diff --git a/.cproject b/.cproject
index 617aa3795..9d2b1dca0 100644
--- a/.cproject
+++ b/.cproject
@@ -592,7 +592,6 @@
make
-
tests/testBayesTree.run
true
false
@@ -600,7 +599,6 @@
make
-
testBinaryBayesNet.run
true
false
@@ -648,7 +646,6 @@
make
-
testSymbolicBayesNet.run
true
false
@@ -656,7 +653,6 @@
make
-
tests/testSymbolicFactor.run
true
false
@@ -664,7 +660,6 @@
make
-
testSymbolicFactorGraph.run
true
false
@@ -680,7 +675,6 @@
make
-
tests/testBayesTree
true
false
@@ -1136,7 +1130,6 @@
make
-
testErrors.run
true
false
@@ -1366,46 +1359,6 @@
true
true
-
- make
- -j5
- testBTree.run
- true
- true
- true
-
-
- make
- -j5
- testDSF.run
- true
- true
- true
-
-
- make
- -j5
- testDSFMap.run
- true
- true
- true
-
-
- make
- -j5
- testDSFVector.run
- true
- true
- true
-
-
- make
- -j5
- testFixedVector.run
- true
- true
- true
-
make
-j2
@@ -1488,6 +1441,7 @@
make
+
testSimulated2DOriented.run
true
false
@@ -1527,6 +1481,7 @@
make
+
testSimulated2D.run
true
false
@@ -1534,6 +1489,7 @@
make
+
testSimulated3D.run
true
false
@@ -1547,6 +1503,46 @@
true
true
+
+ make
+ -j5
+ testBTree.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testDSF.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testDSFMap.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testDSFVector.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testFixedVector.run
+ true
+ true
+ true
+
make
-j5
@@ -1804,7 +1800,6 @@
cpack
-
-G DEB
true
false
@@ -1812,7 +1807,6 @@
cpack
-
-G RPM
true
false
@@ -1820,7 +1814,6 @@
cpack
-
-G TGZ
true
false
@@ -1828,7 +1821,6 @@
cpack
-
--config CPackSourceConfig.cmake
true
false
@@ -2002,6 +1994,14 @@
true
true
+
+ make
+ -j2 VERBOSE=1
+ check.navigation
+ true
+ false
+ true
+
make
-j2
@@ -2683,7 +2683,6 @@
make
-
testGraph.run
true
false
@@ -2691,7 +2690,6 @@
make
-
testJunctionTree.run
true
false
@@ -2699,7 +2697,6 @@
make
-
testSymbolicBayesNetB.run
true
false
@@ -2809,14 +2806,6 @@
true
true
-
- make
- -j4
- testBasisDecompositions.run
- true
- true
- true
-
make
-j4
@@ -3251,6 +3240,7 @@
make
+
tests/testGaussianISAM2
true
false
diff --git a/gtsam.h b/gtsam.h
index 5f5f4c5b1..4cccea87b 100644
--- a/gtsam.h
+++ b/gtsam.h
@@ -2404,25 +2404,24 @@ class ConstantBias {
}///\namespace imuBias
#include
-class PoseVelocity{
- PoseVelocity(const gtsam::Pose3& pose, Vector velocity);
+class PoseVelocityBias{
+ PoseVelocityBias(const gtsam::Pose3& pose, Vector velocity, const gtsam::imuBias::ConstantBias& bias);
};
class ImuFactorPreintegratedMeasurements {
// Standard Constructor
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance, bool use2ndOrderIntegration);
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance);
- ImuFactorPreintegratedMeasurements(const gtsam::ImuFactorPreintegratedMeasurements& rhs);
+ // ImuFactorPreintegratedMeasurements(const gtsam::ImuFactorPreintegratedMeasurements& rhs);
// Testable
void print(string s) const;
bool equals(const gtsam::ImuFactorPreintegratedMeasurements& expected, double tol);
- Matrix measurementCovariance() const;
- Matrix deltaRij() const;
double deltaTij() const;
+ Matrix deltaRij() const;
Vector deltaPij() const;
Vector deltaVij() const;
- Vector biasHat() const;
+ Vector biasHatVector() const;
Matrix delPdelBiasAcc() const;
Matrix delPdelBiasOmega() const;
Matrix delVdelBiasAcc() const;
@@ -2430,10 +2429,11 @@ class ImuFactorPreintegratedMeasurements {
Matrix delRdelBiasOmega() const;
Matrix preintMeasCov() const;
-
// Standard Interface
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
+ gtsam::PoseVelocityBias predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias,
+ Vector gravity, Vector omegaCoriolis) const;
};
virtual class ImuFactor : gtsam::NonlinearFactor {
@@ -2444,11 +2444,60 @@ virtual class ImuFactor : gtsam::NonlinearFactor {
const gtsam::Pose3& body_P_sensor);
// Standard Interface
gtsam::ImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
- gtsam::PoseVelocity Predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias,
- const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements,
+};
+
+#include
+class CombinedImuFactorPreintegratedMeasurements {
+ // Standard Constructor
+ CombinedImuFactorPreintegratedMeasurements(
+ const gtsam::imuBias::ConstantBias& bias,
+ Matrix measuredAccCovariance,
+ Matrix measuredOmegaCovariance,
+ Matrix integrationErrorCovariance,
+ Matrix biasAccCovariance,
+ Matrix biasOmegaCovariance,
+ Matrix biasAccOmegaInit);
+ CombinedImuFactorPreintegratedMeasurements(
+ const gtsam::imuBias::ConstantBias& bias,
+ Matrix measuredAccCovariance,
+ Matrix measuredOmegaCovariance,
+ Matrix integrationErrorCovariance,
+ Matrix biasAccCovariance,
+ Matrix biasOmegaCovariance,
+ Matrix biasAccOmegaInit,
+ bool use2ndOrderIntegration);
+ // CombinedImuFactorPreintegratedMeasurements(const gtsam::CombinedImuFactorPreintegratedMeasurements& rhs);
+
+ // Testable
+ void print(string s) const;
+ bool equals(const gtsam::CombinedImuFactorPreintegratedMeasurements& expected, double tol);
+
+ double deltaTij() const;
+ Matrix deltaRij() const;
+ Vector deltaPij() const;
+ Vector deltaVij() const;
+ Vector biasHatVector() const;
+ Matrix delPdelBiasAcc() const;
+ Matrix delPdelBiasOmega() const;
+ Matrix delVdelBiasAcc() const;
+ Matrix delVdelBiasOmega() const;
+ Matrix delRdelBiasOmega() const;
+ Matrix preintMeasCov() const;
+
+ // Standard Interface
+ void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
+ void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
+ gtsam::PoseVelocityBias predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias,
Vector gravity, Vector omegaCoriolis) const;
};
+virtual class CombinedImuFactor : gtsam::NonlinearFactor {
+ CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias_i, size_t bias_j,
+ const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis);
+ // Standard Interface
+ gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
+};
+
#include
class AHRSFactorPreintegratedMeasurements {
// Standard Constructor
@@ -2461,7 +2510,6 @@ class AHRSFactorPreintegratedMeasurements {
bool equals(const gtsam::AHRSFactorPreintegratedMeasurements& expected, double tol);
// get Data
- Matrix measurementCovariance() const;
Matrix deltaRij() const;
double deltaTij() const;
Vector biasHat() const;
@@ -2488,64 +2536,6 @@ virtual class AHRSFactor : gtsam::NonlinearFactor {
Vector omegaCoriolis) const;
};
-#include
-class PoseVelocityBias{
- PoseVelocityBias(const gtsam::Pose3& pose, Vector velocity, const gtsam::imuBias::ConstantBias& bias);
- };
-class CombinedImuFactorPreintegratedMeasurements {
- // Standard Constructor
- CombinedImuFactorPreintegratedMeasurements(
- const gtsam::imuBias::ConstantBias& bias,
- Matrix measuredAccCovariance,
- Matrix measuredOmegaCovariance,
- Matrix integrationErrorCovariance,
- Matrix biasAccCovariance,
- Matrix biasOmegaCovariance,
- Matrix biasAccOmegaInit);
- CombinedImuFactorPreintegratedMeasurements(
- const gtsam::imuBias::ConstantBias& bias,
- Matrix measuredAccCovariance,
- Matrix measuredOmegaCovariance,
- Matrix integrationErrorCovariance,
- Matrix biasAccCovariance,
- Matrix biasOmegaCovariance,
- Matrix biasAccOmegaInit,
- bool use2ndOrderIntegration);
- CombinedImuFactorPreintegratedMeasurements(const gtsam::CombinedImuFactorPreintegratedMeasurements& rhs);
-
- // Testable
- void print(string s) const;
- bool equals(const gtsam::CombinedImuFactorPreintegratedMeasurements& expected, double tol);
-
- // Standard Interface
- void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
- void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
-
- Matrix measurementCovariance() const;
- Matrix deltaRij() const;
- double deltaTij() const;
- Vector deltaPij() const;
- Vector deltaVij() const;
- Vector biasHat() const;
- Matrix delPdelBiasAcc() const;
- Matrix delPdelBiasOmega() const;
- Matrix delVdelBiasAcc() const;
- Matrix delVdelBiasOmega() const;
- Matrix delRdelBiasOmega() const;
- Matrix PreintMeasCov() const;
-};
-
-virtual class CombinedImuFactor : gtsam::NonlinearFactor {
- CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias_i, size_t bias_j,
- const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis);
-
- // Standard Interface
- gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
- gtsam::PoseVelocityBias Predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias_i,
- const gtsam::CombinedImuFactorPreintegratedMeasurements& preintegratedMeasurements,
- Vector gravity, Vector omegaCoriolis);
-};
-
#include
//virtual class AttitudeFactor : gtsam::NonlinearFactor {
// AttitudeFactor(const Unit3& nZ, const Unit3& bRef);
diff --git a/gtsam/navigation/AHRSFactor.cpp b/gtsam/navigation/AHRSFactor.cpp
index 195490e87..2f03d72a4 100644
--- a/gtsam/navigation/AHRSFactor.cpp
+++ b/gtsam/navigation/AHRSFactor.cpp
@@ -18,9 +18,9 @@
**/
#include
+#include
-/* External or standard includes */
-#include
+using namespace std;
namespace gtsam {
@@ -29,47 +29,35 @@ namespace gtsam {
//------------------------------------------------------------------------------
AHRSFactor::PreintegratedMeasurements::PreintegratedMeasurements(
const Vector3& bias, const Matrix3& measuredOmegaCovariance) :
- biasHat_(bias), deltaTij_(0.0) {
- measurementCovariance_ << measuredOmegaCovariance;
- delRdelBiasOmega_.setZero();
+ PreintegratedRotation(measuredOmegaCovariance), biasHat_(bias)
+{
preintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
AHRSFactor::PreintegratedMeasurements::PreintegratedMeasurements() :
- biasHat_(Vector3()), deltaTij_(0.0) {
- measurementCovariance_.setZero();
- delRdelBiasOmega_.setZero();
- delRdelBiasOmega_.setZero();
+ PreintegratedRotation(I_3x3), biasHat_(Vector3())
+{
preintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
-void AHRSFactor::PreintegratedMeasurements::print(const std::string& s) const {
- std::cout << s << std::endl;
- std::cout << "biasHat [" << biasHat_.transpose() << "]" << std::endl;
- deltaRij_.print(" deltaRij ");
- std::cout << " measurementCovariance [" << measurementCovariance_ << " ]"
- << std::endl;
- std::cout << " PreintMeasCov [ " << preintMeasCov_ << " ]" << std::endl;
+void AHRSFactor::PreintegratedMeasurements::print(const string& s) const {
+ PreintegratedRotation::print(s);
+ cout << "biasHat [" << biasHat_.transpose() << "]" << endl;
+ cout << " PreintMeasCov [ " << preintMeasCov_ << " ]" << endl;
}
//------------------------------------------------------------------------------
bool AHRSFactor::PreintegratedMeasurements::equals(
const PreintegratedMeasurements& other, double tol) const {
- return equal_with_abs_tol(biasHat_, other.biasHat_, tol)
- && equal_with_abs_tol(measurementCovariance_,
- other.measurementCovariance_, tol)
- && deltaRij_.equals(other.deltaRij_, tol)
- && std::fabs(deltaTij_ - other.deltaTij_) < tol
- && equal_with_abs_tol(delRdelBiasOmega_, other.delRdelBiasOmega_, tol);
+ return PreintegratedRotation::equals(other, tol)
+ && equal_with_abs_tol(biasHat_, other.biasHat_, tol);
}
//------------------------------------------------------------------------------
void AHRSFactor::PreintegratedMeasurements::resetIntegration() {
- deltaRij_ = Rot3();
- deltaTij_ = 0.0;
- delRdelBiasOmega_.setZero();
+ PreintegratedRotation::resetIntegration();
preintMeasCov_.setZero();
}
@@ -78,7 +66,6 @@ void AHRSFactor::PreintegratedMeasurements::integrateMeasurement(
const Vector3& measuredOmega, double deltaT,
boost::optional body_P_sensor) {
- // NOTE: order is important here because each update uses old values.
// First we compensate the measurements for the bias
Vector3 correctedOmega = measuredOmega - biasHat_;
@@ -93,64 +80,27 @@ void AHRSFactor::PreintegratedMeasurements::integrateMeasurement(
// rotation vector describing rotation increment computed from the
// current rotation rate measurement
const Vector3 theta_incr = correctedOmega * deltaT;
+ Matrix3 D_Rincr_integratedOmega;
+ const Rot3 incrR = Rot3::Expmap(theta_incr, D_Rincr_integratedOmega); // expensive !!
- // rotation increment computed from the current rotation rate measurement
- const Rot3 incrR = Rot3::Expmap(theta_incr);
- const Matrix3 incrRt = incrR.transpose();
+ // Update Jacobian
+ update_delRdelBiasOmega(D_Rincr_integratedOmega, incrR, deltaT);
- // Right Jacobian computed at theta_incr
- const Matrix3 Jr_theta_incr = Rot3::ExpmapDerivative(theta_incr);
-
- // Update Jacobians
- // ---------------------------------------------------------------------------
- delRdelBiasOmega_ = incrRt * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
-
- // Update preintegrated measurements covariance
- // ---------------------------------------------------------------------------
- const Vector3 theta_i = Rot3::Logmap(deltaRij_); // Parameterization of so(3)
- const Matrix3 Jr_theta_i = Rot3::LogmapDerivative(theta_i);
-
- Rot3 Rot_j = deltaRij_ * incrR;
- const Vector3 theta_j = Rot3::Logmap(Rot_j); // Parameterization of so(3)
- const Matrix3 Jrinv_theta_j = Rot3::LogmapDerivative(theta_j);
-
- // Update preintegrated measurements covariance: as in [2] we consider a first
- // order propagation that can be seen as a prediction phase in an EKF framework
- Matrix3 H_angles_angles = Jrinv_theta_j * incrRt * Jr_theta_i;
- // analytic expression corresponding to the following numerical derivative
- // Matrix H_angles_angles = numericalDerivative11
- // (boost::bind(&DeltaAngles, correctedOmega, deltaT, _1), thetaij);
-
- // overall Jacobian wrpt preintegrated measurements (df/dx)
- const Matrix3& F = H_angles_angles;
+ // Update rotation and deltaTij.
+ Matrix3 Fr; // Jacobian of the update
+ updateIntegratedRotationAndDeltaT(incrR, deltaT, Fr);
// first order uncertainty propagation
// the deltaT allows to pass from continuous time noise to discrete time noise
- preintMeasCov_ = F * preintMeasCov_ * F.transpose()
- + measurementCovariance_ * deltaT;
-
- // Update preintegrated measurements
- // ---------------------------------------------------------------------------
- deltaRij_ = deltaRij_ * incrR;
- deltaTij_ += deltaT;
+ preintMeasCov_ = Fr * preintMeasCov_ * Fr.transpose()
+ + gyroscopeCovariance() * deltaT;
}
//------------------------------------------------------------------------------
Vector3 AHRSFactor::PreintegratedMeasurements::predict(const Vector3& bias,
boost::optional H) const {
const Vector3 biasOmegaIncr = bias - biasHat_;
- Vector3 delRdelBiasOmega_biasOmegaIncr = delRdelBiasOmega_ * biasOmegaIncr;
- const Rot3 deltaRij_biascorrected = deltaRij_.retract(
- delRdelBiasOmega_biasOmegaIncr, Rot3::EXPMAP);
- const Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
- if (H) {
- const Matrix3 Jrinv_theta_bc = //
- Rot3::LogmapDerivative(theta_biascorrected);
- const Matrix3 Jr_JbiasOmegaIncr = //
- Rot3::ExpmapDerivative(delRdelBiasOmega_biasOmegaIncr);
- (*H) = Jrinv_theta_bc * Jr_JbiasOmegaIncr * delRdelBiasOmega_;
- }
- return theta_biascorrected;
+ return biascorrectedThetaRij(biasOmegaIncr, H);
}
//------------------------------------------------------------------------------
Vector AHRSFactor::PreintegratedMeasurements::DeltaAngles(
@@ -172,7 +122,7 @@ Vector AHRSFactor::PreintegratedMeasurements::DeltaAngles(
// AHRSFactor methods
//------------------------------------------------------------------------------
AHRSFactor::AHRSFactor() :
- preintegratedMeasurements_(Vector3(), Matrix3::Zero()) {
+ _PIM_(Vector3(), Z_3x3) {
}
AHRSFactor::AHRSFactor(Key rot_i, Key rot_j, Key bias,
@@ -180,7 +130,7 @@ AHRSFactor::AHRSFactor(Key rot_i, Key rot_j, Key bias,
const Vector3& omegaCoriolis, boost::optional body_P_sensor) :
Base(
noiseModel::Gaussian::Covariance(
- preintegratedMeasurements.preintMeasCov_), rot_i, rot_j, bias), preintegratedMeasurements_(
+ preintegratedMeasurements.preintMeasCov_), rot_i, rot_j, bias), _PIM_(
preintegratedMeasurements), omegaCoriolis_(omegaCoriolis), body_P_sensor_(
body_P_sensor) {
}
@@ -192,13 +142,12 @@ gtsam::NonlinearFactor::shared_ptr AHRSFactor::clone() const {
}
//------------------------------------------------------------------------------
-void AHRSFactor::print(const std::string& s,
+void AHRSFactor::print(const string& s,
const KeyFormatter& keyFormatter) const {
- std::cout << s << "AHRSFactor(" << keyFormatter(this->key1()) << ","
+ cout << s << "AHRSFactor(" << keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << "," << keyFormatter(this->key3()) << ",";
- preintegratedMeasurements_.print(" preintegrated measurements:");
- std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]"
- << std::endl;
+ _PIM_.print(" preintegrated measurements:");
+ cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
noiseModel_->print(" noise model: ");
if (body_P_sensor_)
body_P_sensor_->print(" sensor pose in body frame: ");
@@ -207,8 +156,7 @@ void AHRSFactor::print(const std::string& s,
//------------------------------------------------------------------------------
bool AHRSFactor::equals(const NonlinearFactor& other, double tol) const {
const This *e = dynamic_cast(&other);
- return e != NULL && Base::equals(*e, tol)
- && preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
+ return e != NULL && Base::equals(*e, tol) && _PIM_.equals(e->_PIM_, tol)
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_)
|| (body_P_sensor_ && e->body_P_sensor_
@@ -216,50 +164,49 @@ bool AHRSFactor::equals(const NonlinearFactor& other, double tol) const {
}
//------------------------------------------------------------------------------
-Vector AHRSFactor::evaluateError(const Rot3& rot_i, const Rot3& rot_j,
+Vector AHRSFactor::evaluateError(const Rot3& Ri, const Rot3& Rj,
const Vector3& bias, boost::optional H1,
boost::optional H2, boost::optional H3) const {
// Do bias correction, if (H3) will contain 3*3 derivative used below
- const Vector3 theta_biascorrected = //
- preintegratedMeasurements_.predict(bias, H3);
+ const Vector3 biascorrectedOmega = _PIM_.predict(bias, H3);
// Coriolis term
- const Vector3 coriolis = //
- preintegratedMeasurements_.integrateCoriolis(rot_i, omegaCoriolis_);
- const Vector3 theta_corrected = theta_biascorrected - coriolis;
+ const Vector3 coriolis = _PIM_.integrateCoriolis(Ri, omegaCoriolis_);
+ const Matrix3 coriolisHat = skewSymmetric(coriolis);
+ const Vector3 correctedOmega = biascorrectedOmega - coriolis;
// Prediction
- const Rot3 deltaRij_corrected = Rot3::Expmap(theta_corrected);
+ const Rot3 correctedDeltaRij = Rot3::Expmap(correctedOmega);
// Get error between actual and prediction
- const Rot3 actualRij = rot_i.between(rot_j);
- const Rot3 fRhat = deltaRij_corrected.between(actualRij);
- Vector3 fR = Rot3::Logmap(fRhat);
+ const Rot3 actualRij = Ri.between(Rj);
+ const Rot3 fRrot = correctedDeltaRij.between(actualRij);
+ Vector3 fR = Rot3::Logmap(fRrot);
// Terms common to derivatives
- const Matrix3 Jr_theta_bcc = Rot3::ExpmapDerivative(theta_corrected);
- const Matrix3 Jrinv_fRhat = Rot3::LogmapDerivative(fR);
+ const Matrix3 D_cDeltaRij_cOmega = Rot3::ExpmapDerivative(correctedOmega);
+ const Matrix3 D_fR_fRrot = Rot3::LogmapDerivative(fR);
if (H1) {
// dfR/dRi
H1->resize(3, 3);
- Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(coriolis);
+ Matrix3 D_coriolis = -D_cDeltaRij_cOmega * coriolisHat;
(*H1)
- << Jrinv_fRhat * (-actualRij.transpose() - fRhat.transpose() * Jtheta);
+ << D_fR_fRrot * (-actualRij.transpose() - fRrot.transpose() * D_coriolis);
}
if (H2) {
// dfR/dPosej
H2->resize(3, 3);
- (*H2) << Jrinv_fRhat * Matrix3::Identity();
+ (*H2) << D_fR_fRrot * Matrix3::Identity();
}
if (H3) {
// dfR/dBias, note H3 contains derivative of predict
- const Matrix3 JbiasOmega = Jr_theta_bcc * (*H3);
+ const Matrix3 JbiasOmega = D_cDeltaRij_cOmega * (*H3);
H3->resize(3, 3);
- (*H3) << Jrinv_fRhat * (-fRhat.transpose() * JbiasOmega);
+ (*H3) << D_fR_fRrot * (-fRrot.transpose() * JbiasOmega);
}
Vector error(3);
@@ -272,16 +219,16 @@ Rot3 AHRSFactor::predict(const Rot3& rot_i, const Vector3& bias,
const PreintegratedMeasurements preintegratedMeasurements,
const Vector3& omegaCoriolis, boost::optional body_P_sensor) {
- const Vector3 theta_biascorrected = preintegratedMeasurements.predict(bias);
+ const Vector3 biascorrectedOmega = preintegratedMeasurements.predict(bias);
// Coriolis term
const Vector3 coriolis = //
preintegratedMeasurements.integrateCoriolis(rot_i, omegaCoriolis);
- const Vector3 theta_corrected = theta_biascorrected - coriolis;
- const Rot3 deltaRij_corrected = Rot3::Expmap(theta_corrected);
+ const Vector3 correctedOmega = biascorrectedOmega - coriolis;
+ const Rot3 correctedDeltaRij = Rot3::Expmap(correctedOmega);
- return rot_i.compose(deltaRij_corrected);
+ return rot_i.compose(correctedDeltaRij);
}
} //namespace gtsam
diff --git a/gtsam/navigation/AHRSFactor.h b/gtsam/navigation/AHRSFactor.h
index e62a24cca..fd4b9be87 100644
--- a/gtsam/navigation/AHRSFactor.h
+++ b/gtsam/navigation/AHRSFactor.h
@@ -20,6 +20,7 @@
#pragma once
/* GTSAM includes */
+#include
#include
#include
@@ -35,17 +36,12 @@ public:
* Can be built incrementally so as to avoid costly integration at time of
* factor construction.
*/
- class PreintegratedMeasurements {
+ class PreintegratedMeasurements : public PreintegratedRotation {
friend class AHRSFactor;
protected:
Vector3 biasHat_; ///< Acceleration and angular rate bias values used during preintegration. Note that we won't be using the accelerometer
- Matrix3 measurementCovariance_; ///< (Raw measurements uncertainty) Covariance of the vector [measuredOmega] in R^(3X3)
-
- Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
- double deltaTij_; ///< Time interval from i to j
- Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix3 preintMeasCov_; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
public:
@@ -61,31 +57,19 @@ public:
PreintegratedMeasurements(const Vector3& bias,
const Matrix3& measuredOmegaCovariance);
+ Vector3 biasHat() const {
+ return biasHat_;
+ }
+ const Matrix3& preintMeasCov() const {
+ return preintMeasCov_;
+ }
+
/// print
void print(const std::string& s = "Preintegrated Measurements: ") const;
/// equals
bool equals(const PreintegratedMeasurements&, double tol = 1e-9) const;
- const Matrix3& measurementCovariance() const {
- return measurementCovariance_;
- }
- Matrix3 deltaRij() const {
- return deltaRij_.matrix();
- }
- double deltaTij() const {
- return deltaTij_;
- }
- Vector3 biasHat() const {
- return biasHat_;
- }
- const Matrix3& delRdelBiasOmega() const {
- return delRdelBiasOmega_;
- }
- const Matrix3& preintMeasCov() const {
- return preintMeasCov_;
- }
-
/// TODO: Document
void resetIntegration();
@@ -103,12 +87,6 @@ public:
Vector3 predict(const Vector3& bias, boost::optional H =
boost::none) const;
- /// Integrate coriolis correction in body frame rot_i
- Vector3 integrateCoriolis(const Rot3& rot_i,
- const Vector3& omegaCoriolis) const {
- return rot_i.transpose() * omegaCoriolis * deltaTij_;
- }
-
// This function is only used for test purposes
// (compare numerical derivatives wrt analytic ones)
static Vector DeltaAngles(const Vector& msr_gyro_t, const double msr_dt,
@@ -120,11 +98,8 @@ public:
friend class boost::serialization::access;
template
void serialize(ARCHIVE & ar, const unsigned int version) {
+ ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegratedRotation);
ar & BOOST_SERIALIZATION_NVP(biasHat_);
- ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
- ar & BOOST_SERIALIZATION_NVP(deltaRij_);
- ar & BOOST_SERIALIZATION_NVP(deltaTij_);
- ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
}
};
@@ -132,7 +107,7 @@ private:
typedef AHRSFactor This;
typedef NoiseModelFactor3 Base;
- PreintegratedMeasurements preintegratedMeasurements_;
+ PreintegratedMeasurements _PIM_;
Vector3 gravity_;
Vector3 omegaCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame
@@ -178,7 +153,7 @@ public:
/// Access the preintegrated measurements.
const PreintegratedMeasurements& preintegratedMeasurements() const {
- return preintegratedMeasurements_;
+ return _PIM_;
}
const Vector3& omegaCoriolis() const {
@@ -208,7 +183,7 @@ private:
ar
& boost::serialization::make_nvp("NoiseModelFactor3",
boost::serialization::base_object(*this));
- ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
+ ar & BOOST_SERIALIZATION_NVP(_PIM_);
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
diff --git a/gtsam/navigation/CombinedImuFactor.cpp b/gtsam/navigation/CombinedImuFactor.cpp
index 10f12ec66..fd761388a 100644
--- a/gtsam/navigation/CombinedImuFactor.cpp
+++ b/gtsam/navigation/CombinedImuFactor.cpp
@@ -36,197 +36,136 @@ CombinedImuFactor::CombinedPreintegratedMeasurements::CombinedPreintegratedMeasu
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
const Matrix3& biasAccCovariance, const Matrix3& biasOmegaCovariance,
const Matrix& biasAccOmegaInit, const bool use2ndOrderIntegration) :
- biasHat_(bias), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
- deltaRij_(Rot3()), deltaTij_(0.0),
- delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
- delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
- delRdelBiasOmega_(Z_3x3), use2ndOrderIntegration_(use2ndOrderIntegration)
+ PreintegrationBase(bias, measuredAccCovariance, measuredOmegaCovariance,
+ integrationErrorCovariance, use2ndOrderIntegration),
+ biasAccCovariance_(biasAccCovariance), biasOmegaCovariance_(biasOmegaCovariance),
+ biasAccOmegaInit_(biasAccOmegaInit)
{
- measurementCovariance_.setZero();
- measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
- measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
- measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
- measurementCovariance_.block<3,3>(9,9) = biasAccCovariance;
- measurementCovariance_.block<3,3>(12,12) = biasOmegaCovariance;
- measurementCovariance_.block<6,6>(15,15) = biasAccOmegaInit;
- PreintMeasCov_.setZero();
+ preintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
void CombinedImuFactor::CombinedPreintegratedMeasurements::print(const string& s) const{
- cout << s << endl;
- biasHat_.print(" biasHat");
- cout << " deltaTij " << deltaTij_ << endl;
- cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << endl;
- cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << endl;
- deltaRij_.print(" deltaRij ");
- cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << endl;
- cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << endl;
+ PreintegrationBase::print(s);
+ cout << " biasAccCovariance [ " << biasAccCovariance_ << " ]" << endl;
+ cout << " biasOmegaCovariance [ " << biasOmegaCovariance_ << " ]" << endl;
+ cout << " biasAccOmegaInit [ " << biasAccOmegaInit_ << " ]" << endl;
+ cout << " preintMeasCov [ " << preintMeasCov_ << " ]" << endl;
}
//------------------------------------------------------------------------------
bool CombinedImuFactor::CombinedPreintegratedMeasurements::equals(const CombinedPreintegratedMeasurements& expected, double tol) const{
- return biasHat_.equals(expected.biasHat_, tol)
- && equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
- && equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
- && equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
- && deltaRij_.equals(expected.deltaRij_, tol)
- && fabs(deltaTij_ - expected.deltaTij_) < tol
- && equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
- && equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
- && equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
- && equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
- && equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
+ return equal_with_abs_tol(biasAccCovariance_, expected.biasAccCovariance_, tol)
+ && equal_with_abs_tol(biasOmegaCovariance_, expected.biasOmegaCovariance_, tol)
+ &&equal_with_abs_tol(biasAccOmegaInit_, expected.biasAccOmegaInit_, tol)
+ && equal_with_abs_tol(preintMeasCov_, expected.preintMeasCov_, tol)
+ && PreintegrationBase::equals(expected, tol);
}
//------------------------------------------------------------------------------
void CombinedImuFactor::CombinedPreintegratedMeasurements::resetIntegration(){
- deltaPij_ = Vector3::Zero();
- deltaVij_ = Vector3::Zero();
- deltaRij_ = Rot3();
- deltaTij_ = 0.0;
- delPdelBiasAcc_ = Z_3x3;
- delPdelBiasOmega_ = Z_3x3;
- delVdelBiasAcc_ = Z_3x3;
- delVdelBiasOmega_ = Z_3x3;
- delRdelBiasOmega_ = Z_3x3;
- PreintMeasCov_.setZero();
+ PreintegrationBase::resetIntegration();
+ preintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
const Vector3& measuredAcc, const Vector3& measuredOmega,
- double deltaT, boost::optional body_P_sensor) {
+ double deltaT, boost::optional body_P_sensor,
+ boost::optional F_test, boost::optional G_test) {
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
// (i.e., we have to update jacobians and covariances before updating preintegrated measurements).
- // First we compensate the measurements for the bias: since we have only an estimate of the bias, the covariance includes the corresponding uncertainty
- Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
- Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
+ Vector3 correctedAcc, correctedOmega;
+ correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, correctedAcc, correctedOmega, body_P_sensor);
- // Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
- if(body_P_sensor){
- Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
- correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
- Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
- correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
- // linear acceleration vector in the body frame
- }
-
- const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
- const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
- const Matrix3 Jr_theta_incr = Rot3::ExpmapDerivative(theta_incr); // Right jacobian computed at theta_incr
+ const Vector3 integratedOmega = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
+ Matrix3 D_Rincr_integratedOmega; // Right jacobian computed at theta_incr
+ const Rot3 Rincr = Rot3::Expmap(integratedOmega, D_Rincr_integratedOmega); // rotation increment computed from the current rotation rate measurement
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
- if(!use2ndOrderIntegration_){
- delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
- delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
- }else{
- delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
- delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
- * skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
- }
-
- delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
- delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
- delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
+ updatePreintegratedJacobians(correctedAcc, D_Rincr_integratedOmega, Rincr, deltaT);
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
// consider the uncertainty of the bias selection and we keep correlation between biases and preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
- const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
- const Matrix3 Jr_theta_i = Rot3::ExpmapDerivative(theta_i);
-
- Rot3 Rot_j = deltaRij_ * Rincr;
- const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
- const Matrix3 Jrinv_theta_j = Rot3::LogmapDerivative(theta_j);
+ const Matrix3 R_i = deltaRij(); // store this
+ // Update preintegrated measurements. TODO Frank moved from end of this function !!!
+ Matrix9 F_9x9;
+ updatePreintegratedMeasurements(correctedAcc, Rincr, deltaT, F_9x9);
// Single Jacobians to propagate covariance
- Matrix3 H_pos_pos = I_3x3;
- Matrix3 H_pos_vel = I_3x3 * deltaT;
- Matrix3 H_pos_angles = Z_3x3;
-
- Matrix3 H_vel_pos = Z_3x3;
- Matrix3 H_vel_vel = I_3x3;
- Matrix3 H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
- // analytic expression corresponding to the following numerical derivative
- // Matrix H_vel_angles = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
- Matrix3 H_vel_biasacc = - deltaRij_.matrix() * deltaT;
-
- Matrix3 H_angles_pos = Z_3x3;
- Matrix3 H_angles_vel = Z_3x3;
- Matrix3 H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
- Matrix3 H_angles_biasomega =- Jrinv_theta_j * Jr_theta_incr * deltaT;
- // analytic expression corresponding to the following numerical derivative
- // Matrix H_angles_angles = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
+ Matrix3 H_vel_biasacc = - R_i * deltaT;
+ Matrix3 H_angles_biasomega =- D_Rincr_integratedOmega * deltaT;
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(15,15);
- F << H_pos_pos, H_pos_vel, H_pos_angles, Z_3x3, Z_3x3,
- H_vel_pos, H_vel_vel, H_vel_angles, H_vel_biasacc, Z_3x3,
- H_angles_pos, H_angles_vel, H_angles_angles, Z_3x3, H_angles_biasomega,
- Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
- Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
+ // for documentation:
+ // F << I_3x3, I_3x3 * deltaT, Z_3x3, Z_3x3, Z_3x3,
+ // Z_3x3, I_3x3, H_vel_angles, H_vel_biasacc, Z_3x3,
+ // Z_3x3, Z_3x3, H_angles_angles, Z_3x3, H_angles_biasomega,
+ // Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
+ // Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
+ F.setZero();
+ F.block<9,9>(0,0) = F_9x9;
+ F.block<6,6>(9,9) = I_6x6;
+ F.block<3,3>(3,9) = H_vel_biasacc;
+ F.block<3,3>(6,12) = H_angles_biasomega;
// first order uncertainty propagation
// Optimized matrix multiplication (1/deltaT) * G * measurementCovariance * G.transpose()
-
Matrix G_measCov_Gt = Matrix::Zero(15,15);
- // BLOCK DIAGONAL TERMS
- G_measCov_Gt.block<3,3>(0,0) = deltaT * measurementCovariance_.block<3,3>(0,0);
+// BLOCK DIAGONAL TERMS
+ G_measCov_Gt.block<3,3>(0,0) = deltaT * integrationCovariance();
G_measCov_Gt.block<3,3>(3,3) = (1/deltaT) * (H_vel_biasacc) *
- (measurementCovariance_.block<3,3>(3,3) + measurementCovariance_.block<3,3>(15,15) ) *
+ (accelerometerCovariance() + biasAccOmegaInit_.block<3,3>(0,0) ) *
(H_vel_biasacc.transpose());
-
G_measCov_Gt.block<3,3>(6,6) = (1/deltaT) * (H_angles_biasomega) *
- (measurementCovariance_.block<3,3>(6,6) + measurementCovariance_.block<3,3>(18,18) ) *
+ (gyroscopeCovariance() + biasAccOmegaInit_.block<3,3>(3,3) ) *
(H_angles_biasomega.transpose());
-
- G_measCov_Gt.block<3,3>(9,9) = deltaT * measurementCovariance_.block<3,3>(9,9);
-
- G_measCov_Gt.block<3,3>(12,12) = deltaT * measurementCovariance_.block<3,3>(12,12);
-
- // NEW OFF BLOCK DIAGONAL TERMS
- Matrix3 block23 = H_vel_biasacc * measurementCovariance_.block<3,3>(18,15) * H_angles_biasomega.transpose();
+ G_measCov_Gt.block<3,3>(9,9) = (1/deltaT) * biasAccCovariance_;
+ G_measCov_Gt.block<3,3>(12,12) = (1/deltaT) * biasOmegaCovariance_;
+ // OFF BLOCK DIAGONAL TERMS
+ Matrix3 block23 = H_vel_biasacc * biasAccOmegaInit_.block<3,3>(3,0) * H_angles_biasomega.transpose();
G_measCov_Gt.block<3,3>(3,6) = block23;
G_measCov_Gt.block<3,3>(6,3) = block23.transpose();
+ preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
- PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + G_measCov_Gt;
-
- // Update preintegrated measurements
- /* ----------------------------------------------------------------------------------------------------------------------- */
- if(!use2ndOrderIntegration_){
- deltaPij_ += deltaVij_ * deltaT;
- }else{
- deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
+ // F_test and G_test are used for testing purposes and are not needed by the factor
+ if(F_test){
+ F_test->resize(15,15);
+ (*F_test) << F;
+ }
+ if(G_test){
+ G_test->resize(15,21);
+ // This is for testing & documentation
+ ///< measurementCovariance_ : cov[integrationError measuredAcc measuredOmega biasAccRandomWalk biasOmegaRandomWalk biasAccInit biasOmegaInit] in R^(21 x 21)
+ (*G_test) << I_3x3 * deltaT, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3,
+ Z_3x3, -H_vel_biasacc, Z_3x3, Z_3x3, Z_3x3, H_vel_biasacc, Z_3x3,
+ Z_3x3, Z_3x3, -H_angles_biasomega, Z_3x3, Z_3x3, Z_3x3, H_angles_biasomega,
+ Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3, Z_3x3, Z_3x3,
+ Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3, Z_3x3;
}
- deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
- deltaRij_ = deltaRij_ * Rincr;
- deltaTij_ += deltaT;
}
//------------------------------------------------------------------------------
// CombinedImuFactor methods
//------------------------------------------------------------------------------
CombinedImuFactor::CombinedImuFactor() :
- preintegratedMeasurements_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Matrix::Zero(6,6)) {}
+ ImuFactorBase(), _PIM_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_6x6) {}
//------------------------------------------------------------------------------
CombinedImuFactor::CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional body_P_sensor, const bool use2ndOrderCoriolis) :
- Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
- preintegratedMeasurements_(preintegratedMeasurements),
- gravity_(gravity),
- omegaCoriolis_(omegaCoriolis),
- body_P_sensor_(body_P_sensor),
- use2ndOrderCoriolis_(use2ndOrderCoriolis){
-}
+ Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.preintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
+ ImuFactorBase(gravity, omegaCoriolis, body_P_sensor, use2ndOrderCoriolis),
+ _PIM_(preintegratedMeasurements) {}
//------------------------------------------------------------------------------
gtsam::NonlinearFactor::shared_ptr CombinedImuFactor::clone() const {
@@ -243,22 +182,17 @@ void CombinedImuFactor::print(const string& s, const KeyFormatter& keyFormatter)
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << ","
<< keyFormatter(this->key6()) << ")\n";
- preintegratedMeasurements_.print(" preintegrated measurements:");
- cout << " gravity: [ " << gravity_.transpose() << " ]" << endl;
- cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
+ ImuFactorBase::print("");
+ _PIM_.print(" preintegrated measurements:");
this->noiseModel_->print(" noise model: ");
- if(this->body_P_sensor_)
- this->body_P_sensor_->print(" sensor pose in body frame: ");
}
//------------------------------------------------------------------------------
bool CombinedImuFactor::equals(const NonlinearFactor& expected, double tol) const {
const This *e = dynamic_cast (&expected);
return e != NULL && Base::equals(*e, tol)
- && preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
- && equal_with_abs_tol(gravity_, e->gravity_, tol)
- && equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
- && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
+ && _PIM_.equals(e->_PIM_, tol)
+ && ImuFactorBase::equals(*e, tol);
}
//------------------------------------------------------------------------------
@@ -268,230 +202,69 @@ Vector CombinedImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_
boost::optional H3, boost::optional H4,
boost::optional H5, boost::optional H6) const {
- const double& deltaTij = preintegratedMeasurements_.deltaTij_;
- const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
- const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
+ // if we need the jacobians
+ if(H1 || H2 || H3 || H4 || H5 || H6){
+ Matrix H1_pvR, H2_pvR, H3_pvR, H4_pvR, H5_pvR, Hbias_i, Hbias_j; // pvR = mnemonic: position (p), velocity (v), rotation (R)
- // we give some shorter name to rotations and translations
- const Rot3 Rot_i = pose_i.rotation();
- const Rot3 Rot_j = pose_j.rotation();
- const Vector3 pos_i = pose_i.translation().vector();
- const Vector3 pos_j = pose_j.translation().vector();
+ // error wrt preintegrated measurements
+ Vector r_pvR(9);
+ r_pvR = _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
+ gravity_, omegaCoriolis_, use2ndOrderCoriolis_, //
+ H1_pvR, H2_pvR, H3_pvR, H4_pvR, H5_pvR);
- // We compute factor's Jacobians, according to [3]
- /* ---------------------------------------------------------------------------------------------------- */
- const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
- // deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
+ // error wrt bias evolution model (random walk)
+ Vector6 fbias = bias_j.between(bias_i, Hbias_j, Hbias_i).vector(); // [bias_j.acc - bias_i.acc; bias_j.gyr - bias_i.gyr]
- Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
-
- Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
- Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
-
- const Rot3 deltaRij_biascorrected_corioliscorrected =
- Rot3::Expmap( theta_biascorrected_corioliscorrected );
-
- const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
-
- const Matrix3 Jr_theta_bcc = Rot3::ExpmapDerivative(theta_biascorrected_corioliscorrected);
-
- const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
-
- const Matrix3 Jrinv_fRhat = Rot3::LogmapDerivative(Rot3::Logmap(fRhat));
-
- if(H1) {
- H1->resize(15,6);
-
- Matrix3 dfPdPi;
- Matrix3 dfVdPi;
- if(use2ndOrderCoriolis_){
- dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
- dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
+ if(H1) {
+ H1->resize(15,6);
+ H1->block<9,6>(0,0) = H1_pvR;
+ // adding: [dBiasAcc/dPi ; dBiasOmega/dPi]
+ H1->block<6,6>(9,0) = Z_6x6;
}
- else{
- dfPdPi = - Rot_i.matrix();
- dfVdPi = Z_3x3;
+ if(H2) {
+ H2->resize(15,3);
+ H2->block<9,3>(0,0) = H2_pvR;
+ // adding: [dBiasAcc/dVi ; dBiasOmega/dVi]
+ H2->block<6,3>(9,0) = Matrix::Zero(6,3);
}
-
- (*H1) <<
- // dfP/dRi
- Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
- + preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
- // dfP/dPi
- dfPdPi,
- // dfV/dRi
- Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
- + preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
- // dfV/dPi
- dfVdPi,
- // dfR/dRi
- Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
- // dfR/dPi
- Z_3x3,
- //dBiasAcc/dPi
- Z_3x3, Z_3x3,
- //dBiasOmega/dPi
- Z_3x3, Z_3x3;
+ if(H3) {
+ H3->resize(15,6);
+ H3->block<9,6>(0,0) = H3_pvR;
+ // adding: [dBiasAcc/dPj ; dBiasOmega/dPj]
+ H3->block<6,6>(9,0) = Z_6x6;
+ }
+ if(H4) {
+ H4->resize(15,3);
+ H4->block<9,3>(0,0) = H4_pvR;
+ // adding: [dBiasAcc/dVi ; dBiasOmega/dVi]
+ H4->block<6,3>(9,0) = Matrix::Zero(6,3);
+ }
+ if(H5) {
+ H5->resize(15,6);
+ H5->block<9,6>(0,0) = H5_pvR;
+ // adding: [dBiasAcc/dBias_i ; dBiasOmega/dBias_i]
+ H5->block<6,6>(9,0) = Hbias_i;
+ }
+ if(H6) {
+ H6->resize(15,6);
+ H6->block<9,6>(0,0) = Matrix::Zero(9,6);
+ // adding: [dBiasAcc/dBias_j ; dBiasOmega/dBias_j]
+ H6->block<6,6>(9,0) = Hbias_j;
+ }
+ Vector r(15); r << r_pvR, fbias; // vector of size 15
+ return r;
}
-
- if(H2) {
- H2->resize(15,3);
- (*H2) <<
- // dfP/dVi
- - I_3x3 * deltaTij
- + skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
- // dfV/dVi
- - I_3x3
- + 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
- // dfR/dVi
- Z_3x3,
- //dBiasAcc/dVi
- Z_3x3,
- //dBiasOmega/dVi
- Z_3x3;
- }
-
- if(H3) {
- H3->resize(15,6);
- (*H3) <<
- // dfP/dPosej
- Z_3x3, Rot_j.matrix(),
- // dfV/dPosej
- Matrix::Zero(3,6),
- // dfR/dPosej
- Jrinv_fRhat * ( I_3x3 ), Z_3x3,
- //dBiasAcc/dPosej
- Z_3x3, Z_3x3,
- //dBiasOmega/dPosej
- Z_3x3, Z_3x3;
- }
-
- if(H4) {
- H4->resize(15,3);
- (*H4) <<
- // dfP/dVj
- Z_3x3,
- // dfV/dVj
- I_3x3,
- // dfR/dVj
- Z_3x3,
- //dBiasAcc/dVj
- Z_3x3,
- //dBiasOmega/dVj
- Z_3x3;
- }
-
- if(H5) {
- const Matrix3 Jrinv_theta_bc = Rot3::LogmapDerivative(theta_biascorrected);
- const Matrix3 Jr_JbiasOmegaIncr = Rot3::ExpmapDerivative(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
- const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
-
- H5->resize(15,6);
- (*H5) <<
- // dfP/dBias_i
- - Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
- - Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
- // dfV/dBias_i
- - Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
- - Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
- // dfR/dBias_i
- Matrix::Zero(3,3),
- Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega),
- //dBiasAcc/dBias_i
- -I_3x3, Z_3x3,
- //dBiasOmega/dBias_i
- Z_3x3, -I_3x3;
- }
-
- if(H6) {
- H6->resize(15,6);
- (*H6) <<
- // dfP/dBias_j
- Z_3x3, Z_3x3,
- // dfV/dBias_j
- Z_3x3, Z_3x3,
- // dfR/dBias_j
- Z_3x3, Z_3x3,
- //dBiasAcc/dBias_j
- I_3x3, Z_3x3,
- //dBiasOmega/dBias_j
- Z_3x3, I_3x3;
- }
-
- // Evaluate residual error, according to [3]
- /* ---------------------------------------------------------------------------------------------------- */
- const Vector3 fp =
- pos_j - pos_i
- - Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
- + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
- + preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
- - vel_i * deltaTij
- + skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- - 0.5 * gravity_ * deltaTij*deltaTij;
-
- const Vector3 fv =
- vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
- + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
- + preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
- + 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- - gravity_ * deltaTij;
-
- const Vector3 fR = Rot3::Logmap(fRhat);
-
- const Vector3 fbiasAcc = bias_j.accelerometer() - bias_i.accelerometer();
-
- const Vector3 fbiasOmega = bias_j.gyroscope() - bias_i.gyroscope();
-
- Vector r(15); r << fp, fv, fR, fbiasAcc, fbiasOmega; // vector of size 15
-
+ // else, only compute the error vector:
+ // error wrt preintegrated measurements
+ Vector r_pvR(9);
+ r_pvR = _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
+ gravity_, omegaCoriolis_, use2ndOrderCoriolis_, //
+ boost::none, boost::none, boost::none, boost::none, boost::none);
+ // error wrt bias evolution model (random walk)
+ Vector6 fbias = bias_j.between(bias_i).vector(); // [bias_j.acc - bias_i.acc; bias_j.gyr - bias_i.gyr]
+ // overall error
+ Vector r(15); r << r_pvR, fbias; // vector of size 15
return r;
}
-//------------------------------------------------------------------------------
-PoseVelocityBias CombinedImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i,
- const imuBias::ConstantBias& bias_i,
- const CombinedPreintegratedMeasurements& preintegratedMeasurements,
- const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis){
-
- const double& deltaTij = preintegratedMeasurements.deltaTij_;
- const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
- const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
-
- const Rot3 Rot_i = pose_i.rotation();
- const Vector3 pos_i = pose_i.translation().vector();
-
- // Predict state at time j
- /* ---------------------------------------------------------------------------------------------------- */
- Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
- + preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
- + preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
- + vel_i * deltaTij
- - skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- + 0.5 * gravity * deltaTij*deltaTij;
-
- Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
- + preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
- + preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
- - 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
- + gravity * deltaTij);
-
- if(use2ndOrderCoriolis){
- pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
- vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
- }
-
- const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
- // deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
- Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
- Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
- Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
- const Rot3 deltaRij_biascorrected_corioliscorrected =
- Rot3::Expmap( theta_biascorrected_corioliscorrected );
- const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
-
- Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
-
- return PoseVelocityBias(pose_j, vel_j, bias_i);
-}
-
} /// namespace gtsam
diff --git a/gtsam/navigation/CombinedImuFactor.h b/gtsam/navigation/CombinedImuFactor.h
index 5e2bfeadb..a7c6ecd39 100644
--- a/gtsam/navigation/CombinedImuFactor.h
+++ b/gtsam/navigation/CombinedImuFactor.h
@@ -23,7 +23,8 @@
/* GTSAM includes */
#include
-#include
+#include
+#include
#include
namespace gtsam {
@@ -33,78 +34,63 @@ namespace gtsam {
* @addtogroup SLAM
*
* If you are using the factor, please cite:
- * L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
- * independent sets in factor graphs: a unifying perspective based on smart factors,
- * Int. Conf. on Robotics and Automation (ICRA), 2014.
+ * L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating
+ * conditionally independent sets in factor graphs: a unifying perspective based
+ * on smart factors, Int. Conf. on Robotics and Automation (ICRA), 2014.
*
- * REFERENCES:
- * [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
- * [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
- * Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
- * [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
+ ** REFERENCES:
+ * [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
+ * Volume 2, 2008.
+ * [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
+ * High-Dynamic Motion in Built Environments Without Initial Conditions",
+ * TRO, 28(1):61-76, 2012.
+ * [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
+ * Computation of the Jacobian Matrices", Tech. Report, 2013.
*/
/**
- * Struct to hold all state variables of CombinedImuFactor returned by Predict function
+ * CombinedImuFactor is a 6-ways factor involving previous state (pose and
+ * velocity of the vehicle, as well as bias at previous time step), and current
+ * state (pose, velocity, bias at current time step). Following the pre-
+ * integration scheme proposed in [2], the CombinedImuFactor includes many IMU
+ * measurements, which are "summarized" using the CombinedPreintegratedMeasurements
+ * class. There are 3 main differences wrpt the ImuFactor class:
+ * 1) The factor is 6-ways, meaning that it also involves both biases (previous
+ * and current time step).Therefore, the factor internally imposes the biases
+ * to be slowly varying; in particular, the matrices "biasAccCovariance" and
+ * "biasOmegaCovariance" described the random walk that models bias evolution.
+ * 2) The preintegration covariance takes into account the noise in the bias
+ * estimate used for integration.
+ * 3) The covariance matrix of the CombinedPreintegratedMeasurements preserves
+ * the correlation between the bias uncertainty and the preintegrated
+ * measurements uncertainty.
*/
-struct PoseVelocityBias {
- Pose3 pose;
- Vector3 velocity;
- imuBias::ConstantBias bias;
-
- PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
- const imuBias::ConstantBias _bias) :
- pose(_pose), velocity(_velocity), bias(_bias) {
- }
-};
-
-/**
- * CombinedImuFactor is a 6-ways factor involving previous state (pose and velocity of the vehicle, as well as bias
- * at previous time step), and current state (pose, velocity, bias at current time step). According to the
- * preintegration scheme proposed in [2], the CombinedImuFactor includes many IMU measurements, which are
- * "summarized" using the CombinedPreintegratedMeasurements class. There are 3 main differences wrt ImuFactor:
- * 1) The factor is 6-ways, meaning that it also involves both biases (previous and current time step).
- * Therefore, the factor internally imposes the biases to be slowly varying; in particular, the matrices
- * "biasAccCovariance" and "biasOmegaCovariance" described the random walk that models bias evolution.
- * 2) The preintegration covariance takes into account the noise in the bias estimate used for integration.
- * 3) The covariance matrix of the CombinedPreintegratedMeasurements preserves the correlation between the bias uncertainty
- * and the preintegrated measurements uncertainty.
- */
-class CombinedImuFactor: public NoiseModelFactor6 {
+class CombinedImuFactor: public NoiseModelFactor6, public ImuFactorBase{
public:
- /** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
- * and the corresponding covariance matrix. The measurements are then used to build the CombinedPreintegrated IMU factor (CombinedImuFactor).
- * Integration is done incrementally (ideally, one integrates the measurement as soon as it is received
- * from the IMU) so as to avoid costly integration at time of factor construction.
+ /**
+ * CombinedPreintegratedMeasurements integrates the IMU measurements
+ * (rotation rates and accelerations) and the corresponding covariance matrix.
+ * The measurements are then used to build the CombinedImuFactor. Integration
+ * is done incrementally (ideally, one integrates the measurement as soon as
+ * it is received from the IMU) so as to avoid costly integration at time of
+ * factor construction.
*/
- class CombinedPreintegratedMeasurements {
+ class CombinedPreintegratedMeasurements: public PreintegrationBase {
friend class CombinedImuFactor;
protected:
- imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
- Eigen::Matrix measurementCovariance_; ///< (Raw measurements uncertainty) Covariance of the vector
- ///< [integrationError measuredAcc measuredOmega biasAccRandomWalk biasOmegaRandomWalk biasAccInit biasOmegaInit] in R^(21 x 21)
- Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
- Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
- Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
- double deltaTij_; ///< Time interval from i to j
+ Matrix3 biasAccCovariance_; ///< continuous-time "Covariance" describing accelerometer bias random walk
+ Matrix3 biasOmegaCovariance_; ///< continuous-time "Covariance" describing gyroscope bias random walk
+ Matrix6 biasAccOmegaInit_; ///< covariance of bias used for pre-integration
- Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
- Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
- Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
- Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
- Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
-
- Eigen::Matrix PreintMeasCov_; ///< Covariance matrix of the preintegrated measurements
+ Eigen::Matrix preintMeasCov_; ///< Covariance matrix of the preintegrated measurements
///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION BiasAcc BiasOmega]
///< (first-order propagation from *measurementCovariance*). CombinedPreintegratedMeasurements also include the biases and keep the correlation
///< between the preintegrated measurements and the biases
- bool use2ndOrderIntegration_; ///< Controls the order of integration
-
public:
/**
@@ -141,60 +127,20 @@ public:
* @param body_P_sensor Optional sensor frame (pose of the IMU in the body frame)
*/
void integrateMeasurement(const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
- boost::optional body_P_sensor = boost::none);
+ boost::optional body_P_sensor = boost::none,
+ boost::optional F_test = boost::none, boost::optional G_test = boost::none);
/// methods to access class variables
- Matrix measurementCovariance() const {return measurementCovariance_;}
- Matrix deltaRij() const {return deltaRij_.matrix();}
- double deltaTij() const{return deltaTij_;}
- Vector deltaPij() const {return deltaPij_;}
- Vector deltaVij() const {return deltaVij_;}
- Vector biasHat() const { return biasHat_.vector();}
- Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
- Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
- Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
- Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
- Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
- Matrix PreintMeasCov() const { return PreintMeasCov_;}
-
- /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
- // This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
- static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
- const Vector3& delta_angles, const Vector& delta_vel_in_t0){
- // Note: all delta terms refer to an IMU\sensor system at t0
- Vector body_t_a_body = msr_acc_t;
- Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
- return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
- }
-
- // This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
- static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
- const Vector3& delta_angles){
- // Note: all delta terms refer to an IMU\sensor system at t0
- // Calculate the corrected measurements using the Bias object
- Vector body_t_omega_body= msr_gyro_t;
- Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
- R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
- return Rot3::Logmap(R_t_to_t0);
- }
- /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
+ Matrix preintMeasCov() const { return preintMeasCov_;}
private:
- /** Serialization function */
+
+ /// Serialization function
friend class boost::serialization::access;
template
void serialize(ARCHIVE & ar, const unsigned int version) {
- ar & BOOST_SERIALIZATION_NVP(biasHat_);
- ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
- ar & BOOST_SERIALIZATION_NVP(deltaPij_);
- ar & BOOST_SERIALIZATION_NVP(deltaVij_);
- ar & BOOST_SERIALIZATION_NVP(deltaRij_);
- ar & BOOST_SERIALIZATION_NVP(deltaTij_);
- ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
- ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
- ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
- ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
- ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
+ ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegrationBase);
+ ar & BOOST_SERIALIZATION_NVP(preintMeasCov_);
}
};
@@ -203,12 +149,7 @@ private:
typedef CombinedImuFactor This;
typedef NoiseModelFactor6 Base;
- CombinedPreintegratedMeasurements preintegratedMeasurements_;
- Vector3 gravity_;
- Vector3 omegaCoriolis_;
- boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame
-
- bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
+ CombinedPreintegratedMeasurements _PIM_;
public:
@@ -257,11 +198,7 @@ public:
/** Access the preintegrated measurements. */
const CombinedPreintegratedMeasurements& preintegratedMeasurements() const {
- return preintegratedMeasurements_; }
-
- const Vector3& gravity() const { return gravity_; }
-
- const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
+ return _PIM_; }
/** implement functions needed to derive from Factor */
@@ -275,12 +212,6 @@ public:
boost::optional H5 = boost::none,
boost::optional H6 = boost::none) const;
- /// predicted states from IMU
- static PoseVelocityBias Predict(const Pose3& pose_i, const Vector3& vel_i,
- const imuBias::ConstantBias& bias_i,
- const CombinedPreintegratedMeasurements& preintegratedMeasurements,
- const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false);
-
private:
/** Serialization function */
@@ -289,7 +220,7 @@ private:
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor6",
boost::serialization::base_object(*this));
- ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
+ ar & BOOST_SERIALIZATION_NVP(_PIM_);
ar & BOOST_SERIALIZATION_NVP(gravity_);
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
diff --git a/gtsam/navigation/ImuFactor.cpp b/gtsam/navigation/ImuFactor.cpp
index cdebffa63..0aaa0122e 100644
--- a/gtsam/navigation/ImuFactor.cpp
+++ b/gtsam/navigation/ImuFactor.cpp
@@ -35,165 +35,82 @@ ImuFactor::PreintegratedMeasurements::PreintegratedMeasurements(
const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
const bool use2ndOrderIntegration) :
- biasHat_(bias), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
- deltaRij_(Rot3()), deltaTij_(0.0),
- delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
- delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
- delRdelBiasOmega_(Z_3x3), use2ndOrderIntegration_(use2ndOrderIntegration)
+ PreintegrationBase(bias,
+ measuredAccCovariance, measuredOmegaCovariance,
+ integrationErrorCovariance, use2ndOrderIntegration)
{
- measurementCovariance_.setZero();
- measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
- measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
- measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
- PreintMeasCov_.setZero(9,9);
+ preintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
void ImuFactor::PreintegratedMeasurements::print(const string& s) const {
- cout << s << endl;
- biasHat_.print(" biasHat");
- cout << " deltaTij " << deltaTij_ << endl;
- cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << endl;
- cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << endl;
- deltaRij_.print(" deltaRij ");
- cout << " measurementCovariance = \n [ " << measurementCovariance_ << " ]" << endl;
- cout << " PreintMeasCov = \n [ " << PreintMeasCov_ << " ]" << endl;
+ PreintegrationBase::print(s);
+ cout << " preintMeasCov = \n [ " << preintMeasCov_ << " ]" << endl;
}
//------------------------------------------------------------------------------
bool ImuFactor::PreintegratedMeasurements::equals(const PreintegratedMeasurements& expected, double tol) const {
- return biasHat_.equals(expected.biasHat_, tol)
- && equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
- && equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
- && equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
- && deltaRij_.equals(expected.deltaRij_, tol)
- && fabs(deltaTij_ - expected.deltaTij_) < tol
- && equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
- && equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
- && equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
- && equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
- && equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
+ return equal_with_abs_tol(preintMeasCov_, expected.preintMeasCov_, tol)
+ && PreintegrationBase::equals(expected, tol);
}
//------------------------------------------------------------------------------
void ImuFactor::PreintegratedMeasurements::resetIntegration(){
- deltaPij_ = Vector3::Zero();
- deltaVij_ = Vector3::Zero();
- deltaRij_ = Rot3();
- deltaTij_ = 0.0;
- delPdelBiasAcc_ = Z_3x3;
- delPdelBiasOmega_ = Z_3x3;
- delVdelBiasAcc_ = Z_3x3;
- delVdelBiasOmega_ = Z_3x3;
- delRdelBiasOmega_ = Z_3x3;
- PreintMeasCov_.setZero();
+ PreintegrationBase::resetIntegration();
+ preintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
void ImuFactor::PreintegratedMeasurements::integrateMeasurement(
const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
- boost::optional body_P_sensor) {
+ boost::optional body_P_sensor,
+ OptionalJacobian<9, 9> F_test, OptionalJacobian<9, 9> G_test) {
- // NOTE: order is important here because each update uses old values (i.e., we have to update
- // jacobians and covariances before updating preintegrated measurements).
+ Vector3 correctedAcc, correctedOmega;
+ correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, correctedAcc, correctedOmega, body_P_sensor);
- // First we compensate the measurements for the bias
- Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
- Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
-
- // Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
- if(body_P_sensor){
- Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
- correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
- Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
- correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
- // linear acceleration vector in the body frame
- }
-
- const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
- const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
-
- const Matrix3 Jr_theta_incr = Rot3::ExpmapDerivative(theta_incr); // Right jacobian computed at theta_incr
+ const Vector3 integratedOmega = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
+ Matrix3 D_Rincr_integratedOmega; // Right jacobian computed at theta_incr
+ const Rot3 Rincr = Rot3::Expmap(integratedOmega, D_Rincr_integratedOmega); // rotation increment computed from the current rotation rate measurement
// Update Jacobians
- /* ----------------------------------------------------------------------------------------------------------------------- */
- if(!use2ndOrderIntegration_){
- delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
- delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
- }else{
- delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
- delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
- * skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
- }
- delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
- delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
- delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
+ updatePreintegratedJacobians(correctedAcc, D_Rincr_integratedOmega, Rincr, deltaT);
- // Update preintegrated measurements covariance
+ // Update preintegrated measurements (also get Jacobian)
+ const Matrix3 R_i = deltaRij(); // store this, which is useful to compute G_test
+ Matrix9 F; // overall Jacobian wrt preintegrated measurements (df/dx)
+ updatePreintegratedMeasurements(correctedAcc, Rincr, deltaT, F);
+
+ // first order covariance propagation:
// as in [2] we consider a first order propagation that can be seen as a prediction phase in an EKF framework
/* ----------------------------------------------------------------------------------------------------------------------- */
- const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
- const Matrix3 Jr_theta_i = Rot3::ExpmapDerivative(theta_i);
-
- Rot3 Rot_j = deltaRij_ * Rincr;
- const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
- const Matrix3 Jrinv_theta_j = Rot3::LogmapDerivative(theta_j);
-
- Matrix H_pos_pos = I_3x3;
- Matrix H_pos_vel = I_3x3 * deltaT;
- Matrix H_pos_angles = Z_3x3;
-
- Matrix H_vel_pos = Z_3x3;
- Matrix H_vel_vel = I_3x3;
- Matrix H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
- // analytic expression corresponding to the following numerical derivative
- // Matrix H_vel_angles = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
-
- Matrix H_angles_pos = Z_3x3;
- Matrix H_angles_vel = Z_3x3;
- Matrix H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
- // analytic expression corresponding to the following numerical derivative
- // Matrix H_angles_angles = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
-
- // overall Jacobian wrt preintegrated measurements (df/dx)
- Matrix F(9,9);
- F << H_pos_pos, H_pos_vel, H_pos_angles,
- H_vel_pos, H_vel_vel, H_vel_angles,
- H_angles_pos, H_angles_vel, H_angles_angles;
-
- // first order uncertainty propagation:
- // the deltaT allows to pass from continuous time noise to discrete time noise
+ // preintMeasCov = F * preintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G.transpose();
+ // NOTE 1: (1/deltaT) allows to pass from continuous time noise to discrete time noise
// measurementCovariance_discrete = measurementCovariance_contTime * (1/deltaT)
- // Gt * Qt * G =(approx)= measurementCovariance_discrete * deltaT^2 = measurementCovariance_contTime * deltaT
- PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + measurementCovariance_ * deltaT ;
+ // NOTE 2: the computation of G * (1/deltaT) * measurementCovariance * G.transpose() is done blockwise,
+ // as G and measurementCovariance are blockdiagonal matrices
+ preintMeasCov_ = F * preintMeasCov_ * F.transpose();
+ preintMeasCov_.block<3,3>(0,0) += integrationCovariance() * deltaT;
+ preintMeasCov_.block<3,3>(3,3) += R_i * accelerometerCovariance() * R_i.transpose() * deltaT;
+ preintMeasCov_.block<3,3>(6,6) += D_Rincr_integratedOmega * gyroscopeCovariance() * D_Rincr_integratedOmega.transpose() * deltaT;
- // Extended version, without approximation: Gt * Qt * G =(approx)= measurementCovariance_contTime * deltaT
- // This in only kept for documentation.
- //
- // Matrix G(9,9);
- // G << I_3x3 * deltaT, Z_3x3, Z_3x3,
- // Z_3x3, deltaRij.matrix() * deltaT, Z_3x3,
- // Z_3x3, Z_3x3, Jrinv_theta_j * Jr_theta_incr * deltaT;
- //
- // PreintMeasCov = F * PreintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G.transpose();
-
- // Update preintegrated measurements (this has to be done after the update of covariances and jacobians!)
- /* ----------------------------------------------------------------------------------------------------------------------- */
- if(!use2ndOrderIntegration_){
- deltaPij_ += deltaVij_ * deltaT;
- }else{
- deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
+ // F_test and G_test are given as output for testing purposes and are not needed by the factor
+ if(F_test){ // This in only for testing
+ (*F_test) << F;
+ }
+ if(G_test){ // This in only for testing & documentation, while the actual computation is done block-wise
+ // intNoise accNoise omegaNoise
+ (*G_test) << I_3x3 * deltaT, Z_3x3, Z_3x3, // pos
+ Z_3x3, R_i * deltaT, Z_3x3, // vel
+ Z_3x3, Z_3x3, D_Rincr_integratedOmega * deltaT; // angle
}
- deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
- deltaRij_ = deltaRij_ * Rincr;
- deltaTij_ += deltaT;
}
//------------------------------------------------------------------------------
// ImuFactor methods
//------------------------------------------------------------------------------
ImuFactor::ImuFactor() :
- preintegratedMeasurements_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3), use2ndOrderCoriolis_(false){}
+ ImuFactorBase(), _PIM_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3) {}
//------------------------------------------------------------------------------
ImuFactor::ImuFactor(
@@ -202,13 +119,10 @@ ImuFactor::ImuFactor(
const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional body_P_sensor,
const bool use2ndOrderCoriolis) :
- Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias),
- preintegratedMeasurements_(preintegratedMeasurements),
- gravity_(gravity),
- omegaCoriolis_(omegaCoriolis),
- body_P_sensor_(body_P_sensor),
- use2ndOrderCoriolis_(use2ndOrderCoriolis){
-}
+ Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.preintMeasCov_),
+ pose_i, vel_i, pose_j, vel_j, bias),
+ ImuFactorBase(gravity, omegaCoriolis, body_P_sensor, use2ndOrderCoriolis),
+ _PIM_(preintegratedMeasurements) {}
//------------------------------------------------------------------------------
gtsam::NonlinearFactor::shared_ptr ImuFactor::clone() const {
@@ -224,215 +138,28 @@ void ImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
<< keyFormatter(this->key3()) << ","
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << ")\n";
- preintegratedMeasurements_.print(" preintegrated measurements:");
- cout << " gravity: [ " << gravity_.transpose() << " ]" << endl;
- cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
+ ImuFactorBase::print("");
+ _PIM_.print(" preintegrated measurements:");
this->noiseModel_->print(" noise model: ");
- if(this->body_P_sensor_)
- this->body_P_sensor_->print(" sensor pose in body frame: ");
}
//------------------------------------------------------------------------------
bool ImuFactor::equals(const NonlinearFactor& expected, double tol) const {
const This *e = dynamic_cast (&expected);
return e != NULL && Base::equals(*e, tol)
- && preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
- && equal_with_abs_tol(gravity_, e->gravity_, tol)
- && equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
- && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
+ && _PIM_.equals(e->_PIM_, tol)
+ && ImuFactorBase::equals(*e, tol);
}
//------------------------------------------------------------------------------
-Vector ImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
- const imuBias::ConstantBias& bias,
- boost::optional H1, boost::optional H2,
- boost::optional H3, boost::optional H4,
- boost::optional H5) const
-{
+Vector ImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i,
+ const Pose3& pose_j, const Vector3& vel_j,
+ const imuBias::ConstantBias& bias_i, boost::optional H1,
+ boost::optional H2, boost::optional H3,
+ boost::optional H4, boost::optional H5) const {
- const double& deltaTij = preintegratedMeasurements_.deltaTij_;
- const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
- const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
-
- // we give some shorter name to rotations and translations
- const Rot3 Rot_i = pose_i.rotation();
- const Rot3 Rot_j = pose_j.rotation();
- const Vector3 pos_i = pose_i.translation().vector();
- const Vector3 pos_j = pose_j.translation().vector();
-
- // We compute factor's Jacobians
- /* ---------------------------------------------------------------------------------------------------- */
- const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
- // deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
-
- Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
-
- Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
- Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
-
- const Rot3 deltaRij_biascorrected_corioliscorrected =
- Rot3::Expmap( theta_biascorrected_corioliscorrected );
-
- const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
-
- const Matrix3 Jr_theta_bcc = Rot3::ExpmapDerivative(theta_biascorrected_corioliscorrected);
-
- const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
-
- const Matrix3 Jrinv_fRhat = Rot3::LogmapDerivative(Rot3::Logmap(fRhat));
-
- if(H1) {
- H1->resize(9,6);
-
- Matrix3 dfPdPi;
- Matrix3 dfVdPi;
- if(use2ndOrderCoriolis_){
- dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
- dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
- }
- else{
- dfPdPi = - Rot_i.matrix();
- dfVdPi = Z_3x3;
- }
-
- (*H1) <<
- // dfP/dRi
- Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
- + preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
- // dfP/dPi
- dfPdPi,
- // dfV/dRi
- Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
- + preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
- // dfV/dPi
- dfVdPi,
- // dfR/dRi
- Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
- // dfR/dPi
- Z_3x3;
- }
-
- if(H2) {
- H2->resize(9,3);
- (*H2) <<
- // dfP/dVi
- - I_3x3 * deltaTij
- + skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
- // dfV/dVi
- - I_3x3
- + 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
- // dfR/dVi
- Z_3x3;
- }
-
- if(H3) {
- H3->resize(9,6);
- (*H3) <<
- // dfP/dPosej
- Z_3x3, Rot_j.matrix(),
- // dfV/dPosej
- Matrix::Zero(3,6),
- // dfR/dPosej
- Jrinv_fRhat * ( I_3x3 ), Z_3x3;
- }
-
- if(H4) {
- H4->resize(9,3);
- (*H4) <<
- // dfP/dVj
- Z_3x3,
- // dfV/dVj
- I_3x3,
- // dfR/dVj
- Z_3x3;
- }
-
- if(H5) {
- const Matrix3 Jrinv_theta_bc = Rot3::LogmapDerivative(theta_biascorrected);
- const Matrix3 Jr_JbiasOmegaIncr = Rot3::ExpmapDerivative(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
- const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
-
- H5->resize(9,6);
- (*H5) <<
- // dfP/dBias
- - Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
- - Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
- // dfV/dBias
- - Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
- - Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
- // dfR/dBias
- Matrix::Zero(3,3),
- Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega);
- }
-
- // Evaluate residual error, according to [3]
- /* ---------------------------------------------------------------------------------------------------- */
- const Vector3 fp =
- pos_j - pos_i
- - Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
- + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
- + preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
- - vel_i * deltaTij
- + skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- - 0.5 * gravity_ * deltaTij*deltaTij;
-
- const Vector3 fv =
- vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
- + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
- + preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
- + 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- - gravity_ * deltaTij;
-
- const Vector3 fR = Rot3::Logmap(fRhat);
-
- Vector r(9); r << fp, fv, fR;
- return r;
-}
-
-//------------------------------------------------------------------------------
-PoseVelocity ImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i,
- const imuBias::ConstantBias& bias, const PreintegratedMeasurements preintegratedMeasurements,
- const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis)
-{
-
- const double& deltaTij = preintegratedMeasurements.deltaTij_;
- const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
- const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
-
- const Rot3 Rot_i = pose_i.rotation();
- const Vector3 pos_i = pose_i.translation().vector();
-
- // Predict state at time j
- /* ---------------------------------------------------------------------------------------------------- */
- Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
- + preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
- + preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
- + vel_i * deltaTij
- - skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- + 0.5 * gravity * deltaTij*deltaTij;
-
- Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
- + preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
- + preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
- - 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
- + gravity * deltaTij);
-
- if(use2ndOrderCoriolis){
- pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
- vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
- }
-
- const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
- // deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
- Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
- Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
- Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
- const Rot3 deltaRij_biascorrected_corioliscorrected =
- Rot3::Expmap( theta_biascorrected_corioliscorrected );
- const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
-
- Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
- return PoseVelocity(pose_j, vel_j);
+ return _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
+ gravity_, omegaCoriolis_, use2ndOrderCoriolis_, H1, H2, H3, H4, H5);
}
} /// namespace gtsam
diff --git a/gtsam/navigation/ImuFactor.h b/gtsam/navigation/ImuFactor.h
index 2af634926..b91c76ade 100644
--- a/gtsam/navigation/ImuFactor.h
+++ b/gtsam/navigation/ImuFactor.h
@@ -23,7 +23,8 @@
/* GTSAM includes */
#include
-#include
+#include
+#include
#include
namespace gtsam {
@@ -38,66 +39,46 @@ namespace gtsam {
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
** REFERENCES:
- * [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
- * [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
- * Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
- * [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
+ * [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
+ * Volume 2, 2008.
+ * [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
+ * High-Dynamic Motion in Built Environments Without Initial Conditions",
+ * TRO, 28(1):61-76, 2012.
+ * [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
+ * Computation of the Jacobian Matrices", Tech. Report, 2013.
*/
/**
- * Struct to hold return variables by the Predict Function
+ * ImuFactor is a 5-ways factor involving previous state (pose and velocity of
+ * the vehicle at previous time step), current state (pose and velocity at
+ * current time step), and the bias estimate. Following the preintegration
+ * scheme proposed in [2], the ImuFactor includes many IMU measurements, which
+ * are "summarized" using the PreintegratedMeasurements class.
+ * Note that this factor does not model "temporal consistency" of the biases
+ * (which are usually slowly varying quantities), which is up to the caller.
+ * See also CombinedImuFactor for a class that does this for you.
*/
-struct PoseVelocity {
- Pose3 pose;
- Vector3 velocity;
- PoseVelocity(const Pose3& _pose, const Vector3& _velocity) :
- pose(_pose), velocity(_velocity) {
- }
-};
-
-/**
- * ImuFactor is a 5-ways factor involving previous state (pose and velocity of the vehicle at previous time step),
- * current state (pose and velocity at current time step), and the bias estimate. According to the
- * preintegration scheme proposed in [2], the ImuFactor includes many IMU measurements, which are
- * "summarized" using the PreintegratedMeasurements class.
- * Note that this factor does not force "temporal consistency" of the biases (which are usually
- * slowly varying quantities), see also CombinedImuFactor for more details.
- */
-class ImuFactor: public NoiseModelFactor5 {
+class ImuFactor: public NoiseModelFactor5, public ImuFactorBase {
public:
/**
* PreintegratedMeasurements accumulates (integrates) the IMU measurements
* (rotation rates and accelerations) and the corresponding covariance matrix.
- * The measurements are then used to build the Preintegrated IMU factor (ImuFactor).
- * Integration is done incrementally (ideally, one integrates the measurement as soon as it is received
- * from the IMU) so as to avoid costly integration at time of factor construction.
+ * The measurements are then used to build the Preintegrated IMU factor.
+ * Integration is done incrementally (ideally, one integrates the measurement
+ * as soon as it is received from the IMU) so as to avoid costly integration
+ * at time of factor construction.
*/
- class PreintegratedMeasurements {
+ class PreintegratedMeasurements: public PreintegrationBase {
friend class ImuFactor;
protected:
- imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
- Eigen::Matrix measurementCovariance_; ///< (continuous-time uncertainty) "Covariance" of the vector [integrationError measuredAcc measuredOmega] in R^(9X9)
- Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
- Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
- Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
- double deltaTij_; ///< Time interval from i to j
-
- Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
- Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
- Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
- Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
- Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
-
- Eigen::Matrix PreintMeasCov_; ///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION]
+ Eigen::Matrix preintMeasCov_; ///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION]
///< (first-order propagation from *measurementCovariance*).
- bool use2ndOrderIntegration_; ///< Controls the order of integration
-
- public:
+ public:
/**
* Default constructor, initializes the class with no measurements
@@ -127,160 +108,107 @@ public:
* @param measuredOmega Measured angular velocity (as given by the sensor)
* @param deltaT Time interval between two consecutive IMU measurements
* @param body_P_sensor Optional sensor frame (pose of the IMU in the body frame)
+ * @param Fout, Gout Jacobians used internally (only needed for testing)
*/
void integrateMeasurement(const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
- boost::optional body_P_sensor = boost::none);
+ boost::optional body_P_sensor = boost::none,
+ OptionalJacobian<9, 9> Fout = boost::none, OptionalJacobian<9, 9> Gout = boost::none);
/// methods to access class variables
- Matrix measurementCovariance() const {return measurementCovariance_;}
- Matrix deltaRij() const {return deltaRij_.matrix();}
- double deltaTij() const{return deltaTij_;}
- Vector deltaPij() const {return deltaPij_;}
- Vector deltaVij() const {return deltaVij_;}
- Vector biasHat() const { return biasHat_.vector();}
- Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
- Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
- Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
- Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
- Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
- Matrix preintMeasCov() const { return PreintMeasCov_;}
-
- /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
- // This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
- static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
- const Vector3& delta_angles, const Vector& delta_vel_in_t0){
- // Note: all delta terms refer to an IMU\sensor system at t0
- Vector body_t_a_body = msr_acc_t;
- Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
- return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
- }
-
- // This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
- static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
- const Vector3& delta_angles){
- // Note: all delta terms refer to an IMU\sensor system at t0
- // Calculate the corrected measurements using the Bias object
- Vector body_t_omega_body= msr_gyro_t;
- Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
- R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
- return Rot3::Logmap(R_t_to_t0);
- }
- /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
-
- private:
- /** Serialization function */
- friend class boost::serialization::access;
- template
- void serialize(ARCHIVE & ar, const unsigned int version) {
- ar & BOOST_SERIALIZATION_NVP(biasHat_);
- ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
- ar & BOOST_SERIALIZATION_NVP(deltaPij_);
- ar & BOOST_SERIALIZATION_NVP(deltaVij_);
- ar & BOOST_SERIALIZATION_NVP(deltaRij_);
- ar & BOOST_SERIALIZATION_NVP(deltaTij_);
- ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
- ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
- ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
- ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
- ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
- }
- };
+ Matrix preintMeasCov() const { return preintMeasCov_;}
private:
- typedef ImuFactor This;
- typedef NoiseModelFactor5 Base;
-
- PreintegratedMeasurements preintegratedMeasurements_;
- Vector3 gravity_;
- Vector3 omegaCoriolis_;
- boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame
-
- bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
-
- public:
-
- /** Shorthand for a smart pointer to a factor */
-#if !defined(_MSC_VER) && __GNUC__ == 4 && __GNUC_MINOR__ > 5
- typedef typename boost::shared_ptr shared_ptr;
-#else
- typedef boost::shared_ptr shared_ptr;
-#endif
-
- /** Default constructor - only use for serialization */
- ImuFactor();
-
- /**
- * Constructor
- * @param pose_i Previous pose key
- * @param vel_i Previous velocity key
- * @param pose_j Current pose key
- * @param vel_j Current velocity key
- * @param bias Previous bias key
- * @param preintegratedMeasurements Preintegrated IMU measurements
- * @param gravity Gravity vector expressed in the global frame
- * @param omegaCoriolis Rotation rate of the global frame w.r.t. an inertial frame
- * @param body_P_sensor Optional pose of the sensor frame in the body frame
- * @param use2ndOrderCoriolis When true, the second-order term is used in the calculation of the Coriolis Effect
- */
- ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
- const PreintegratedMeasurements& preintegratedMeasurements,
- const Vector3& gravity, const Vector3& omegaCoriolis,
- boost::optional body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false);
-
- virtual ~ImuFactor() {}
-
- /// @return a deep copy of this factor
- virtual gtsam::NonlinearFactor::shared_ptr clone() const;
-
- /** implement functions needed for Testable */
-
- /// print
- virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
-
- /// equals
- virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const;
-
- /** Access the preintegrated measurements. */
-
- const PreintegratedMeasurements& preintegratedMeasurements() const {
- return preintegratedMeasurements_; }
-
- const Vector3& gravity() const { return gravity_; }
-
- const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
-
- /** implement functions needed to derive from Factor */
-
- /// vector of errors
- Vector evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
- const imuBias::ConstantBias& bias,
- boost::optional H1 = boost::none,
- boost::optional H2 = boost::none,
- boost::optional H3 = boost::none,
- boost::optional H4 = boost::none,
- boost::optional H5 = boost::none) const;
-
- /// predicted states from IMU
- static PoseVelocity Predict(const Pose3& pose_i, const Vector3& vel_i,
- const imuBias::ConstantBias& bias, const PreintegratedMeasurements preintegratedMeasurements,
- const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false);
-
- private:
-
- /** Serialization function */
+ /// Serialization function
friend class boost::serialization::access;
template
void serialize(ARCHIVE & ar, const unsigned int version) {
- ar & boost::serialization::make_nvp("NoiseModelFactor5",
- boost::serialization::base_object(*this));
- ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
- ar & BOOST_SERIALIZATION_NVP(gravity_);
- ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
- ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
+ ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegrationBase);
+ ar & BOOST_SERIALIZATION_NVP(preintMeasCov_);
}
- }; // class ImuFactor
+ };
- typedef ImuFactor::PreintegratedMeasurements ImuFactorPreintegratedMeasurements;
+ private:
+
+ typedef ImuFactor This;
+ typedef NoiseModelFactor5 Base;
+
+ PreintegratedMeasurements _PIM_;
+
+ public:
+
+ /** Shorthand for a smart pointer to a factor */
+#if !defined(_MSC_VER) && __GNUC__ == 4 && __GNUC_MINOR__ > 5
+ typedef typename boost::shared_ptr shared_ptr;
+#else
+ typedef boost::shared_ptr shared_ptr;
+#endif
+
+ /** Default constructor - only use for serialization */
+ ImuFactor();
+
+ /**
+ * Constructor
+ * @param pose_i Previous pose key
+ * @param vel_i Previous velocity key
+ * @param pose_j Current pose key
+ * @param vel_j Current velocity key
+ * @param bias Previous bias key
+ * @param preintegratedMeasurements Preintegrated IMU measurements
+ * @param gravity Gravity vector expressed in the global frame
+ * @param omegaCoriolis Rotation rate of the global frame w.r.t. an inertial frame
+ * @param body_P_sensor Optional pose of the sensor frame in the body frame
+ * @param use2ndOrderCoriolis When true, the second-order term is used in the calculation of the Coriolis Effect
+ */
+ ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
+ const PreintegratedMeasurements& preintegratedMeasurements,
+ const Vector3& gravity, const Vector3& omegaCoriolis,
+ boost::optional body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false);
+
+ virtual ~ImuFactor() {}
+
+ /// @return a deep copy of this factor
+ virtual gtsam::NonlinearFactor::shared_ptr clone() const;
+
+ /** implement functions needed for Testable */
+
+ /// print
+ virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
+
+ /// equals
+ virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const;
+
+ /** Access the preintegrated measurements. */
+
+ const PreintegratedMeasurements& preintegratedMeasurements() const {
+ return _PIM_; }
+
+ /** implement functions needed to derive from Factor */
+
+ /// vector of errors
+ Vector evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
+ const imuBias::ConstantBias& bias,
+ boost::optional H1 = boost::none,
+ boost::optional H2 = boost::none,
+ boost::optional H3 = boost::none,
+ boost::optional H4 = boost::none,
+ boost::optional H5 = boost::none) const;
+
+ private:
+
+ /** Serialization function */
+ friend class boost::serialization::access;
+ template
+ void serialize(ARCHIVE & ar, const unsigned int version) {
+ ar & boost::serialization::make_nvp("NoiseModelFactor5",
+ boost::serialization::base_object(*this));
+ ar & BOOST_SERIALIZATION_NVP(_PIM_);
+ ar & BOOST_SERIALIZATION_NVP(gravity_);
+ ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
+ ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
+ }
+}; // class ImuFactor
+
+typedef ImuFactor::PreintegratedMeasurements ImuFactorPreintegratedMeasurements;
} /// namespace gtsam
diff --git a/gtsam/navigation/ImuFactorBase.h b/gtsam/navigation/ImuFactorBase.h
new file mode 100644
index 000000000..1b7919a82
--- /dev/null
+++ b/gtsam/navigation/ImuFactorBase.h
@@ -0,0 +1,84 @@
+/* ----------------------------------------------------------------------------
+
+ * GTSAM Copyright 2010, Georgia Tech Research Corporation,
+ * Atlanta, Georgia 30332-0415
+ * All Rights Reserved
+ * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
+
+ * See LICENSE for the license information
+
+ * -------------------------------------------------------------------------- */
+
+/**
+ * @file PreintegrationBase.h
+ * @author Luca Carlone
+ * @author Stephen Williams
+ * @author Richard Roberts
+ * @author Vadim Indelman
+ * @author David Jensen
+ * @author Frank Dellaert
+ **/
+
+#pragma once
+
+/* GTSAM includes */
+#include
+#include
+
+namespace gtsam {
+
+class ImuFactorBase {
+
+protected:
+
+ Vector3 gravity_;
+ Vector3 omegaCoriolis_;
+ boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame
+ bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
+
+public:
+
+ /** Default constructor - only use for serialization */
+ ImuFactorBase() :
+ gravity_(Vector3(0.0,0.0,9.81)), omegaCoriolis_(Vector3(0.0,0.0,0.0)),
+ body_P_sensor_(boost::none), use2ndOrderCoriolis_(false) {}
+
+ /**
+ * Default constructor, stores basic quantities required by the Imu factors
+ * @param gravity Gravity vector expressed in the global frame
+ * @param omegaCoriolis Rotation rate of the global frame w.r.t. an inertial frame
+ * @param body_P_sensor Optional pose of the sensor frame in the body frame
+ * @param use2ndOrderCoriolis When true, the second-order term is used in the calculation of the Coriolis Effect
+ */
+ ImuFactorBase(const Vector3& gravity, const Vector3& omegaCoriolis,
+ boost::optional body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false) :
+ gravity_(gravity), omegaCoriolis_(omegaCoriolis),
+ body_P_sensor_(body_P_sensor), use2ndOrderCoriolis_(use2ndOrderCoriolis) {}
+
+ /// Methods to access class variables
+ const Vector3& gravity() const { return gravity_; }
+ const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
+
+ /// Needed for testable
+ //------------------------------------------------------------------------------
+ void print(const std::string& s) const {
+ std::cout << " gravity: [ " << gravity_.transpose() << " ]" << std::endl;
+ std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << std::endl;
+ std::cout << " use2ndOrderCoriolis: [ " << use2ndOrderCoriolis_ << " ]" << std::endl;
+ if(this->body_P_sensor_)
+ this->body_P_sensor_->print(" sensor pose in body frame: ");
+ }
+
+ /// Needed for testable
+ //------------------------------------------------------------------------------
+ bool equals(const ImuFactorBase& expected, double tol) const {
+ return equal_with_abs_tol(gravity_, expected.gravity_, tol)
+ && equal_with_abs_tol(omegaCoriolis_, expected.omegaCoriolis_, tol)
+ && (use2ndOrderCoriolis_ == expected.use2ndOrderCoriolis_)
+ && ((!body_P_sensor_ && !expected.body_P_sensor_) ||
+ (body_P_sensor_ && expected.body_P_sensor_ && body_P_sensor_->equals(*expected.body_P_sensor_)));
+ }
+
+};
+
+} /// namespace gtsam
diff --git a/gtsam/navigation/PreintegratedRotation.h b/gtsam/navigation/PreintegratedRotation.h
new file mode 100644
index 000000000..731e11f2e
--- /dev/null
+++ b/gtsam/navigation/PreintegratedRotation.h
@@ -0,0 +1,141 @@
+/* ----------------------------------------------------------------------------
+
+ * GTSAM Copyright 2010, Georgia Tech Research Corporation,
+ * Atlanta, Georgia 30332-0415
+ * All Rights Reserved
+ * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
+
+ * See LICENSE for the license information
+
+ * -------------------------------------------------------------------------- */
+
+/**
+ * @file PreintegratedRotation.h
+ * @author Luca Carlone
+ * @author Stephen Williams
+ * @author Richard Roberts
+ * @author Vadim Indelman
+ * @author David Jensen
+ * @author Frank Dellaert
+ **/
+
+#pragma once
+
+#include
+
+namespace gtsam {
+
+/**
+ * PreintegratedRotation is the base class for all PreintegratedMeasurements
+ * classes (in AHRSFactor, ImuFactor, and CombinedImuFactor).
+ * It includes the definitions of the preintegrated rotation.
+ */
+class PreintegratedRotation {
+
+ Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
+ double deltaTij_; ///< Time interval from i to j
+
+ /// Jacobian of preintegrated rotation w.r.t. angular rate bias
+ Matrix3 delRdelBiasOmega_;
+ Matrix3 gyroscopeCovariance_; ///< continuous-time "Covariance" of gyroscope measurements
+
+public:
+
+ /**
+ * Default constructor, initializes the variables in the base class
+ */
+ PreintegratedRotation(const Matrix3& measuredOmegaCovariance) :
+ deltaRij_(Rot3()), deltaTij_(0.0),
+ delRdelBiasOmega_(Z_3x3), gyroscopeCovariance_(measuredOmegaCovariance) {}
+
+ /// methods to access class variables
+ Matrix3 deltaRij() const {return deltaRij_.matrix();} // expensive
+ Vector3 thetaRij(boost::optional H = boost::none) const {return Rot3::Logmap(deltaRij_, H);} // super-expensive
+ const double& deltaTij() const{return deltaTij_;}
+ const Matrix3& delRdelBiasOmega() const{ return delRdelBiasOmega_;}
+ const Matrix3& gyroscopeCovariance() const { return gyroscopeCovariance_;}
+
+ /// Needed for testable
+ void print(const std::string& s) const {
+ std::cout << s << std::endl;
+ std::cout << "deltaTij [" << deltaTij_ << "]" << std::endl;
+ deltaRij_.print(" deltaRij ");
+ std::cout << "delRdelBiasOmega [" << delRdelBiasOmega_ << "]" << std::endl;
+ std::cout << "gyroscopeCovariance [" << gyroscopeCovariance_ << "]" << std::endl;
+ }
+
+ /// Needed for testable
+ bool equals(const PreintegratedRotation& expected, double tol) const {
+ return deltaRij_.equals(expected.deltaRij_, tol)
+ && fabs(deltaTij_ - expected.deltaTij_) < tol
+ && equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol)
+ && equal_with_abs_tol(gyroscopeCovariance_, expected.gyroscopeCovariance_, tol);
+ }
+
+ /// Re-initialize PreintegratedMeasurements
+ void resetIntegration(){
+ deltaRij_ = Rot3();
+ deltaTij_ = 0.0;
+ delRdelBiasOmega_ = Z_3x3;
+ }
+
+ /// Update preintegrated measurements
+ void updateIntegratedRotationAndDeltaT(const Rot3& incrR, const double deltaT,
+ OptionalJacobian<3, 3> H = boost::none){
+ deltaRij_ = deltaRij_.compose(incrR, H, boost::none);
+ deltaTij_ += deltaT;
+ }
+
+ /**
+ * Update Jacobians to be used during preintegration
+ * TODO: explain arguments
+ */
+ void update_delRdelBiasOmega(const Matrix3& D_Rincr_integratedOmega, const Rot3& incrR,
+ double deltaT) {
+ const Matrix3 incrRt = incrR.transpose();
+ delRdelBiasOmega_ = incrRt * delRdelBiasOmega_ - D_Rincr_integratedOmega * deltaT;
+ }
+
+ /// Return a bias corrected version of the integrated rotation - expensive
+ Rot3 biascorrectedDeltaRij(const Vector3& biasOmegaIncr) const {
+ return deltaRij_*Rot3::Expmap(delRdelBiasOmega_ * biasOmegaIncr);
+ }
+
+ /// Get so<3> version of bias corrected rotation, with optional Jacobian
+ // Implements: log( deltaRij_ * expmap(delRdelBiasOmega_ * biasOmegaIncr) )
+ Vector3 biascorrectedThetaRij(const Vector3& biasOmegaIncr,
+ OptionalJacobian<3, 3> H = boost::none) const {
+ // First, we correct deltaRij using the biasOmegaIncr, rotated
+ const Rot3 deltaRij_biascorrected = biascorrectedDeltaRij(biasOmegaIncr);
+
+ if (H) {
+ Matrix3 Jrinv_theta_bc;
+ // This was done via an expmap, now we go *back* to so<3>
+ const Vector3 biascorrectedOmega = Rot3::Logmap(deltaRij_biascorrected, Jrinv_theta_bc);
+ const Matrix3 Jr_JbiasOmegaIncr = //
+ Rot3::ExpmapDerivative(delRdelBiasOmega_ * biasOmegaIncr);
+ (*H) = Jrinv_theta_bc * Jr_JbiasOmegaIncr * delRdelBiasOmega_;
+ return biascorrectedOmega;
+ }
+ //else
+ return Rot3::Logmap(deltaRij_biascorrected);
+ }
+
+ /// Integrate coriolis correction in body frame rot_i
+ Vector3 integrateCoriolis(const Rot3& rot_i,
+ const Vector3& omegaCoriolis) const {
+ return rot_i.transpose() * omegaCoriolis * deltaTij();
+ }
+
+private:
+ /** Serialization function */
+ friend class boost::serialization::access;
+ template
+ void serialize(ARCHIVE & ar, const unsigned int version) {
+ ar & BOOST_SERIALIZATION_NVP(deltaRij_);
+ ar & BOOST_SERIALIZATION_NVP(deltaTij_);
+ ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
+ }
+};
+
+} /// namespace gtsam
diff --git a/gtsam/navigation/PreintegrationBase.h b/gtsam/navigation/PreintegrationBase.h
new file mode 100644
index 000000000..8214c1930
--- /dev/null
+++ b/gtsam/navigation/PreintegrationBase.h
@@ -0,0 +1,425 @@
+/* ----------------------------------------------------------------------------
+
+ * GTSAM Copyright 2010, Georgia Tech Research Corporation,
+ * Atlanta, Georgia 30332-0415
+ * All Rights Reserved
+ * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
+
+ * See LICENSE for the license information
+
+ * -------------------------------------------------------------------------- */
+
+/**
+ * @file PreintegrationBase.h
+ * @author Luca Carlone
+ * @author Stephen Williams
+ * @author Richard Roberts
+ * @author Vadim Indelman
+ * @author David Jensen
+ * @author Frank Dellaert
+ **/
+
+#pragma once
+
+#include
+#include
+
+namespace gtsam {
+
+/**
+ * Struct to hold all state variables of returned by Predict function
+ */
+struct PoseVelocityBias {
+ Pose3 pose;
+ Vector3 velocity;
+ imuBias::ConstantBias bias;
+
+ PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
+ const imuBias::ConstantBias _bias) :
+ pose(_pose), velocity(_velocity), bias(_bias) {
+ }
+};
+
+/**
+ * PreintegrationBase is the base class for PreintegratedMeasurements
+ * (in ImuFactor) and CombinedPreintegratedMeasurements (in CombinedImuFactor).
+ * It includes the definitions of the preintegrated variables and the methods
+ * to access, print, and compare them.
+ */
+class PreintegrationBase : public PreintegratedRotation {
+
+ imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
+ bool use2ndOrderIntegration_; ///< Controls the order of integration
+
+ Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
+ Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
+
+ Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
+ Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
+ Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
+ Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
+
+ Matrix3 accelerometerCovariance_; ///< continuous-time "Covariance" of accelerometer measurements
+ Matrix3 integrationCovariance_; ///< continuous-time "Covariance" describing integration uncertainty
+ /// (to compensate errors in Euler integration)
+
+public:
+
+ /**
+ * Default constructor, initializes the variables in the base class
+ * @param bias Current estimate of acceleration and rotation rate biases
+ * @param use2ndOrderIntegration Controls the order of integration
+ * (if false: p(t+1) = p(t) + v(t) deltaT ; if true: p(t+1) = p(t) + v(t) deltaT + 0.5 * acc(t) deltaT^2)
+ */
+ PreintegrationBase(const imuBias::ConstantBias& bias,
+ const Matrix3& measuredAccCovariance, const Matrix3& measuredOmegaCovariance,
+ const Matrix3&integrationErrorCovariance, const bool use2ndOrderIntegration) :
+ PreintegratedRotation(measuredOmegaCovariance),
+ biasHat_(bias), use2ndOrderIntegration_(use2ndOrderIntegration),
+ deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
+ delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
+ delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
+ accelerometerCovariance_(measuredAccCovariance),
+ integrationCovariance_(integrationErrorCovariance) {}
+
+ /// methods to access class variables
+ const Vector3& deltaPij() const {return deltaPij_;}
+ const Vector3& deltaVij() const {return deltaVij_;}
+ const imuBias::ConstantBias& biasHat() const { return biasHat_;}
+ Vector6 biasHatVector() const { return biasHat_.vector();} // expensive
+ const Matrix3& delPdelBiasAcc() const { return delPdelBiasAcc_;}
+ const Matrix3& delPdelBiasOmega() const { return delPdelBiasOmega_;}
+ const Matrix3& delVdelBiasAcc() const { return delVdelBiasAcc_;}
+ const Matrix3& delVdelBiasOmega() const { return delVdelBiasOmega_;}
+
+ const Matrix3& accelerometerCovariance() const { return accelerometerCovariance_;}
+ const Matrix3& integrationCovariance() const { return integrationCovariance_;}
+
+ /// Needed for testable
+ void print(const std::string& s) const {
+ PreintegratedRotation::print(s);
+ std::cout << " accelerometerCovariance [ " << accelerometerCovariance_ << " ]" << std::endl;
+ std::cout << " integrationCovariance [ " << integrationCovariance_ << " ]" << std::endl;
+ std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
+ std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
+ biasHat_.print(" biasHat");
+ }
+
+ /// Needed for testable
+ bool equals(const PreintegrationBase& expected, double tol) const {
+ return PreintegratedRotation::equals(expected, tol)
+ && biasHat_.equals(expected.biasHat_, tol)
+ && equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
+ && equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
+ && equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
+ && equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
+ && equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
+ && equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
+ && equal_with_abs_tol(accelerometerCovariance_, expected.accelerometerCovariance_, tol)
+ && equal_with_abs_tol(integrationCovariance_, expected.integrationCovariance_, tol);
+ }
+
+ /// Re-initialize PreintegratedMeasurements
+ void resetIntegration(){
+ PreintegratedRotation::resetIntegration();
+ deltaPij_ = Vector3::Zero();
+ deltaVij_ = Vector3::Zero();
+ delPdelBiasAcc_ = Z_3x3;
+ delPdelBiasOmega_ = Z_3x3;
+ delVdelBiasAcc_ = Z_3x3;
+ delVdelBiasOmega_ = Z_3x3;
+ }
+
+ /// Update preintegrated measurements
+ void updatePreintegratedMeasurements(const Vector3& correctedAcc,
+ const Rot3& incrR, const double deltaT, OptionalJacobian<9, 9> F) {
+
+ Matrix3 dRij = deltaRij(); // expensive
+ Vector3 temp = dRij * correctedAcc * deltaT;
+ if(!use2ndOrderIntegration_){
+ deltaPij_ += deltaVij_ * deltaT;
+ }else{
+ deltaPij_ += deltaVij_ * deltaT + 0.5 * temp * deltaT;
+ }
+ deltaVij_ += temp;
+
+ Matrix3 R_i, F_angles_angles;
+ if (F) R_i = deltaRij(); // has to be executed before updateIntegratedRotationAndDeltaT as that updates deltaRij
+ updateIntegratedRotationAndDeltaT(incrR,deltaT, F ? &F_angles_angles : 0);
+
+ if(F){
+ Matrix3 F_vel_angles = - R_i * skewSymmetric(correctedAcc) * deltaT;
+ // pos vel angle
+ *F << I_3x3, I_3x3 * deltaT, Z_3x3, // pos
+ Z_3x3, I_3x3, F_vel_angles, // vel
+ Z_3x3, Z_3x3, F_angles_angles;// angle
+ }
+ }
+
+ /// Update Jacobians to be used during preintegration
+ void updatePreintegratedJacobians(const Vector3& correctedAcc,
+ const Matrix3& D_Rincr_integratedOmega, const Rot3& incrR, double deltaT){
+ Matrix3 dRij = deltaRij(); // expensive
+ Matrix3 temp = -dRij * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega();
+ if (!use2ndOrderIntegration_) {
+ delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
+ delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
+ } else {
+ delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * dRij * deltaT * deltaT;
+ delPdelBiasOmega_ += deltaT*(delVdelBiasOmega_ + temp * 0.5);
+ }
+ delVdelBiasAcc_ += -dRij * deltaT;
+ delVdelBiasOmega_ += temp;
+ update_delRdelBiasOmega(D_Rincr_integratedOmega,incrR,deltaT);
+ }
+
+ void correctMeasurementsByBiasAndSensorPose(const Vector3& measuredAcc,
+ const Vector3& measuredOmega, Vector3& correctedAcc,
+ Vector3& correctedOmega, boost::optional body_P_sensor) {
+ correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
+ correctedOmega = biasHat_.correctGyroscope(measuredOmega);
+
+ // Then compensate for sensor-body displacement: we express the quantities
+ // (originally in the IMU frame) into the body frame
+ if(body_P_sensor){
+ Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
+ correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
+ Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
+ correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
+ // linear acceleration vector in the body frame
+ }
+ }
+
+ /// Predict state at time j
+ //------------------------------------------------------------------------------
+ PoseVelocityBias predict(const Pose3& pose_i, const Vector3& vel_i,
+ const imuBias::ConstantBias& bias_i, const Vector3& gravity,
+ const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false,
+ boost::optional deltaPij_biascorrected_out = boost::none,
+ boost::optional deltaVij_biascorrected_out = boost::none) const {
+
+ const Vector3 biasAccIncr = bias_i.accelerometer() - biasHat().accelerometer();
+ const Vector3 biasOmegaIncr = bias_i.gyroscope() - biasHat().gyroscope();
+
+ const Rot3& Rot_i = pose_i.rotation();
+ const Vector3& pos_i = pose_i.translation().vector();
+
+ // Predict state at time j
+ /* ---------------------------------------------------------------------------------------------------- */
+ Vector3 deltaPij_biascorrected = deltaPij() + delPdelBiasAcc() * biasAccIncr + delPdelBiasOmega() * biasOmegaIncr;
+ if(deltaPij_biascorrected_out)// if desired, store this
+ *deltaPij_biascorrected_out = deltaPij_biascorrected;
+
+ Vector3 pos_j = pos_i + Rot_i.matrix() * deltaPij_biascorrected
+ + vel_i * deltaTij()
+ - omegaCoriolis.cross(vel_i) * deltaTij()*deltaTij() // Coriolis term - we got rid of the 2 wrt ins paper
+ + 0.5 * gravity * deltaTij()*deltaTij();
+
+ Vector3 deltaVij_biascorrected = deltaVij() + delVdelBiasAcc() * biasAccIncr + delVdelBiasOmega() * biasOmegaIncr;
+ if(deltaVij_biascorrected_out)// if desired, store this
+ *deltaVij_biascorrected_out = deltaVij_biascorrected;
+
+ Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * deltaVij_biascorrected
+ - 2 * omegaCoriolis.cross(vel_i) * deltaTij() // Coriolis term
+ + gravity * deltaTij());
+
+ if(use2ndOrderCoriolis){
+ pos_j += - 0.5 * omegaCoriolis.cross(omegaCoriolis.cross(pos_i)) * deltaTij()*deltaTij(); // 2nd order coriolis term for position
+ vel_j += - omegaCoriolis.cross(omegaCoriolis.cross(pos_i)) * deltaTij(); // 2nd order term for velocity
+ }
+
+ const Rot3 deltaRij_biascorrected = biascorrectedDeltaRij(biasOmegaIncr);
+ // deltaRij_biascorrected = deltaRij * expmap(delRdelBiasOmega * biasOmegaIncr)
+
+ Vector3 biascorrectedOmega = Rot3::Logmap(deltaRij_biascorrected);
+ Vector3 correctedOmega = biascorrectedOmega -
+ Rot_i.inverse().matrix() * omegaCoriolis * deltaTij(); // Coriolis term
+ const Rot3 correctedDeltaRij =
+ Rot3::Expmap( correctedOmega );
+ const Rot3 Rot_j = Rot_i.compose( correctedDeltaRij );
+
+ Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
+ return PoseVelocityBias(pose_j, vel_j, bias_i); // bias is predicted as a constant
+ }
+
+ /// Compute errors w.r.t. preintegrated measurements and jacobians wrt pose_i, vel_i, bias_i, pose_j, bias_j
+ //------------------------------------------------------------------------------
+ Vector9 computeErrorAndJacobians(const Pose3& pose_i, const Vector3& vel_i,
+ const Pose3& pose_j, const Vector3& vel_j,
+ const imuBias::ConstantBias& bias_i, const Vector3& gravity,
+ const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis,
+ OptionalJacobian<9, 6> H1 = boost::none,
+ OptionalJacobian<9, 3> H2 = boost::none,
+ OptionalJacobian<9, 6> H3 = boost::none,
+ OptionalJacobian<9, 3> H4 = boost::none,
+ OptionalJacobian<9, 6> H5 = boost::none) const {
+
+ // We need the mismatch w.r.t. the biases used for preintegration
+ // const Vector3 biasAccIncr = bias_i.accelerometer() - biasHat().accelerometer(); // this is not necessary
+ const Vector3 biasOmegaIncr = bias_i.gyroscope() - biasHat().gyroscope();
+
+ // we give some shorter name to rotations and translations
+ const Rot3& Ri = pose_i.rotation();
+ const Rot3& Rj = pose_j.rotation();
+ const Vector3& pos_j = pose_j.translation().vector();
+
+ // Evaluate residual error, according to [3]
+ /* ---------------------------------------------------------------------------------------------------- */
+ Vector3 deltaPij_biascorrected, deltaVij_biascorrected;
+ PoseVelocityBias predictedState_j = predict(pose_i, vel_i, bias_i, gravity,
+ omegaCoriolis, use2ndOrderCoriolis, deltaPij_biascorrected, deltaVij_biascorrected);
+
+ // Ri.transpose() is important here to preserve a model with *additive* Gaussian noise of correct covariance
+ const Vector3 fp = Ri.transpose() * ( pos_j - predictedState_j.pose.translation().vector() );
+
+ // Ri.transpose() is important here to preserve a model with *additive* Gaussian noise of correct covariance
+ const Vector3 fv = Ri.transpose() * ( vel_j - predictedState_j.velocity );
+
+ // fR will be computed later. Note: it is the same as: fR = (predictedState_j.pose.translation()).between(Rot_j)
+
+ // Jacobian computation
+ /* ---------------------------------------------------------------------------------------------------- */
+ // Get Get so<3> version of bias corrected rotation
+ // If H5 is asked for, we will need the Jacobian, which we store in H5
+ // H5 will then be corrected below to take into account the Coriolis effect
+ Matrix3 D_cThetaRij_biasOmegaIncr;
+ Vector3 biascorrectedOmega = biascorrectedThetaRij(biasOmegaIncr, H5 ? &D_cThetaRij_biasOmegaIncr : 0);
+
+ // Coriolis term, note inconsistent with AHRS, where coriolisHat is *after* integration
+ const Matrix3 Ritranspose_omegaCoriolisHat = Ri.transpose() * skewSymmetric(omegaCoriolis);
+ const Vector3 coriolis = integrateCoriolis(Ri, omegaCoriolis);
+ Vector3 correctedOmega = biascorrectedOmega - coriolis;
+
+ Rot3 correctedDeltaRij, fRrot;
+ Vector3 fR;
+
+ // Accessory matrix, used to build the jacobians
+ Matrix3 D_cDeltaRij_cOmega, D_coriolis, D_fR_fRrot;
+
+ // This is done to save computation: we ask for the jacobians only when they are needed
+ if(H1 || H2 || H3 || H4 || H5){
+ correctedDeltaRij = Rot3::Expmap( correctedOmega, D_cDeltaRij_cOmega);
+ // Residual rotation error
+ fRrot = correctedDeltaRij.between(Ri.between(Rj));
+ fR = Rot3::Logmap(fRrot, D_fR_fRrot);
+ D_coriolis = -D_cDeltaRij_cOmega * skewSymmetric(coriolis);
+ }else{
+ correctedDeltaRij = Rot3::Expmap( correctedOmega);
+ // Residual rotation error
+ fRrot = correctedDeltaRij.between(Ri.between(Rj));
+ fR = Rot3::Logmap(fRrot);
+ }
+ if(H1) {
+ H1->resize(9,6);
+ Matrix3 dfPdPi = -I_3x3;
+ Matrix3 dfVdPi = Z_3x3;
+ if(use2ndOrderCoriolis){
+ // this is the same as: Ri.transpose() * omegaCoriolisHat * omegaCoriolisHat * Ri.matrix()
+ Matrix3 temp = Ritranspose_omegaCoriolisHat * (-Ritranspose_omegaCoriolisHat.transpose());
+ dfPdPi += 0.5 * temp * deltaTij()*deltaTij();
+ dfVdPi += temp * deltaTij();
+ }
+ (*H1) <<
+ // dfP/dRi
+ skewSymmetric(fp + deltaPij_biascorrected),
+ // dfP/dPi
+ dfPdPi,
+ // dfV/dRi
+ skewSymmetric(fv + deltaVij_biascorrected),
+ // dfV/dPi
+ dfVdPi,
+ // dfR/dRi
+ D_fR_fRrot * (- Rj.between(Ri).matrix() - fRrot.inverse().matrix() * D_coriolis),
+ // dfR/dPi
+ Z_3x3;
+ }
+ if(H2) {
+ H2->resize(9,3);
+ (*H2) <<
+ // dfP/dVi
+ - Ri.transpose() * deltaTij()
+ + Ritranspose_omegaCoriolisHat * deltaTij() * deltaTij(), // Coriolis term - we got rid of the 2 wrt ins paper
+ // dfV/dVi
+ - Ri.transpose()
+ + 2 * Ritranspose_omegaCoriolisHat * deltaTij(), // Coriolis term
+ // dfR/dVi
+ Z_3x3;
+ }
+ if(H3) {
+ H3->resize(9,6);
+ (*H3) <<
+ // dfP/dPosej
+ Z_3x3, Ri.transpose() * Rj.matrix(),
+ // dfV/dPosej
+ Matrix::Zero(3,6),
+ // dfR/dPosej
+ D_fR_fRrot * ( I_3x3 ), Z_3x3;
+ }
+ if(H4) {
+ H4->resize(9,3);
+ (*H4) <<
+ // dfP/dVj
+ Z_3x3,
+ // dfV/dVj
+ Ri.transpose(),
+ // dfR/dVj
+ Z_3x3;
+ }
+ if(H5) {
+ // H5 by this point already contains 3*3 biascorrectedThetaRij derivative
+ const Matrix3 JbiasOmega = D_cDeltaRij_cOmega * D_cThetaRij_biasOmegaIncr;
+ H5->resize(9,6);
+ (*H5) <<
+ // dfP/dBias
+ - delPdelBiasAcc(), - delPdelBiasOmega(),
+ // dfV/dBias
+ - delVdelBiasAcc(), - delVdelBiasOmega(),
+ // dfR/dBias
+ Z_3x3, D_fR_fRrot * ( - fRrot.inverse().matrix() * JbiasOmega);
+ }
+ Vector9 r; r << fp, fv, fR;
+ return r;
+ }
+
+private:
+ /** Serialization function */
+ friend class boost::serialization::access;
+ template
+ void serialize(ARCHIVE & ar, const unsigned int version) {
+ ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegratedRotation);
+ ar & BOOST_SERIALIZATION_NVP(biasHat_);
+ ar & BOOST_SERIALIZATION_NVP(deltaPij_);
+ ar & BOOST_SERIALIZATION_NVP(deltaVij_);
+ ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
+ ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
+ ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
+ ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
+ }
+};
+
+class ImuBase {
+
+protected:
+
+ Vector3 gravity_;
+ Vector3 omegaCoriolis_;
+ boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame
+ bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
+
+public:
+
+ ImuBase() :
+ gravity_(Vector3(0.0,0.0,9.81)), omegaCoriolis_(Vector3(0.0,0.0,0.0)),
+ body_P_sensor_(boost::none), use2ndOrderCoriolis_(false) {}
+
+ ImuBase(const Vector3& gravity, const Vector3& omegaCoriolis,
+ boost::optional body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false) :
+ gravity_(gravity), omegaCoriolis_(omegaCoriolis),
+ body_P_sensor_(body_P_sensor), use2ndOrderCoriolis_(use2ndOrderCoriolis) {}
+
+ const Vector3& gravity() const { return gravity_; }
+ const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
+
+};
+
+} /// namespace gtsam
diff --git a/gtsam/navigation/tests/testAHRSFactor.cpp b/gtsam/navigation/tests/testAHRSFactor.cpp
index 99952f99e..0d7626b95 100644
--- a/gtsam/navigation/tests/testAHRSFactor.cpp
+++ b/gtsam/navigation/tests/testAHRSFactor.cpp
@@ -116,7 +116,7 @@ TEST( AHRSFactor, PreintegratedMeasurements ) {
/* ************************************************************************* */
TEST(AHRSFactor, Error) {
// Linearization point
- Vector3 bias; // Bias
+ Vector3 bias(0.,0.,0.); // Bias
Rot3 x1(Rot3::RzRyRx(M_PI / 12.0, M_PI / 6.0, M_PI / 4.0));
Rot3 x2(Rot3::RzRyRx(M_PI / 12.0 + M_PI / 100.0, M_PI / 6.0, M_PI / 4.0));
diff --git a/gtsam/navigation/tests/testCombinedImuFactor.cpp b/gtsam/navigation/tests/testCombinedImuFactor.cpp
index aab38f258..d14eafb7d 100644
--- a/gtsam/navigation/tests/testCombinedImuFactor.cpp
+++ b/gtsam/navigation/tests/testCombinedImuFactor.cpp
@@ -39,19 +39,55 @@ using symbol_shorthand::X;
using symbol_shorthand::V;
using symbol_shorthand::B;
-/* ************************************************************************* */
namespace {
+/* ************************************************************************* */
+// Auxiliary functions to test Jacobians F and G used for
+// covariance propagation during preintegration
+/* ************************************************************************* */
+Vector updatePreintegratedMeasurementsTest(
+ const Vector3 deltaPij_old, const Vector3& deltaVij_old, const Rot3& deltaRij_old,
+ const imuBias::ConstantBias& bias_old,
+ const Vector3& correctedAcc, const Vector3& correctedOmega, const double deltaT,
+ const bool use2ndOrderIntegration) {
-ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
+ Matrix3 dRij = deltaRij_old.matrix();
+ Vector3 temp = dRij * (correctedAcc - bias_old.accelerometer()) * deltaT;
+ Vector3 deltaPij_new;
+ if(!use2ndOrderIntegration){
+ deltaPij_new = deltaPij_old + deltaVij_old * deltaT;
+ }else{
+ deltaPij_new += deltaPij_old + deltaVij_old * deltaT + 0.5 * temp * deltaT;
+ }
+ Vector3 deltaVij_new = deltaVij_old + temp;
+ Rot3 deltaRij_new = deltaRij_old * Rot3::Expmap((correctedOmega-bias_old.gyroscope()) * deltaT);
+ Vector3 logDeltaRij_new = Rot3::Logmap(deltaRij_new); // not important any more
+ imuBias::ConstantBias bias_new(bias_old);
+ Vector result(15); result << deltaPij_new, deltaVij_new, logDeltaRij_new, bias_new.vector();
+ return result;
+}
+
+Rot3 updatePreintegratedMeasurementsRot(
+ const Vector3 deltaPij_old, const Vector3& deltaVij_old, const Rot3& deltaRij_old,
+ const imuBias::ConstantBias& bias_old,
+ const Vector3& correctedAcc, const Vector3& correctedOmega, const double deltaT,
+ const bool use2ndOrderIntegration){
+
+ Vector result = updatePreintegratedMeasurementsTest(deltaPij_old, deltaVij_old, deltaRij_old,
+ bias_old, correctedAcc, correctedOmega, deltaT, use2ndOrderIntegration);
+
+ return Rot3::Expmap(result.segment<3>(6));
+}
+
+// Auxiliary functions to test preintegrated Jacobians
+// delPdelBiasAcc_ delPdelBiasOmega_ delVdelBiasAcc_ delVdelBiasOmega_ delRdelBiasOmega_
+/* ************************************************************************* */
+CombinedImuFactor::CombinedPreintegratedMeasurements evaluatePreintegratedMeasurements(
const imuBias::ConstantBias& bias,
const list& measuredAccs,
const list& measuredOmegas,
- const list& deltaTs,
- const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0)
- )
-{
- ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
- Matrix3::Identity(), Matrix3::Identity());
+ const list& deltaTs){
+ CombinedImuFactor::CombinedPreintegratedMeasurements result(bias, Matrix3::Identity(),
+ Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix::Identity(6,6), false);
list::const_iterator itAcc = measuredAccs.begin();
list::const_iterator itOmega = measuredOmegas.begin();
@@ -59,7 +95,6 @@ ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
for( ; itAcc != measuredAccs.end(); ++itAcc, ++itOmega, ++itDeltaT) {
result.integrateMeasurement(*itAcc, *itOmega, *itDeltaT);
}
-
return result;
}
@@ -67,20 +102,16 @@ Vector3 evaluatePreintegratedMeasurementsPosition(
const imuBias::ConstantBias& bias,
const list& measuredAccs,
const list& measuredOmegas,
- const list& deltaTs,
- const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
-{
+ const list& deltaTs){
return evaluatePreintegratedMeasurements(bias,
- measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaPij();
+ measuredAccs, measuredOmegas, deltaTs).deltaPij();
}
Vector3 evaluatePreintegratedMeasurementsVelocity(
const imuBias::ConstantBias& bias,
const list& measuredAccs,
const list& measuredOmegas,
- const list& deltaTs,
- const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
-{
+ const list& deltaTs){
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaVij();
}
@@ -89,9 +120,7 @@ Rot3 evaluatePreintegratedMeasurementsRotation(
const imuBias::ConstantBias& bias,
const list& measuredAccs,
const list& measuredOmegas,
- const list& deltaTs,
- const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
-{
+ const list& deltaTs){
return Rot3(evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaRij());
}
@@ -101,7 +130,6 @@ Rot3 evaluatePreintegratedMeasurementsRotation(
/* ************************************************************************* */
TEST( CombinedImuFactor, PreintegratedMeasurements )
{
- //cout << "++++++++++++++++++++++++++++++ PreintegratedMeasurements +++++++++++++++++++++++++++++++++++++++ " << endl;
// Linearization point
imuBias::ConstantBias bias(Vector3(0,0,0), Vector3(0,0,0)); ///< Current estimate of acceleration and angular rate biases
@@ -120,28 +148,17 @@ TEST( CombinedImuFactor, PreintegratedMeasurements )
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix::Zero(6,6));
-// const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
-// const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
-// const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
-// const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
-// const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
-// const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
-// const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
-
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expected1.deltaPij()), Vector(actual1.deltaPij()), tol));
-// EXPECT(assert_equal(Vector(expected1.deltaVij), Vector(actual1.deltaVij), tol));
-// EXPECT(assert_equal(expected1.deltaRij, actual1.deltaRij, tol));
-// DOUBLES_EQUAL(expected1.deltaTij, actual1.deltaTij, tol);
+ EXPECT(assert_equal(Vector(expected1.deltaVij()), Vector(actual1.deltaVij()), tol));
+ EXPECT(assert_equal(Matrix(expected1.deltaRij()), Matrix(actual1.deltaRij()), tol));
+ DOUBLES_EQUAL(expected1.deltaTij(), actual1.deltaTij(), tol);
}
-
/* ************************************************************************* */
TEST( CombinedImuFactor, ErrorWithBiases )
{
- //cout << "++++++++++++++++++++++++++++++ ErrorWithBiases +++++++++++++++++++++++++++++++++++++++ " << endl;
-
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
imuBias::ConstantBias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
@@ -157,50 +174,37 @@ TEST( CombinedImuFactor, ErrorWithBiases )
double deltaT = 1.0;
double tol = 1e-6;
- // const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
- // const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
- // const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
- // const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
- // const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
- // const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
- // const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
-
Matrix I6x6(6,6);
I6x6 = Matrix::Identity(6,6);
-
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
- pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
+ pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
- CombinedImuFactor::CombinedPreintegratedMeasurements Combined_pre_int_data(
- imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
- Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), 2 * Matrix3::Identity(), I6x6 );
+ CombinedImuFactor::CombinedPreintegratedMeasurements Combined_pre_int_data(
+ imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
+ Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), 2 * Matrix3::Identity(), I6x6 );
- Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
+ Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
+ // Create factor
+ ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
- // Create factor
- ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
+ noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.preintMeasCov());
+ CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
- noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov());
- CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
+ Vector errorExpected = factor.evaluateError(x1, v1, x2, v2, bias);
+ Vector errorActual = Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2);
- Vector errorExpected = factor.evaluateError(x1, v1, x2, v2, bias);
+ EXPECT(assert_equal(errorExpected, errorActual.head(9), tol));
- Vector errorActual = Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2);
+ // Expected Jacobians
+ Matrix H1e, H2e, H3e, H4e, H5e;
+ (void) factor.evaluateError(x1, v1, x2, v2, bias, H1e, H2e, H3e, H4e, H5e);
-
- EXPECT(assert_equal(errorExpected, errorActual.head(9), tol));
-
- // Expected Jacobians
- Matrix H1e, H2e, H3e, H4e, H5e;
- (void) factor.evaluateError(x1, v1, x2, v2, bias, H1e, H2e, H3e, H4e, H5e);
-
-
- // Actual Jacobians
+ // Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a, H6a;
(void) Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2, H1a, H2a, H3a, H4a, H5a, H6a);
@@ -214,7 +218,6 @@ TEST( CombinedImuFactor, ErrorWithBiases )
/* ************************************************************************* */
TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
{
- //cout << "++++++++++++++++++++++++++++++ FirstOrderPreIntegratedMeasurements +++++++++++++++++++++++++++++++++++++++ " << endl;
// Linearization point
imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
@@ -237,22 +240,22 @@ TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
}
// Actual preintegrated values
- ImuFactor::PreintegratedMeasurements preintegrated =
- evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0));
+ CombinedImuFactor::CombinedPreintegratedMeasurements preintegrated =
+ evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs);
// Compute numerical derivatives
Matrix expectedDelPdelBias = numericalDerivative11(
- boost::bind(&evaluatePreintegratedMeasurementsPosition, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
+ boost::bind(&evaluatePreintegratedMeasurementsPosition, _1, measuredAccs, measuredOmegas, deltaTs), bias);
Matrix expectedDelPdelBiasAcc = expectedDelPdelBias.leftCols(3);
Matrix expectedDelPdelBiasOmega = expectedDelPdelBias.rightCols(3);
Matrix expectedDelVdelBias = numericalDerivative11(
- boost::bind(&evaluatePreintegratedMeasurementsVelocity, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
+ boost::bind(&evaluatePreintegratedMeasurementsVelocity, _1, measuredAccs, measuredOmegas, deltaTs), bias);
Matrix expectedDelVdelBiasAcc = expectedDelVdelBias.leftCols(3);
Matrix expectedDelVdelBiasOmega = expectedDelVdelBias.rightCols(3);
Matrix expectedDelRdelBias = numericalDerivative11(
- boost::bind(&evaluatePreintegratedMeasurementsRotation, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
+ boost::bind(&evaluatePreintegratedMeasurementsRotation, _1, measuredAccs, measuredOmegas, deltaTs), bias);
Matrix expectedDelRdelBiasAcc = expectedDelRdelBias.leftCols(3);
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
@@ -265,6 +268,7 @@ TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega(), 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
+/* ************************************************************************* */
TEST(CombinedImuFactor, PredictPositionAndVelocity){
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
@@ -283,22 +287,21 @@ TEST(CombinedImuFactor, PredictPositionAndVelocity){
for (int i = 0; i<1000; ++i) Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
- // Create factor
- noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov());
- CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
-
- // Predict
- Pose3 x1;
- Vector3 v1(0, 0.0, 0.0);
- PoseVelocityBias poseVelocityBias = Combinedfactor.Predict(x1, v1, bias, Combined_pre_int_data, gravity, omegaCoriolis);
- Pose3 expectedPose(Rot3(), Point3(0, 0.5, 0));
- Vector3 expectedVelocity; expectedVelocity<<0,1,0;
- EXPECT(assert_equal(expectedPose, poseVelocityBias.pose));
- EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocityBias.velocity)));
-
+ // Create factor
+ noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.preintMeasCov());
+ CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
+ // Predict
+ Pose3 x1;
+ Vector3 v1(0, 0.0, 0.0);
+ PoseVelocityBias poseVelocityBias = Combined_pre_int_data.predict(x1, v1, bias, gravity, omegaCoriolis);
+ Pose3 expectedPose(Rot3(), Point3(0, 0.5, 0));
+ Vector3 expectedVelocity; expectedVelocity<<0,1,0;
+ EXPECT(assert_equal(expectedPose, poseVelocityBias.pose));
+ EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocityBias.velocity)));
}
+/* ************************************************************************* */
TEST(CombinedImuFactor, PredictRotation) {
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
Matrix I6x6(6,6);
@@ -319,14 +322,152 @@ TEST(CombinedImuFactor, PredictRotation) {
// Predict
Pose3 x(Rot3().ypr(0,0, 0), Point3(0,0,0));
Vector3 v(0,0,0);
- PoseVelocityBias poseVelocityBias = Combinedfactor.Predict(x,v,bias, Combined_pre_int_data, gravity, omegaCoriolis);
+ PoseVelocityBias poseVelocityBias = Combined_pre_int_data.predict(x,v,bias, gravity, omegaCoriolis);
Pose3 expectedPose(Rot3().ypr(M_PI/10, 0,0), Point3(0,0,0));
EXPECT(assert_equal(expectedPose, poseVelocityBias.pose, tol));
}
-#include
+/* ************************************************************************* */
+TEST( CombinedImuFactor, JacobianPreintegratedCovariancePropagation )
+{
+ // Linearization point
+ imuBias::ConstantBias bias_old = imuBias::ConstantBias(); ///< Current estimate of acceleration and rotation rate biases
+ Pose3 body_P_sensor = Pose3();
+ // Measurements
+ list measuredAccs, measuredOmegas;
+ list deltaTs;
+ measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
+ measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
+ deltaTs.push_back(0.01);
+ measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
+ measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
+ deltaTs.push_back(0.01);
+ for(int i=1;i<100;i++)
+ {
+ measuredAccs.push_back(Vector3(0.05, 0.09, 0.01));
+ measuredOmegas.push_back(Vector3(M_PI/100.0, M_PI/300.0, 2*M_PI/100.0));
+ deltaTs.push_back(0.01);
+ }
+ // Actual preintegrated values
+ CombinedImuFactor::CombinedPreintegratedMeasurements preintegrated =
+ evaluatePreintegratedMeasurements(bias_old, measuredAccs, measuredOmegas, deltaTs);
+
+ // so far we only created a nontrivial linearization point for the preintegrated measurements
+ // Now we add a new measurement and ask for Jacobians
+ const Vector3 newMeasuredAcc = Vector3(0.1, 0.0, 0.0);
+ const Vector3 newMeasuredOmega = Vector3(M_PI/100.0, 0.0, 0.0);
+ const double newDeltaT = 0.01;
+ const Rot3 deltaRij_old = preintegrated.deltaRij(); // before adding new measurement
+ const Vector3 deltaVij_old = preintegrated.deltaVij(); // before adding new measurement
+ const Vector3 deltaPij_old = preintegrated.deltaPij(); // before adding new measurement
+
+ Matrix oldPreintCovariance = preintegrated.preintMeasCov();
+
+ Matrix Factual, Gactual;
+ preintegrated.integrateMeasurement(newMeasuredAcc, newMeasuredOmega, newDeltaT,
+ body_P_sensor, Factual, Gactual);
+
+ bool use2ndOrderIntegration = false;
+
+ //////////////////////////////////////////////////////////////////////////////////////////////
+ // COMPUTE NUMERICAL DERIVATIVES FOR F
+ //////////////////////////////////////////////////////////////////////////////////////////////
+ // Compute expected F wrt positions (15,3)
+ Matrix df_dpos =
+ numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsTest,
+ _1, deltaVij_old, deltaRij_old, bias_old,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaPij_old);
+ // rotation part has to be done properly, on manifold
+ df_dpos.block<3,3>(6,0) = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsRot,
+ _1, deltaVij_old, deltaRij_old, bias_old,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaPij_old);
+
+ // Compute expected F wrt velocities (15,3)
+ Matrix df_dvel =
+ numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsTest,
+ deltaPij_old, _1, deltaRij_old, bias_old,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaVij_old);
+ // rotation part has to be done properly, on manifold
+ df_dvel.block<3,3>(6,0) = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsRot,
+ deltaPij_old, _1, deltaRij_old, bias_old,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaVij_old);
+
+ // Compute expected F wrt angles (15,3)
+ Matrix df_dangle = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsTest,
+ deltaPij_old, deltaVij_old, _1, bias_old,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaRij_old);
+ // rotation part has to be done properly, on manifold
+ df_dangle.block<3,3>(6,0) = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsRot,
+ deltaPij_old, deltaVij_old, _1, bias_old,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaRij_old);
+
+ // Compute expected F wrt biases (15,6)
+ Matrix df_dbias = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsTest,
+ deltaPij_old, deltaVij_old, deltaRij_old, _1,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), bias_old);
+ // rotation part has to be done properly, on manifold
+ df_dbias.block<3,6>(6,0) = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsRot,
+ deltaPij_old, deltaVij_old, deltaRij_old, _1,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), bias_old);
+
+ Matrix Fexpected(15,15);
+ Fexpected << df_dpos, df_dvel, df_dangle, df_dbias;
+ EXPECT(assert_equal(Fexpected, Factual));
+
+ //////////////////////////////////////////////////////////////////////////////////////////////
+ // COMPUTE NUMERICAL DERIVATIVES FOR G
+ //////////////////////////////////////////////////////////////////////////////////////////////
+ // Compute expected G wrt integration noise
+ Matrix df_dintNoise(15,3);
+ df_dintNoise << I_3x3 * newDeltaT, Z_3x3, Z_3x3, Z_3x3, Z_3x3;
+
+ // Compute expected G wrt acc noise (15,3)
+ Matrix df_daccNoise = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsTest,
+ deltaPij_old, deltaVij_old, deltaRij_old, bias_old,
+ _1, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), newMeasuredAcc);
+ // rotation part has to be done properly, on manifold
+ df_daccNoise.block<3,3>(6,0) = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsRot,
+ deltaPij_old, deltaVij_old, deltaRij_old, bias_old,
+ _1, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), newMeasuredAcc);
+
+ // Compute expected G wrt gyro noise (15,3)
+ Matrix df_domegaNoise = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsTest,
+ deltaPij_old, deltaVij_old, deltaRij_old, bias_old,
+ newMeasuredAcc, _1, newDeltaT, use2ndOrderIntegration), newMeasuredOmega);
+ // rotation part has to be done properly, on manifold
+ df_domegaNoise.block<3,3>(6,0) = numericalDerivative11< Rot3, Vector3>(boost::bind(&updatePreintegratedMeasurementsRot,
+ deltaPij_old, deltaVij_old, deltaRij_old, bias_old,
+ newMeasuredAcc, _1, newDeltaT, use2ndOrderIntegration), newMeasuredOmega);
+
+ // Compute expected G wrt bias random walk noise (15,6)
+ Matrix df_rwBias(15,6); // random walk on the bias does not appear in the first 9 entries
+ df_rwBias.setZero();
+ df_rwBias.block<6,6>(9,0) = eye(6);
+
+ // Compute expected G wrt gyro noise (15,6)
+ Matrix df_dinitBias = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsTest,
+ deltaPij_old, deltaVij_old, deltaRij_old, _1,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), bias_old);
+ // rotation part has to be done properly, on manifold
+ df_dinitBias.block<3,6>(6,0) = numericalDerivative11(boost::bind(&updatePreintegratedMeasurementsRot,
+ deltaPij_old, deltaVij_old, deltaRij_old, _1,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), bias_old);
+ df_dinitBias.block<6,6>(9,0) = Matrix::Zero(6,6); // only has to influence first 9 rows
+
+ Matrix Gexpected(15,21);
+ Gexpected << df_dintNoise, df_daccNoise, df_domegaNoise, df_rwBias, df_dinitBias;
+
+ EXPECT(assert_equal(Gexpected, Gactual));
+
+ // Check covariance propagation
+ Matrix newPreintCovarianceExpected = Factual * oldPreintCovariance * Factual.transpose() +
+ (1/newDeltaT) * Gactual * Gactual.transpose();
+
+ Matrix newPreintCovarianceActual = preintegrated.preintMeasCov();
+ EXPECT(assert_equal(newPreintCovarianceExpected, newPreintCovarianceActual));
+}
/* ************************************************************************* */
- int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
+int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */
diff --git a/gtsam/navigation/tests/testImuFactor.cpp b/gtsam/navigation/tests/testImuFactor.cpp
index 06e2c105e..0c4c9e3a6 100644
--- a/gtsam/navigation/tests/testImuFactor.cpp
+++ b/gtsam/navigation/tests/testImuFactor.cpp
@@ -37,6 +37,8 @@ using symbol_shorthand::B;
/* ************************************************************************* */
namespace {
+// Auxiliary functions to test evaluate error in ImuFactor
+/* ************************************************************************* */
Vector callEvaluateError(const ImuFactor& factor,
const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias){
@@ -49,14 +51,48 @@ Rot3 evaluateRotationError(const ImuFactor& factor,
return Rot3::Expmap(factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias).tail(3) ) ;
}
+// Auxiliary functions to test Jacobians F and G used for
+// covariance propagation during preintegration
+/* ************************************************************************* */
+Vector updatePreintegratedPosVel(
+ const Vector3 deltaPij_old, const Vector3& deltaVij_old, const Rot3& deltaRij_old,
+ const Vector3& correctedAcc, const Vector3& correctedOmega, const double deltaT,
+ const bool use2ndOrderIntegration_) {
+
+ Matrix3 dRij = deltaRij_old.matrix();
+ Vector3 temp = dRij * correctedAcc * deltaT;
+ Vector3 deltaPij_new;
+ if(!use2ndOrderIntegration_){
+ deltaPij_new = deltaPij_old + deltaVij_old * deltaT;
+ }else{
+ deltaPij_new += deltaPij_old + deltaVij_old * deltaT + 0.5 * temp * deltaT;
+ }
+ Vector3 deltaVij_new = deltaVij_old + temp;
+
+ Vector result(6); result << deltaPij_new, deltaVij_new;
+ return result;
+}
+
+Rot3 updatePreintegratedRot(const Rot3& deltaRij_old,
+ const Vector3& correctedOmega, const double deltaT) {
+ Rot3 deltaRij_new = deltaRij_old * Rot3::Expmap(correctedOmega * deltaT);
+ return deltaRij_new;
+}
+
+// Auxiliary functions to test preintegrated Jacobians
+// delPdelBiasAcc_ delPdelBiasOmega_ delVdelBiasAcc_ delVdelBiasOmega_ delRdelBiasOmega_
+/* ************************************************************************* */
+double accNoiseVar = 0.01;
+double omegaNoiseVar = 0.03;
+double intNoiseVar = 0.0001;
ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
const imuBias::ConstantBias& bias,
const list& measuredAccs,
const list& measuredOmegas,
const list& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) ){
- ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
- Matrix3::Identity(), Matrix3::Identity());
+ ImuFactor::PreintegratedMeasurements result(bias, accNoiseVar * Matrix3::Identity(),
+ omegaNoiseVar *Matrix3::Identity(), intNoiseVar * Matrix3::Identity());
list::const_iterator itAcc = measuredAccs.begin();
list::const_iterator itOmega = measuredOmegas.begin();
@@ -152,7 +188,7 @@ TEST( ImuFactor, PreintegratedMeasurements )
}
/* ************************************************************************* */
-TEST( ImuFactor, Error )
+TEST( ImuFactor, ErrorAndJacobians )
{
// Linearization point
imuBias::ConstantBias bias; // Bias
@@ -180,6 +216,77 @@ TEST( ImuFactor, Error )
Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
+ // Actual Jacobians
+ Matrix H1a, H2a, H3a, H4a, H5a;
+ (void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
+
+ // Expected Jacobians
+ /////////////////// H1 ///////////////////////////
+ Matrix H1e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
+ // Jacobians are around zero, so the rotation part is the same as:
+ Matrix H1Rot3 = numericalDerivative11(
+ boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
+ EXPECT(assert_equal(H1Rot3, H1e.bottomRows(3)));
+ EXPECT(assert_equal(H1e, H1a));
+
+ /////////////////// H2 ///////////////////////////
+ Matrix H2e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
+ EXPECT(assert_equal(H2e, H2a));
+
+ /////////////////// H3 ///////////////////////////
+ Matrix H3e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
+ // Jacobians are around zero, so the rotation part is the same as:
+ Matrix H3Rot3 = numericalDerivative11(
+ boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
+ EXPECT(assert_equal(H3Rot3, H3e.bottomRows(3)));
+ EXPECT(assert_equal(H3e, H3a));
+
+ /////////////////// H4 ///////////////////////////
+ Matrix H4e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
+ EXPECT(assert_equal(H4e, H4a));
+
+ /////////////////// H5 ///////////////////////////
+ Matrix H5e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
+ EXPECT(assert_equal(H5e, H5a));
+}
+
+/* ************************************************************************* */
+TEST( ImuFactor, ErrorAndJacobianWithBiases )
+{
+ imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0.1, 0, 0.3)); // Biases (acc, rot)
+ Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/10.0), Point3(5.0, 1.0, -50.0));
+ Vector3 v1(Vector3(0.5, 0.0, 0.0));
+ Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/10.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
+ Vector3 v2(Vector3(0.5, 0.0, 0.0));
+
+ // Measurements
+ Vector3 gravity; gravity << 0, 0, 9.81;
+ Vector3 omegaCoriolis; omegaCoriolis << 0, 0.1, 0.1;
+ Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10.0+0.3;
+ Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
+ double deltaT = 1.0;
+
+ ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
+ Vector3(0.0, 0.0, 0.1)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
+ pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
+
+ // Create factor
+ ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
+
+ SETDEBUG("ImuFactor evaluateError", false);
+ Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
+ SETDEBUG("ImuFactor evaluateError", false);
+
+ // Expected error (should not be zero in this test, as we want to evaluate Jacobians
+ // at a nontrivial linearization point)
+ // Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
+ // EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
+
// Expected Jacobians
Matrix H1e = numericalDerivative11(
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
@@ -197,45 +304,27 @@ TEST( ImuFactor, Error )
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
Matrix RH3e = numericalDerivative11(
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
+ Matrix RH5e = numericalDerivative11(
+ boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
- // positions and velocities
- Matrix H1etop6 = H1e.topRows(6);
- Matrix H1atop6 = H1a.topRows(6);
- EXPECT(assert_equal(H1etop6, H1atop6));
- // rotations
- EXPECT(assert_equal(RH1e, H1a.bottomRows(3), 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
-
+ EXPECT(assert_equal(H1e, H1a));
EXPECT(assert_equal(H2e, H2a));
-
- // positions and velocities
- Matrix H3etop6 = H3e.topRows(6);
- Matrix H3atop6 = H3a.topRows(6);
- EXPECT(assert_equal(H3etop6, H3atop6));
- // rotations
- EXPECT(assert_equal(RH3e, H3a.bottomRows(3), 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
-
+ EXPECT(assert_equal(H3e, H3a));
EXPECT(assert_equal(H4e, H4a));
- // EXPECT(assert_equal(H5e, H5a));
+ EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
-TEST( ImuFactor, ErrorWithBiases )
+TEST( ImuFactor, ErrorAndJacobianWith2ndOrderCoriolis )
{
- // Linearization point
-// Vector bias(6); bias << 0.2, 0, 0, 0.1, 0, 0; // Biases (acc, rot)
-// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
-// Vector3 v1(Vector3(0.5, 0.0, 0.0));
-// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/10.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
-// Vector3 v2(Vector3(0.5, 0.0, 0.0));
-
- imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
- Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
+ imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0.1, 0, 0.3)); // Biases (acc, rot)
+ Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/10.0), Point3(5.0, 1.0, -50.0));
Vector3 v1(Vector3(0.5, 0.0, 0.0));
- Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
+ Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/10.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
Vector3 v2(Vector3(0.5, 0.0, 0.0));
// Measurements
@@ -245,56 +334,57 @@ TEST( ImuFactor, ErrorWithBiases )
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
double deltaT = 1.0;
- ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
- pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
+ ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
+ Vector3(0.0, 0.0, 0.1)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
+ pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
- // ImuFactor::PreintegratedMeasurements pre_int_data(bias.head(3), bias.tail(3));
- // pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
+ // Create factor
+ Pose3 bodyPsensor = Pose3();
+ bool use2ndOrderCoriolis = true;
+ ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, bodyPsensor, use2ndOrderCoriolis);
- // Create factor
- ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
+ SETDEBUG("ImuFactor evaluateError", false);
+ Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
+ SETDEBUG("ImuFactor evaluateError", false);
- SETDEBUG("ImuFactor evaluateError", false);
- Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
- SETDEBUG("ImuFactor evaluateError", false);
+ // Expected error (should not be zero in this test, as we want to evaluate Jacobians
+ // at a nontrivial linearization point)
+ // Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
+ // EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
- // Expected error
- Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
- // EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
+ // Expected Jacobians
+ Matrix H1e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
+ Matrix H2e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
+ Matrix H3e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
+ Matrix H4e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
+ Matrix H5e = numericalDerivative11(
+ boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
- // Expected Jacobians
- Matrix H1e = numericalDerivative11(
- boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
- Matrix H2e = numericalDerivative11(
- boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
- Matrix H3e = numericalDerivative11(
- boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
- Matrix H4e = numericalDerivative11(
- boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
- Matrix H5e = numericalDerivative11(
- boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
+ // Check rotation Jacobians
+ Matrix RH1e = numericalDerivative11(
+ boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
+ Matrix RH3e = numericalDerivative11(
+ boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
+ Matrix RH5e = numericalDerivative11(
+ boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
- // Check rotation Jacobians
- Matrix RH1e = numericalDerivative11(
- boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
- Matrix RH3e = numericalDerivative11(
- boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
- Matrix RH5e = numericalDerivative11(
- boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
+ // Actual Jacobians
+ Matrix H1a, H2a, H3a, H4a, H5a;
+ (void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
- // Actual Jacobians
- Matrix H1a, H2a, H3a, H4a, H5a;
- (void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
-
- EXPECT(assert_equal(H1e, H1a));
- EXPECT(assert_equal(H2e, H2a));
- EXPECT(assert_equal(H3e, H3a));
- EXPECT(assert_equal(H4e, H4a));
- EXPECT(assert_equal(H5e, H5a));
+ EXPECT(assert_equal(H1e, H1a));
+ EXPECT(assert_equal(H2e, H2a));
+ EXPECT(assert_equal(H3e, H3a));
+ EXPECT(assert_equal(H4e, H4a));
+ EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
-TEST( ImuFactor, PartialDerivativeExpmap )
+TEST( ImuFactor, PartialDerivative_wrt_Bias )
{
// Linearization point
Vector3 biasOmega; biasOmega << 0,0,0; ///< Current estimate of rotation rate bias
@@ -324,20 +414,14 @@ TEST( ImuFactor, PartialDerivativeLogmap )
// Measurements
Vector3 deltatheta; deltatheta << 0, 0, 0;
-
// Compute numerical derivatives
Matrix expectedDelFdeltheta = numericalDerivative11(boost::bind(
&evaluateLogRotation, thetahat, _1), Vector3(deltatheta));
- const Vector3 x = thetahat; // parametrization of so(3)
- const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
- double normx = norm_2(x);
- const Matrix3 actualDelFdeltheta = Matrix3::Identity() +
- 0.5 * X + (1/(normx*normx) - (1+cos(normx))/(2*normx * sin(normx)) ) * X * X;
+ Matrix3 actualDelFdeltheta = Rot3::LogmapDerivative(thetahat);
// Compare Jacobians
EXPECT(assert_equal(expectedDelFdeltheta, actualDelFdeltheta));
-
}
/* ************************************************************************* */
@@ -354,7 +438,6 @@ TEST( ImuFactor, fistOrderExponential )
double alpha = 0.0;
Vector3 deltabiasOmega; deltabiasOmega << alpha,alpha,alpha;
-
const Matrix3 Jr = Rot3::ExpmapDerivative((measuredOmega - biasOmega) * deltaT);
Matrix3 delRdelBiasOmega = - Jr * deltaT; // the delta bias appears with the minus sign
@@ -366,7 +449,7 @@ TEST( ImuFactor, fistOrderExponential )
hatRot * Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
//hatRot * (Matrix3::Identity() + skewSymmetric(delRdelBiasOmega * deltabiasOmega));
- // Compare Jacobians
+ // This is a first order expansion so the equality is only an approximation
EXPECT(assert_equal(expectedRot, actualRot));
}
@@ -423,6 +506,128 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega(), 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
+/* ************************************************************************* */
+TEST( ImuFactor, JacobianPreintegratedCovariancePropagation )
+{
+ // Linearization point
+ imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
+ Pose3 body_P_sensor = Pose3(); // (Rot3::Expmap(Vector3(0,0.1,0.1)), Point3(1, 0, 1));
+
+ // Measurements
+ list measuredAccs, measuredOmegas;
+ list deltaTs;
+ measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
+ measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
+ deltaTs.push_back(0.01);
+ measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
+ measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
+ deltaTs.push_back(0.01);
+ for(int i=1;i<100;i++)
+ {
+ measuredAccs.push_back(Vector3(0.05, 0.09, 0.01));
+ measuredOmegas.push_back(Vector3(M_PI/100.0, M_PI/300.0, 2*M_PI/100.0));
+ deltaTs.push_back(0.01);
+ }
+ // Actual preintegrated values
+ ImuFactor::PreintegratedMeasurements preintegrated =
+ evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0));
+
+ // so far we only created a nontrivial linearization point for the preintegrated measurements
+ // Now we add a new measurement and ask for Jacobians
+ const Vector3 newMeasuredAcc = Vector3(0.1, 0.0, 0.0);
+ const Vector3 newMeasuredOmega = Vector3(M_PI/100.0, 0.0, 0.0);
+ const double newDeltaT = 0.01;
+ const Rot3 deltaRij_old = preintegrated.deltaRij(); // before adding new measurement
+ const Vector3 deltaVij_old = preintegrated.deltaVij(); // before adding new measurement
+ const Vector3 deltaPij_old = preintegrated.deltaPij(); // before adding new measurement
+
+ Matrix oldPreintCovariance = preintegrated.preintMeasCov();
+
+ Matrix Factual, Gactual;
+ preintegrated.integrateMeasurement(newMeasuredAcc, newMeasuredOmega, newDeltaT,
+ body_P_sensor, Factual, Gactual);
+
+ bool use2ndOrderIntegration = false;
+
+ //////////////////////////////////////////////////////////////////////////////////////////////
+ // COMPUTE NUMERICAL DERIVATIVES FOR F
+ //////////////////////////////////////////////////////////////////////////////////////////////
+ // Compute expected f_pos_vel wrt positions
+ Matrix dfpv_dpos =
+ numericalDerivative11(boost::bind(&updatePreintegratedPosVel,
+ _1, deltaVij_old, deltaRij_old,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaPij_old);
+
+ // Compute expected f_pos_vel wrt velocities
+ Matrix dfpv_dvel =
+ numericalDerivative11(boost::bind(&updatePreintegratedPosVel,
+ deltaPij_old, _1, deltaRij_old,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaVij_old);
+
+ // Compute expected f_pos_vel wrt angles
+ Matrix dfpv_dangle =
+ numericalDerivative11(boost::bind(&updatePreintegratedPosVel,
+ deltaPij_old, deltaVij_old, _1,
+ newMeasuredAcc, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), deltaRij_old);
+
+ Matrix FexpectedTop6(6,9); FexpectedTop6 << dfpv_dpos, dfpv_dvel, dfpv_dangle;
+
+ // Compute expected f_rot wrt angles
+ Matrix dfr_dangle =
+ numericalDerivative11(boost::bind(&updatePreintegratedRot,
+ _1, newMeasuredOmega, newDeltaT), deltaRij_old);
+
+ Matrix FexpectedBottom3(3,9);
+ FexpectedBottom3 << Z_3x3, Z_3x3, dfr_dangle;
+ Matrix Fexpected(9,9); Fexpected << FexpectedTop6, FexpectedBottom3;
+
+ EXPECT(assert_equal(Fexpected, Factual));
+
+ //////////////////////////////////////////////////////////////////////////////////////////////
+ // COMPUTE NUMERICAL DERIVATIVES FOR G
+ //////////////////////////////////////////////////////////////////////////////////////////////
+ // Compute jacobian wrt integration noise
+ Matrix dgpv_dintNoise(6,3);
+ dgpv_dintNoise << I_3x3 * newDeltaT, Z_3x3;
+
+ // Compute jacobian wrt acc noise
+ Matrix dgpv_daccNoise =
+ numericalDerivative11(boost::bind(&updatePreintegratedPosVel,
+ deltaPij_old, deltaVij_old, deltaRij_old,
+ _1, newMeasuredOmega, newDeltaT, use2ndOrderIntegration), newMeasuredAcc);
+
+ // Compute expected F wrt gyro noise
+ Matrix dgpv_domegaNoise =
+ numericalDerivative11(boost::bind(&updatePreintegratedPosVel,
+ deltaPij_old, deltaVij_old, deltaRij_old,
+ newMeasuredAcc, _1, newDeltaT, use2ndOrderIntegration), newMeasuredOmega);
+ Matrix GexpectedTop6(6,9);
+ GexpectedTop6 << dgpv_dintNoise, dgpv_daccNoise, dgpv_domegaNoise;
+
+ // Compute expected f_rot wrt gyro noise
+ Matrix dgr_dangle =
+ numericalDerivative11(boost::bind(&updatePreintegratedRot,
+ deltaRij_old, _1, newDeltaT), newMeasuredOmega);
+
+ Matrix GexpectedBottom3(3,9);
+ GexpectedBottom3 << Z_3x3, Z_3x3, dgr_dangle;
+ Matrix Gexpected(9,9); Gexpected << GexpectedTop6, GexpectedBottom3;
+
+ EXPECT(assert_equal(Gexpected, Gactual));
+
+ // Check covariance propagation
+ Matrix9 measurementCovariance;
+ measurementCovariance << intNoiseVar*I_3x3, Z_3x3, Z_3x3,
+ Z_3x3, accNoiseVar*I_3x3, Z_3x3,
+ Z_3x3, Z_3x3, omegaNoiseVar*I_3x3;
+
+ Matrix newPreintCovarianceExpected = Factual * oldPreintCovariance * Factual.transpose() +
+ (1/newDeltaT) * Gactual * measurementCovariance * Gactual.transpose();
+
+ Matrix newPreintCovarianceActual = preintegrated.preintMeasCov();
+ EXPECT(assert_equal(newPreintCovarianceExpected, newPreintCovarianceActual));
+}
+
//#include
///* ************************************************************************* */
//TEST( ImuFactor, LinearizeTiming)
@@ -561,13 +766,11 @@ TEST(ImuFactor, PredictPositionAndVelocity){
// Predict
Pose3 x1;
Vector3 v1(0, 0.0, 0.0);
- PoseVelocity poseVelocity = factor.Predict(x1, v1, bias, pre_int_data, gravity, omegaCoriolis);
+ PoseVelocityBias poseVelocity = pre_int_data.predict(x1, v1, bias, gravity, omegaCoriolis);
Pose3 expectedPose(Rot3(), Point3(0, 0.5, 0));
Vector3 expectedVelocity; expectedVelocity<<0,1,0;
EXPECT(assert_equal(expectedPose, poseVelocity.pose));
EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocity.velocity)));
-
-
}
/* ************************************************************************* */
@@ -595,7 +798,7 @@ TEST(ImuFactor, PredictRotation) {
// Predict
Pose3 x1;
Vector3 v1(0, 0.0, 0.0);
- PoseVelocity poseVelocity = factor.Predict(x1, v1, bias, pre_int_data, gravity, omegaCoriolis);
+ PoseVelocityBias poseVelocity = pre_int_data.predict(x1, v1, bias, gravity, omegaCoriolis);
Pose3 expectedPose(Rot3().ypr(M_PI/10, 0, 0), Point3(0, 0, 0));
Vector3 expectedVelocity; expectedVelocity<<0,0,0;
EXPECT(assert_equal(expectedPose, poseVelocity.pose));