_equal(Vector(expected1.deltaVij), Vector(actual1.deltaVij), tol));
|
||||
// EXPECT(assert_equal(expected1.deltaRij, actual1.deltaRij, tol));
|
||||
// DOUBLES_EQUAL(expected1.deltaTij, actual1.deltaTij, tol);
|
||||
EXPECT(assert_equal(Vector(expected1.deltaVij()), Vector(actual1.deltaVij()), tol));
|
||||
EXPECT(assert_equal(Matrix(expected1.deltaRij()), Matrix(actual1.deltaRij()), tol));
|
||||
DOUBLES_EQUAL(expected1.deltaTij(), actual1.deltaTij(), tol);
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( CombinedImuFactor, ErrorWithBiases )
|
||||
{
|
||||
//cout << "++++++++++++++++++++++++++++++ ErrorWithBiases +++++++++++++++++++++++++++++++++++++++ " << endl;
|
||||
|
||||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
imuBias::ConstantBias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
|
||||
|
@ -157,50 +174,37 @@ TEST( CombinedImuFactor, ErrorWithBiases )
|
|||
double deltaT = 1.0;
|
||||
double tol = 1e-6;
|
||||
|
||||
// const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
|
||||
// const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
|
||||
// const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
|
||||
// const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
|
||||
// const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
|
||||
// const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
|
||||
// const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
|
||||
|
||||
Matrix I6x6(6,6);
|
||||
I6x6 = Matrix::Identity(6,6);
|
||||
|
||||
|
||||
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
|
||||
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
|
||||
|
||||
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
|
||||
CombinedImuFactor::CombinedPreintegratedMeasurements Combined_pre_int_data(
|
||||
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
|
||||
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), 2 * Matrix3::Identity(), I6x6 );
|
||||
CombinedImuFactor::CombinedPreintegratedMeasurements Combined_pre_int_data(
|
||||
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
|
||||
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), 2 * Matrix3::Identity(), I6x6 );
|
||||
|
||||
Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
|
||||
// Create factor
|
||||
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
|
||||
|
||||
// Create factor
|
||||
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
|
||||
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.preintMeasCov());
|
||||
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
|
||||
|
||||
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov());
|
||||
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
|
||||
Vector errorExpected = factor.evaluateError(x1, v1, x2, v2, bias);
|
||||
|
||||
Vector errorActual = Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2);
|
||||
|
||||
Vector errorExpected = factor.evaluateError(x1, v1, x2, v2, bias);
|
||||
EXPECT(assert_equal(errorExpected, errorActual.head(9), tol));
|
||||
|
||||
Vector errorActual = Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2);
|
||||
// Expected Jacobians
|
||||
Matrix H1e, H2e, H3e, H4e, H5e;
|
||||
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1e, H2e, H3e, H4e, H5e);
|
||||
|
||||
|
||||
EXPECT(assert_equal(errorExpected, errorActual.head(9), tol));
|
||||
|
||||
// Expected Jacobians
|
||||
Matrix H1e, H2e, H3e, H4e, H5e;
|
||||
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1e, H2e, H3e, H4e, H5e);
|
||||
|
||||
|
||||
// Actual Jacobians
|
||||
// Actual Jacobians
|
||||
Matrix H1a, H2a, H3a, H4a, H5a, H6a;
|
||||
(void) Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2, H1a, H2a, H3a, H4a, H5a, H6a);
|
||||
|
||||
|
@ -214,7 +218,6 @@ TEST( CombinedImuFactor, ErrorWithBiases )
|
|||
/* ************************************************************************* */
|
||||
TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
|
||||
{
|
||||
//cout << "++++++++++++++++++++++++++++++ FirstOrderPreIntegratedMeasurements +++++++++++++++++++++++++++++++++++++++ " << endl;
|
||||
// Linearization point
|
||||
imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
|
||||
|
||||
|
@ -237,22 +240,22 @@ TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
|
|||
}
|
||||
|
||||
// Actual preintegrated values
|
||||
ImuFactor::PreintegratedMeasurements preintegrated =
|
||||
evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0));
|
||||
CombinedImuFactor::CombinedPreintegratedMeasurements preintegrated =
|
||||
evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs);
|
||||
|
||||
// Compute numerical derivatives
|
||||
Matrix expectedDelPdelBias = numericalDerivative11<Vector,imuBias::ConstantBias>(
|
||||
boost::bind(&evaluatePreintegratedMeasurementsPosition, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
|
||||
boost::bind(&evaluatePreintegratedMeasurementsPosition, _1, measuredAccs, measuredOmegas, deltaTs), bias);
|
||||
Matrix expectedDelPdelBiasAcc = expectedDelPdelBias.leftCols(3);
|
||||
Matrix expectedDelPdelBiasOmega = expectedDelPdelBias.rightCols(3);
|
||||
|
||||
Matrix expectedDelVdelBias = numericalDerivative11<Vector,imuBias::ConstantBias>(
|
||||
boost::bind(&evaluatePreintegratedMeasurementsVelocity, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
|
||||
boost::bind(&evaluatePreintegratedMeasurementsVelocity, _1, measuredAccs, measuredOmegas, deltaTs), bias);
|
||||
Matrix expectedDelVdelBiasAcc = expectedDelVdelBias.leftCols(3);
|
||||
Matrix expectedDelVdelBiasOmega = expectedDelVdelBias.rightCols(3);
|
||||
|
||||
Matrix expectedDelRdelBias = numericalDerivative11<Rot3,imuBias::ConstantBias>(
|
||||
boost::bind(&evaluatePreintegratedMeasurementsRotation, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
|
||||
boost::bind(&evaluatePreintegratedMeasurementsRotation, _1, measuredAccs, measuredOmegas, deltaTs), bias);
|
||||
Matrix expectedDelRdelBiasAcc = expectedDelRdelBias.leftCols(3);
|
||||
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
|
||||
|
||||
|
@ -265,6 +268,7 @@ TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
|
|||
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega(), 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(CombinedImuFactor, PredictPositionAndVelocity){
|
||||
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
|
||||
|
||||
|
@ -283,22 +287,21 @@ TEST(CombinedImuFactor, PredictPositionAndVelocity){
|
|||
|
||||
for (int i = 0; i<1000; ++i) Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
|
||||
// Create factor
|
||||
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov());
|
||||
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
|
||||
|
||||
// Predict
|
||||
Pose3 x1;
|
||||
Vector3 v1(0, 0.0, 0.0);
|
||||
PoseVelocityBias poseVelocityBias = Combinedfactor.Predict(x1, v1, bias, Combined_pre_int_data, gravity, omegaCoriolis);
|
||||
Pose3 expectedPose(Rot3(), Point3(0, 0.5, 0));
|
||||
Vector3 expectedVelocity; expectedVelocity<<0,1,0;
|
||||
EXPECT(assert_equal(expectedPose, poseVelocityBias.pose));
|
||||
EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocityBias.velocity)));
|
||||
|
||||
// Create factor
|
||||
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.preintMeasCov());
|
||||
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
|
||||
|
||||
// Predict
|
||||
Pose3 x1;
|
||||
Vector3 v1(0, 0.0, 0.0);
|
||||
PoseVelocityBias poseVelocityBias = Combined_pre_int_data.predict(x1, v1, bias, gravity, omegaCoriolis);
|
||||
Pose3 expectedPose(Rot3(), Point3(0, 0.5, 0));
|
||||
Vector3 expectedVelocity; expectedVelocity<<0,1,0;
|
||||
EXPECT(assert_equal(expectedPose, poseVelocityBias.pose));
|
||||
EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocityBias.velocity)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(CombinedImuFactor, PredictRotation) {
|
||||
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
|
||||
Matrix I6x6(6,6);
|
||||
|
@ -319,14 +322,152 @@ TEST(CombinedImuFactor, PredictRotation) {
|
|||
// Predict
|
||||
Pose3 x(Rot3().ypr(0,0, 0), Point3(0,0,0));
|
||||
Vector3 v(0,0,0);
|
||||
PoseVelocityBias poseVelocityBias = Combinedfactor.Predict(x,v,bias, Combined_pre_int_data, gravity, omegaCoriolis);
|
||||
PoseVelocityBias poseVelocityBias = Combined_pre_int_data.predict(x,v,bias, gravity, omegaCoriolis);
|
||||
Pose3 expectedPose(Rot3().ypr(M_PI/10, 0,0), Point3(0,0,0));
|
||||
EXPECT(assert_equal(expectedPose, poseVelocityBias.pose, tol));
|
||||
}
|
||||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
/* ************************************************************************* */
|
||||
TEST( CombinedImuFactor, JacobianPreintegratedCovariancePropagation )
|
||||
{
|
||||
// Linearization point
|
||||
imuBias::ConstantBias bias_old = imuBias::ConstantBias(); ///< Current estimate of acceleration and rotation rate biases
|
||||
Pose3 body_P_sensor = Pose3();
|
||||
|
||||
// Measurements
|
||||
list<Vector3> measuredAccs, measuredOmegas;
|
||||
list<double> deltaTs;
|
||||
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
|
||||
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
|
||||
deltaTs.push_back(0.01);
|
||||
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
|
||||
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
|
||||
deltaTs.push_back(0.01);
|
||||
for(int i=1;i<100;i++)
|
||||
{
|
||||
measuredAccs.push_back(Vector3(0.05, 0.09, 0.01));
|
||||
measuredOmegas.push_back(Vector3(M_PI/100.0, M_PI/300.0, 2*M_PI/100.0));
|
||||
deltaTs.push_back(0.01);
|
||||
}
|
||||
// Actual preintegrated values
|
||||
CombinedImuFactor::CombinedPreintegratedMeasurements preintegrated =
|
||||
evaluatePreintegratedMeasurements(bias_old, measuredAccs, measuredOmegas, deltaTs);
|
||||
|
||||
// so far we only created a nontrivial linearization point for the preintegrated measurements
|
||||
// Now we add a new measurement and ask for Jacobians
|
||||
const Vector3 newMeasuredAcc = Vector3(0.1, 0.0, 0.0);
|
||||
const Vector3 newMeasuredOmega = Vector3(M_PI/100.0, 0.0, 0.0);
|
||||
const double newDeltaT = 0.01;
|
||||
const Rot3 deltaRij_old = preintegrated.deltaRij(); // before adding new measurement
|
||||
const Vector3 deltaVij_old = preintegrated.deltaVij(); // before adding new measurement
|
||||
const Vector3 deltaPij_old = preintegrated.deltaPij(); // before adding new measurement
|
||||
|
||||
Matrix oldPreintCovariance = preintegrated.preintMeasCov();
|
||||
|
||||
Matrix Factual, Gactual;
|
||||
preintegrated.integrateMeasurement(newMeasuredAcc, newMeasuredOmega, newDeltaT,
|
||||
body_P_sensor, Factual, Gactual);
|
||||
|
||||
bool use2ndOrderIntegration = false;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// COMPUTE NUMERICAL DERIVATIVES FOR F
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Compute expected F wrt positions (15,3)
|
||||
Matrix df_dpos =
|
||||
numericalDerivative11<Vector, Vector3>(boost::bind(&updatePreintegratedMeasurementsTest,
|
||||
_1, deltaVij_old, deltaRij_old, bias_old,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaPij_old);
|
||||
// rotation part has to be done properly, on manifold
|
||||
df_dpos.block<3,3>(6,0) = numericalDerivative11<Rot3, Vector3>(boost::bind(&updatePreintegratedMeasurementsRot,
|
||||
_1, deltaVij_old, deltaRij_old, bias_old,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaPij_old);
|
||||
|
||||
// Compute expected F wrt velocities (15,3)
|
||||
Matrix df_dvel =
|
||||
numericalDerivative11<Vector, Vector3>(boost::bind(&updatePreintegratedMeasurementsTest,
|
||||
deltaPij_old, _1, deltaRij_old, bias_old,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaVij_old);
|
||||
// rotation part has to be done properly, on manifold
|
||||
df_dvel.block<3,3>(6,0) = numericalDerivative11<Rot3, Vector3>(boost::bind(&updatePreintegratedMeasurementsRot,
|
||||
deltaPij_old, _1, deltaRij_old, bias_old,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaVij_old);
|
||||
|
||||
// Compute expected F wrt angles (15,3)
|
||||
Matrix df_dangle = numericalDerivative11<Vector, Rot3>(boost::bind(&updatePreintegratedMeasurementsTest,
|
||||
deltaPij_old, deltaVij_old, _1, bias_old,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaRij_old);
|
||||
// rotation part has to be done properly, on manifold
|
||||
df_dangle.block<3,3>(6,0) = numericalDerivative11<Rot3, Rot3>(boost::bind(&updatePreintegratedMeasurementsRot,
|
||||
deltaPij_old, deltaVij_old, _1, bias_old,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaRij_old);
|
||||
|
||||
// Compute expected F wrt biases (15,6)
|
||||
Matrix df_dbias = numericalDerivative11<Vector, imuBias::ConstantBias>(boost::bind(&updatePreintegratedMeasurementsTest,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old, _1,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), bias_old);
|
||||
// rotation part has to be done properly, on manifold
|
||||
df_dbias.block<3,6>(6,0) = numericalDerivative11<Rot3, imuBias::ConstantBias>(boost::bind(&updatePreintegratedMeasurementsRot,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old, _1,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), bias_old);
|
||||
|
||||
Matrix Fexpected(15,15);
|
||||
Fexpected << df_dpos, df_dvel, df_dangle, df_dbias;
|
||||
EXPECT(assert_equal(Fexpected, Factual));
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// COMPUTE NUMERICAL DERIVATIVES FOR G
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Compute expected G wrt integration noise
|
||||
Matrix df_dintNoise(15,3);
|
||||
df_dintNoise << I_3x3 * newDeltaT, Z_3x3, Z_3x3, Z_3x3, Z_3x3;
|
||||
|
||||
// Compute expected G wrt acc noise (15,3)
|
||||
Matrix df_daccNoise = numericalDerivative11<Vector, Vector3>(boost::bind(&updatePreintegratedMeasurementsTest,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old, bias_old,
|
||||
_1, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), newMeasuredAcc);
|
||||
// rotation part has to be done properly, on manifold
|
||||
df_daccNoise.block<3,3>(6,0) = numericalDerivative11<Rot3, Vector3>(boost::bind(&updatePreintegratedMeasurementsRot,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old, bias_old,
|
||||
_1, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), newMeasuredAcc);
|
||||
|
||||
// Compute expected G wrt gyro noise (15,3)
|
||||
Matrix df_domegaNoise = numericalDerivative11<Vector, Vector3>(boost::bind(&updatePreintegratedMeasurementsTest,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old, bias_old,
|
||||
newMeasuredAcc, _1, newDeltaT, use2ndOrderIntegration), newMeasuredOmega);
|
||||
// rotation part has to be done properly, on manifold
|
||||
df_domegaNoise.block<3,3>(6,0) = numericalDerivative11< Rot3, Vector3>(boost::bind(&updatePreintegratedMeasurementsRot,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old, bias_old,
|
||||
newMeasuredAcc, _1, newDeltaT, use2ndOrderIntegration), newMeasuredOmega);
|
||||
|
||||
// Compute expected G wrt bias random walk noise (15,6)
|
||||
Matrix df_rwBias(15,6); // random walk on the bias does not appear in the first 9 entries
|
||||
df_rwBias.setZero();
|
||||
df_rwBias.block<6,6>(9,0) = eye(6);
|
||||
|
||||
// Compute expected G wrt gyro noise (15,6)
|
||||
Matrix df_dinitBias = numericalDerivative11<Vector, imuBias::ConstantBias>(boost::bind(&updatePreintegratedMeasurementsTest,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old, _1,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), bias_old);
|
||||
// rotation part has to be done properly, on manifold
|
||||
df_dinitBias.block<3,6>(6,0) = numericalDerivative11<Rot3, imuBias::ConstantBias>(boost::bind(&updatePreintegratedMeasurementsRot,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old, _1,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), bias_old);
|
||||
df_dinitBias.block<6,6>(9,0) = Matrix::Zero(6,6); // only has to influence first 9 rows
|
||||
|
||||
Matrix Gexpected(15,21);
|
||||
Gexpected << df_dintNoise, df_daccNoise, df_domegaNoise, df_rwBias, df_dinitBias;
|
||||
|
||||
EXPECT(assert_equal(Gexpected, Gactual));
|
||||
|
||||
// Check covariance propagation
|
||||
Matrix newPreintCovarianceExpected = Factual * oldPreintCovariance * Factual.transpose() +
|
||||
(1/newDeltaT) * Gactual * Gactual.transpose();
|
||||
|
||||
Matrix newPreintCovarianceActual = preintegrated.preintMeasCov();
|
||||
EXPECT(assert_equal(newPreintCovarianceExpected, newPreintCovarianceActual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -37,6 +37,8 @@ using symbol_shorthand::B;
|
|||
|
||||
/* ************************************************************************* */
|
||||
namespace {
|
||||
// Auxiliary functions to test evaluate error in ImuFactor
|
||||
/* ************************************************************************* */
|
||||
Vector callEvaluateError(const ImuFactor& factor,
|
||||
const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
|
||||
const imuBias::ConstantBias& bias){
|
||||
|
@ -49,14 +51,48 @@ Rot3 evaluateRotationError(const ImuFactor& factor,
|
|||
return Rot3::Expmap(factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias).tail(3) ) ;
|
||||
}
|
||||
|
||||
// Auxiliary functions to test Jacobians F and G used for
|
||||
// covariance propagation during preintegration
|
||||
/* ************************************************************************* */
|
||||
Vector updatePreintegratedPosVel(
|
||||
const Vector3 deltaPij_old, const Vector3& deltaVij_old, const Rot3& deltaRij_old,
|
||||
const Vector3& correctedAcc, const Vector3& correctedOmega, const double deltaT,
|
||||
const bool use2ndOrderIntegration_) {
|
||||
|
||||
Matrix3 dRij = deltaRij_old.matrix();
|
||||
Vector3 temp = dRij * correctedAcc * deltaT;
|
||||
Vector3 deltaPij_new;
|
||||
if(!use2ndOrderIntegration_){
|
||||
deltaPij_new = deltaPij_old + deltaVij_old * deltaT;
|
||||
}else{
|
||||
deltaPij_new += deltaPij_old + deltaVij_old * deltaT + 0.5 * temp * deltaT;
|
||||
}
|
||||
Vector3 deltaVij_new = deltaVij_old + temp;
|
||||
|
||||
Vector result(6); result << deltaPij_new, deltaVij_new;
|
||||
return result;
|
||||
}
|
||||
|
||||
Rot3 updatePreintegratedRot(const Rot3& deltaRij_old,
|
||||
const Vector3& correctedOmega, const double deltaT) {
|
||||
Rot3 deltaRij_new = deltaRij_old * Rot3::Expmap(correctedOmega * deltaT);
|
||||
return deltaRij_new;
|
||||
}
|
||||
|
||||
// Auxiliary functions to test preintegrated Jacobians
|
||||
// delPdelBiasAcc_ delPdelBiasOmega_ delVdelBiasAcc_ delVdelBiasOmega_ delRdelBiasOmega_
|
||||
/* ************************************************************************* */
|
||||
double accNoiseVar = 0.01;
|
||||
double omegaNoiseVar = 0.03;
|
||||
double intNoiseVar = 0.0001;
|
||||
ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
|
||||
const imuBias::ConstantBias& bias,
|
||||
const list<Vector3>& measuredAccs,
|
||||
const list<Vector3>& measuredOmegas,
|
||||
const list<double>& deltaTs,
|
||||
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) ){
|
||||
ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
|
||||
Matrix3::Identity(), Matrix3::Identity());
|
||||
ImuFactor::PreintegratedMeasurements result(bias, accNoiseVar * Matrix3::Identity(),
|
||||
omegaNoiseVar *Matrix3::Identity(), intNoiseVar * Matrix3::Identity());
|
||||
|
||||
list<Vector3>::const_iterator itAcc = measuredAccs.begin();
|
||||
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
|
||||
|
@ -152,7 +188,7 @@ TEST( ImuFactor, PreintegratedMeasurements )
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ImuFactor, Error )
|
||||
TEST( ImuFactor, ErrorAndJacobians )
|
||||
{
|
||||
// Linearization point
|
||||
imuBias::ConstantBias bias; // Bias
|
||||
|
@ -180,6 +216,77 @@ TEST( ImuFactor, Error )
|
|||
Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
||||
EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
|
||||
|
||||
// Actual Jacobians
|
||||
Matrix H1a, H2a, H3a, H4a, H5a;
|
||||
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
|
||||
|
||||
// Expected Jacobians
|
||||
/////////////////// H1 ///////////////////////////
|
||||
Matrix H1e = numericalDerivative11<Vector,Pose3>(
|
||||
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
|
||||
// Jacobians are around zero, so the rotation part is the same as:
|
||||
Matrix H1Rot3 = numericalDerivative11<Rot3,Pose3>(
|
||||
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
|
||||
EXPECT(assert_equal(H1Rot3, H1e.bottomRows(3)));
|
||||
EXPECT(assert_equal(H1e, H1a));
|
||||
|
||||
/////////////////// H2 ///////////////////////////
|
||||
Matrix H2e = numericalDerivative11<Vector,Vector3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
|
||||
EXPECT(assert_equal(H2e, H2a));
|
||||
|
||||
/////////////////// H3 ///////////////////////////
|
||||
Matrix H3e = numericalDerivative11<Vector,Pose3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
|
||||
// Jacobians are around zero, so the rotation part is the same as:
|
||||
Matrix H3Rot3 = numericalDerivative11<Rot3,Pose3>(
|
||||
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
|
||||
EXPECT(assert_equal(H3Rot3, H3e.bottomRows(3)));
|
||||
EXPECT(assert_equal(H3e, H3a));
|
||||
|
||||
/////////////////// H4 ///////////////////////////
|
||||
Matrix H4e = numericalDerivative11<Vector,Vector3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
|
||||
EXPECT(assert_equal(H4e, H4a));
|
||||
|
||||
/////////////////// H5 ///////////////////////////
|
||||
Matrix H5e = numericalDerivative11<Vector,imuBias::ConstantBias>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
|
||||
EXPECT(assert_equal(H5e, H5a));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ImuFactor, ErrorAndJacobianWithBiases )
|
||||
{
|
||||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0.1, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/10.0), Point3(5.0, 1.0, -50.0));
|
||||
Vector3 v1(Vector3(0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/10.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
Vector3 v2(Vector3(0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
Vector3 omegaCoriolis; omegaCoriolis << 0, 0.1, 0.1;
|
||||
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10.0+0.3;
|
||||
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
|
||||
double deltaT = 1.0;
|
||||
|
||||
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
|
||||
Vector3(0.0, 0.0, 0.1)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
|
||||
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
|
||||
// Create factor
|
||||
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
|
||||
|
||||
SETDEBUG("ImuFactor evaluateError", false);
|
||||
Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
|
||||
SETDEBUG("ImuFactor evaluateError", false);
|
||||
|
||||
// Expected error (should not be zero in this test, as we want to evaluate Jacobians
|
||||
// at a nontrivial linearization point)
|
||||
// Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
||||
// EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
|
||||
|
||||
// Expected Jacobians
|
||||
Matrix H1e = numericalDerivative11<Vector,Pose3>(
|
||||
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
|
||||
|
@ -197,45 +304,27 @@ TEST( ImuFactor, Error )
|
|||
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
|
||||
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
|
||||
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
|
||||
Matrix RH5e = numericalDerivative11<Rot3,imuBias::ConstantBias>(
|
||||
boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
|
||||
|
||||
// Actual Jacobians
|
||||
Matrix H1a, H2a, H3a, H4a, H5a;
|
||||
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
|
||||
|
||||
// positions and velocities
|
||||
Matrix H1etop6 = H1e.topRows(6);
|
||||
Matrix H1atop6 = H1a.topRows(6);
|
||||
EXPECT(assert_equal(H1etop6, H1atop6));
|
||||
// rotations
|
||||
EXPECT(assert_equal(RH1e, H1a.bottomRows(3), 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
|
||||
|
||||
EXPECT(assert_equal(H1e, H1a));
|
||||
EXPECT(assert_equal(H2e, H2a));
|
||||
|
||||
// positions and velocities
|
||||
Matrix H3etop6 = H3e.topRows(6);
|
||||
Matrix H3atop6 = H3a.topRows(6);
|
||||
EXPECT(assert_equal(H3etop6, H3atop6));
|
||||
// rotations
|
||||
EXPECT(assert_equal(RH3e, H3a.bottomRows(3), 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
|
||||
|
||||
EXPECT(assert_equal(H3e, H3a));
|
||||
EXPECT(assert_equal(H4e, H4a));
|
||||
// EXPECT(assert_equal(H5e, H5a));
|
||||
EXPECT(assert_equal(H5e, H5a));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ImuFactor, ErrorWithBiases )
|
||||
TEST( ImuFactor, ErrorAndJacobianWith2ndOrderCoriolis )
|
||||
{
|
||||
// Linearization point
|
||||
// Vector bias(6); bias << 0.2, 0, 0, 0.1, 0, 0; // Biases (acc, rot)
|
||||
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
// Vector3 v1(Vector3(0.5, 0.0, 0.0));
|
||||
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/10.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
// Vector3 v2(Vector3(0.5, 0.0, 0.0));
|
||||
|
||||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
|
||||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0.1, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/10.0), Point3(5.0, 1.0, -50.0));
|
||||
Vector3 v1(Vector3(0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/10.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
Vector3 v2(Vector3(0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
|
@ -245,56 +334,57 @@ TEST( ImuFactor, ErrorWithBiases )
|
|||
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
|
||||
double deltaT = 1.0;
|
||||
|
||||
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
|
||||
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
|
||||
Vector3(0.0, 0.0, 0.1)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
|
||||
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
|
||||
// ImuFactor::PreintegratedMeasurements pre_int_data(bias.head(3), bias.tail(3));
|
||||
// pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
// Create factor
|
||||
Pose3 bodyPsensor = Pose3();
|
||||
bool use2ndOrderCoriolis = true;
|
||||
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, bodyPsensor, use2ndOrderCoriolis);
|
||||
|
||||
// Create factor
|
||||
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
|
||||
SETDEBUG("ImuFactor evaluateError", false);
|
||||
Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
|
||||
SETDEBUG("ImuFactor evaluateError", false);
|
||||
|
||||
SETDEBUG("ImuFactor evaluateError", false);
|
||||
Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
|
||||
SETDEBUG("ImuFactor evaluateError", false);
|
||||
// Expected error (should not be zero in this test, as we want to evaluate Jacobians
|
||||
// at a nontrivial linearization point)
|
||||
// Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
||||
// EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
|
||||
|
||||
// Expected error
|
||||
Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
||||
// EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
|
||||
// Expected Jacobians
|
||||
Matrix H1e = numericalDerivative11<Vector,Pose3>(
|
||||
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
|
||||
Matrix H2e = numericalDerivative11<Vector,Vector3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
|
||||
Matrix H3e = numericalDerivative11<Vector,Pose3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
|
||||
Matrix H4e = numericalDerivative11<Vector,Vector3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
|
||||
Matrix H5e = numericalDerivative11<Vector,imuBias::ConstantBias>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
|
||||
|
||||
// Expected Jacobians
|
||||
Matrix H1e = numericalDerivative11<Vector,Pose3>(
|
||||
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
|
||||
Matrix H2e = numericalDerivative11<Vector,Vector3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
|
||||
Matrix H3e = numericalDerivative11<Vector,Pose3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
|
||||
Matrix H4e = numericalDerivative11<Vector,Vector3>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
|
||||
Matrix H5e = numericalDerivative11<Vector,imuBias::ConstantBias>(
|
||||
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
|
||||
// Check rotation Jacobians
|
||||
Matrix RH1e = numericalDerivative11<Rot3,Pose3>(
|
||||
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
|
||||
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
|
||||
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
|
||||
Matrix RH5e = numericalDerivative11<Rot3,imuBias::ConstantBias>(
|
||||
boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
|
||||
|
||||
// Check rotation Jacobians
|
||||
Matrix RH1e = numericalDerivative11<Rot3,Pose3>(
|
||||
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
|
||||
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
|
||||
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
|
||||
Matrix RH5e = numericalDerivative11<Rot3,imuBias::ConstantBias>(
|
||||
boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
|
||||
// Actual Jacobians
|
||||
Matrix H1a, H2a, H3a, H4a, H5a;
|
||||
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
|
||||
|
||||
// Actual Jacobians
|
||||
Matrix H1a, H2a, H3a, H4a, H5a;
|
||||
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
|
||||
|
||||
EXPECT(assert_equal(H1e, H1a));
|
||||
EXPECT(assert_equal(H2e, H2a));
|
||||
EXPECT(assert_equal(H3e, H3a));
|
||||
EXPECT(assert_equal(H4e, H4a));
|
||||
EXPECT(assert_equal(H5e, H5a));
|
||||
EXPECT(assert_equal(H1e, H1a));
|
||||
EXPECT(assert_equal(H2e, H2a));
|
||||
EXPECT(assert_equal(H3e, H3a));
|
||||
EXPECT(assert_equal(H4e, H4a));
|
||||
EXPECT(assert_equal(H5e, H5a));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ImuFactor, PartialDerivativeExpmap )
|
||||
TEST( ImuFactor, PartialDerivative_wrt_Bias )
|
||||
{
|
||||
// Linearization point
|
||||
Vector3 biasOmega; biasOmega << 0,0,0; ///< Current estimate of rotation rate bias
|
||||
|
@ -324,20 +414,14 @@ TEST( ImuFactor, PartialDerivativeLogmap )
|
|||
// Measurements
|
||||
Vector3 deltatheta; deltatheta << 0, 0, 0;
|
||||
|
||||
|
||||
// Compute numerical derivatives
|
||||
Matrix expectedDelFdeltheta = numericalDerivative11<Vector,Vector3>(boost::bind(
|
||||
&evaluateLogRotation, thetahat, _1), Vector3(deltatheta));
|
||||
|
||||
const Vector3 x = thetahat; // parametrization of so(3)
|
||||
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
|
||||
double normx = norm_2(x);
|
||||
const Matrix3 actualDelFdeltheta = Matrix3::Identity() +
|
||||
0.5 * X + (1/(normx*normx) - (1+cos(normx))/(2*normx * sin(normx)) ) * X * X;
|
||||
Matrix3 actualDelFdeltheta = Rot3::LogmapDerivative(thetahat);
|
||||
|
||||
// Compare Jacobians
|
||||
EXPECT(assert_equal(expectedDelFdeltheta, actualDelFdeltheta));
|
||||
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -354,7 +438,6 @@ TEST( ImuFactor, fistOrderExponential )
|
|||
double alpha = 0.0;
|
||||
Vector3 deltabiasOmega; deltabiasOmega << alpha,alpha,alpha;
|
||||
|
||||
|
||||
const Matrix3 Jr = Rot3::ExpmapDerivative((measuredOmega - biasOmega) * deltaT);
|
||||
|
||||
Matrix3 delRdelBiasOmega = - Jr * deltaT; // the delta bias appears with the minus sign
|
||||
|
@ -366,7 +449,7 @@ TEST( ImuFactor, fistOrderExponential )
|
|||
hatRot * Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
|
||||
//hatRot * (Matrix3::Identity() + skewSymmetric(delRdelBiasOmega * deltabiasOmega));
|
||||
|
||||
// Compare Jacobians
|
||||
// This is a first order expansion so the equality is only an approximation
|
||||
EXPECT(assert_equal(expectedRot, actualRot));
|
||||
}
|
||||
|
||||
|
@ -423,6 +506,128 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
|
|||
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega(), 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ImuFactor, JacobianPreintegratedCovariancePropagation )
|
||||
{
|
||||
// Linearization point
|
||||
imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
|
||||
Pose3 body_P_sensor = Pose3(); // (Rot3::Expmap(Vector3(0,0.1,0.1)), Point3(1, 0, 1));
|
||||
|
||||
// Measurements
|
||||
list<Vector3> measuredAccs, measuredOmegas;
|
||||
list<double> deltaTs;
|
||||
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
|
||||
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
|
||||
deltaTs.push_back(0.01);
|
||||
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
|
||||
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
|
||||
deltaTs.push_back(0.01);
|
||||
for(int i=1;i<100;i++)
|
||||
{
|
||||
measuredAccs.push_back(Vector3(0.05, 0.09, 0.01));
|
||||
measuredOmegas.push_back(Vector3(M_PI/100.0, M_PI/300.0, 2*M_PI/100.0));
|
||||
deltaTs.push_back(0.01);
|
||||
}
|
||||
// Actual preintegrated values
|
||||
ImuFactor::PreintegratedMeasurements preintegrated =
|
||||
evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0));
|
||||
|
||||
// so far we only created a nontrivial linearization point for the preintegrated measurements
|
||||
// Now we add a new measurement and ask for Jacobians
|
||||
const Vector3 newMeasuredAcc = Vector3(0.1, 0.0, 0.0);
|
||||
const Vector3 newMeasuredOmega = Vector3(M_PI/100.0, 0.0, 0.0);
|
||||
const double newDeltaT = 0.01;
|
||||
const Rot3 deltaRij_old = preintegrated.deltaRij(); // before adding new measurement
|
||||
const Vector3 deltaVij_old = preintegrated.deltaVij(); // before adding new measurement
|
||||
const Vector3 deltaPij_old = preintegrated.deltaPij(); // before adding new measurement
|
||||
|
||||
Matrix oldPreintCovariance = preintegrated.preintMeasCov();
|
||||
|
||||
Matrix Factual, Gactual;
|
||||
preintegrated.integrateMeasurement(newMeasuredAcc, newMeasuredOmega, newDeltaT,
|
||||
body_P_sensor, Factual, Gactual);
|
||||
|
||||
bool use2ndOrderIntegration = false;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// COMPUTE NUMERICAL DERIVATIVES FOR F
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Compute expected f_pos_vel wrt positions
|
||||
Matrix dfpv_dpos =
|
||||
numericalDerivative11<Vector, Vector3>(boost::bind(&updatePreintegratedPosVel,
|
||||
_1, deltaVij_old, deltaRij_old,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaPij_old);
|
||||
|
||||
// Compute expected f_pos_vel wrt velocities
|
||||
Matrix dfpv_dvel =
|
||||
numericalDerivative11<Vector, Vector3>(boost::bind(&updatePreintegratedPosVel,
|
||||
deltaPij_old, _1, deltaRij_old,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaVij_old);
|
||||
|
||||
// Compute expected f_pos_vel wrt angles
|
||||
Matrix dfpv_dangle =
|
||||
numericalDerivative11<Vector, Rot3>(boost::bind(&updatePreintegratedPosVel,
|
||||
deltaPij_old, deltaVij_old, _1,
|
||||
newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaRij_old);
|
||||
|
||||
Matrix FexpectedTop6(6,9); FexpectedTop6 << dfpv_dpos, dfpv_dvel, dfpv_dangle;
|
||||
|
||||
// Compute expected f_rot wrt angles
|
||||
Matrix dfr_dangle =
|
||||
numericalDerivative11<Rot3, Rot3>(boost::bind(&updatePreintegratedRot,
|
||||
_1, newMeasuredOmega, newDeltaT), deltaRij_old);
|
||||
|
||||
Matrix FexpectedBottom3(3,9);
|
||||
FexpectedBottom3 << Z_3x3, Z_3x3, dfr_dangle;
|
||||
Matrix Fexpected(9,9); Fexpected << FexpectedTop6, FexpectedBottom3;
|
||||
|
||||
EXPECT(assert_equal(Fexpected, Factual));
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// COMPUTE NUMERICAL DERIVATIVES FOR G
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Compute jacobian wrt integration noise
|
||||
Matrix dgpv_dintNoise(6,3);
|
||||
dgpv_dintNoise << I_3x3 * newDeltaT, Z_3x3;
|
||||
|
||||
// Compute jacobian wrt acc noise
|
||||
Matrix dgpv_daccNoise =
|
||||
numericalDerivative11<Vector, Vector3>(boost::bind(&updatePreintegratedPosVel,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old,
|
||||
_1, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), newMeasuredAcc);
|
||||
|
||||
// Compute expected F wrt gyro noise
|
||||
Matrix dgpv_domegaNoise =
|
||||
numericalDerivative11<Vector, Vector3>(boost::bind(&updatePreintegratedPosVel,
|
||||
deltaPij_old, deltaVij_old, deltaRij_old,
|
||||
newMeasuredAcc, _1, newDeltaT, use2ndOrderIntegration), newMeasuredOmega);
|
||||
Matrix GexpectedTop6(6,9);
|
||||
GexpectedTop6 << dgpv_dintNoise, dgpv_daccNoise, dgpv_domegaNoise;
|
||||
|
||||
// Compute expected f_rot wrt gyro noise
|
||||
Matrix dgr_dangle =
|
||||
numericalDerivative11<Rot3, Vector3>(boost::bind(&updatePreintegratedRot,
|
||||
deltaRij_old, _1, newDeltaT), newMeasuredOmega);
|
||||
|
||||
Matrix GexpectedBottom3(3,9);
|
||||
GexpectedBottom3 << Z_3x3, Z_3x3, dgr_dangle;
|
||||
Matrix Gexpected(9,9); Gexpected << GexpectedTop6, GexpectedBottom3;
|
||||
|
||||
EXPECT(assert_equal(Gexpected, Gactual));
|
||||
|
||||
// Check covariance propagation
|
||||
Matrix9 measurementCovariance;
|
||||
measurementCovariance << intNoiseVar*I_3x3, Z_3x3, Z_3x3,
|
||||
Z_3x3, accNoiseVar*I_3x3, Z_3x3,
|
||||
Z_3x3, Z_3x3, omegaNoiseVar*I_3x3;
|
||||
|
||||
Matrix newPreintCovarianceExpected = Factual * oldPreintCovariance * Factual.transpose() +
|
||||
(1/newDeltaT) * Gactual * measurementCovariance * Gactual.transpose();
|
||||
|
||||
Matrix newPreintCovarianceActual = preintegrated.preintMeasCov();
|
||||
EXPECT(assert_equal(newPreintCovarianceExpected, newPreintCovarianceActual));
|
||||
}
|
||||
|
||||
//#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
///* ************************************************************************* */
|
||||
//TEST( ImuFactor, LinearizeTiming)
|
||||
|
@ -561,13 +766,11 @@ TEST(ImuFactor, PredictPositionAndVelocity){
|
|||
// Predict
|
||||
Pose3 x1;
|
||||
Vector3 v1(0, 0.0, 0.0);
|
||||
PoseVelocity poseVelocity = factor.Predict(x1, v1, bias, pre_int_data, gravity, omegaCoriolis);
|
||||
PoseVelocityBias poseVelocity = pre_int_data.predict(x1, v1, bias, gravity, omegaCoriolis);
|
||||
Pose3 expectedPose(Rot3(), Point3(0, 0.5, 0));
|
||||
Vector3 expectedVelocity; expectedVelocity<<0,1,0;
|
||||
EXPECT(assert_equal(expectedPose, poseVelocity.pose));
|
||||
EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocity.velocity)));
|
||||
|
||||
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -595,7 +798,7 @@ TEST(ImuFactor, PredictRotation) {
|
|||
// Predict
|
||||
Pose3 x1;
|
||||
Vector3 v1(0, 0.0, 0.0);
|
||||
PoseVelocity poseVelocity = factor.Predict(x1, v1, bias, pre_int_data, gravity, omegaCoriolis);
|
||||
PoseVelocityBias poseVelocity = pre_int_data.predict(x1, v1, bias, gravity, omegaCoriolis);
|
||||
Pose3 expectedPose(Rot3().ypr(M_PI/10, 0, 0), Point3(0, 0, 0));
|
||||
Vector3 expectedVelocity; expectedVelocity<<0,0,0;
|
||||
EXPECT(assert_equal(expectedPose, poseVelocity.pose));
|
||||
|
|
Loading…
Reference in New Issue