Merge branch 'outlierRejectionTest'

Conflicts:
	.cproject
release/4.3a0
Luca 2014-05-20 16:58:57 -04:00
commit a668b2a8e4
5 changed files with 195 additions and 3 deletions

View File

@ -0,0 +1,61 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExample.cpp
* @brief A 2D Pose SLAM example that reads input from g2o and uses robust kernels in optimization
* @date May 15, 2014
* @author Luca Carlone
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/inference/Key.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <fstream>
#include <sstream>
using namespace std;
using namespace gtsam;
int main(const int argc, const char *argv[]){
if (argc < 2)
std::cout << "Please specify: 1st argument: input file (in g2o format) and 2nd argument: output file" << std::endl;
const string g2oFile = argv[1];
NonlinearFactorGraph graph;
Values initial;
readG2o(g2oFile, graph, initial);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = graph;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 0.01, 0.01, 0.001));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
std::cout << "Optimizing the factor graph" << std::endl;
GaussNewtonOptimizer optimizer(graphWithPrior, initial); // , parameters);
Values result = optimizer.optimize();
std::cout << "Optimization complete" << std::endl;
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(outputFile, graph, result);
std::cout << "done! " << std::endl;
return 0;
}

View File

@ -151,9 +151,9 @@ Vector Unit3::localCoordinates(const Unit3& y) const {
double dot = p.dot(q);
// Check for special cases
if (std::abs(dot - 1.0) < 1e-20)
if (std::abs(dot - 1.0) < 1e-16)
return (Vector(2) << 0, 0);
else if (std::abs(dot + 1.0) < 1e-20)
else if (std::abs(dot + 1.0) < 1e-16)
return (Vector(2) << M_PI, 0);
else {
// no special case

View File

@ -191,7 +191,7 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
if(mode == ONE_STEP_PER_ITERATION || mode == SEARCH_REDUCE_ONLY)
stay = false; // If not searching, just return with the new Delta
else if(mode == SEARCH_EACH_ITERATION) {
if(newDelta == Delta || lastAction == DECREASED_DELTA)
if(fabs(newDelta - Delta) < 1e-15 || lastAction == DECREASED_DELTA)
stay = false; // Searching, but Newton's solution is within trust region so keep the same trust region
else {
stay = true; // Searching and increased Delta, so try again to increase Delta

View File

@ -537,6 +537,118 @@ bool readBundler(const string& filename, SfM_data &data)
return true;
}
/* ************************************************************************* */
bool readG2o(const std::string& g2oFile, NonlinearFactorGraph& graph, Values& initial,
const kernelFunctionType kernelFunction){
ifstream is(g2oFile.c_str());
if (!is){
throw std::invalid_argument("File not found!");
return false;
}
std::cout << "Reading g2o file: " << g2oFile << std::endl;
// READ INITIAL GUESS FROM G2O FILE
string tag;
while (is) {
if(! (is >> tag))
break;
if (tag == "VERTEX_SE2") {
int id;
double x, y, yaw;
is >> id >> x >> y >> yaw;
initial.insert(id, Pose2(x, y, yaw));
}
is.ignore(LINESIZE, '\n');
}
is.clear(); /* clears the end-of-file and error flags */
is.seekg(0, ios::beg);
// initial.print("initial guess");
// READ MEASUREMENTS FROM G2O FILE
while (is) {
if(! (is >> tag))
break;
if (tag == "EDGE_SE2") {
int id1, id2;
double x, y, yaw;
double I11, I12, I13, I22, I23, I33;
is >> id1 >> id2 >> x >> y >> yaw;
is >> I11 >> I12 >> I13 >> I22 >> I23 >> I33;
Pose2 l1Xl2(x, y, yaw);
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(3) << I11, I22, I33));
switch (kernelFunction) {
{case QUADRATIC:
NonlinearFactor::shared_ptr factor(new BetweenFactor<Pose2>(id1, id2, l1Xl2, model));
graph.add(factor);
break;}
{case HUBER:
NonlinearFactor::shared_ptr huberFactor(new BetweenFactor<Pose2>(id1, id2, l1Xl2,
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.345), model)));
graph.add(huberFactor);
break;}
{case TUKEY:
NonlinearFactor::shared_ptr tukeyFactor(new BetweenFactor<Pose2>(id1, id2, l1Xl2,
noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), model)));
graph.add(tukeyFactor);
break;}
}
}
is.ignore(LINESIZE, '\n');
}
// Output which kernel is used
switch (kernelFunction) {
case QUADRATIC:
std::cout << "Robust kernel: None" << std::endl; break;
case HUBER:
std::cout << "Robust kernel: Huber" << std::endl; break;
case TUKEY:
std::cout << "Robust kernel: Tukey" << std::endl; break;
}
return true;
}
/* ************************************************************************* */
bool writeG2o(const std::string& filename, const NonlinearFactorGraph& graph, const Values& estimate){
fstream stream(filename.c_str(), fstream::out);
// save poses
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, estimate)
{
const Pose2& pose = dynamic_cast<const Pose2&>(key_value.value);
stream << "VERTEX_SE2 " << key_value.key << " " << pose.x() << " "
<< pose.y() << " " << pose.theta() << endl;
}
// save edges
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph)
{
boost::shared_ptr<BetweenFactor<Pose2> > factor =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor_);
if (!factor)
continue;
SharedNoiseModel model = factor->get_noiseModel();
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonalModel)
throw std::invalid_argument("writeG2o: invalid noise model (current version assumes diagonal noise model)!");
Pose2 pose = factor->measured(); //.inverse();
stream << "EDGE_SE2 " << factor->key1() << " " << factor->key2() << " "
<< pose.x() << " " << pose.y() << " " << pose.theta() << " "
<< diagonalModel->precision(0) << " " << 0.0 << " " << 0.0 << " "
<< diagonalModel->precision(1) << " " << 0.0 << " " << diagonalModel->precision(2) << endl;
}
stream.close();
return true;
}
/* ************************************************************************* */
bool readBAL(const string& filename, SfM_data &data)
{

View File

@ -117,6 +117,25 @@ struct SfM_data
*/
GTSAM_EXPORT bool readBundler(const std::string& filename, SfM_data &data);
/**
* @brief This function parses a g2o file and stores the measurements into a
* NonlinearFactorGraph and the initial guess in a Values structure
* @param filename The name of the g2o file
* @param graph NonlinearFactor graph storing the measurements (EDGE_SE2)
* @return initial Values containing the initial guess (VERTEX_SE2)
*/
enum kernelFunctionType { QUADRATIC, HUBER, TUKEY };
bool readG2o(const std::string& g2oFile, NonlinearFactorGraph& graph, Values& initial, const kernelFunctionType kernelFunction = QUADRATIC);
/**
* @brief This function writes a g2o file from
* NonlinearFactorGraph and a Values structure
* @param filename The name of the g2o file to write
* @param graph NonlinearFactor graph storing the measurements (EDGE_SE2)
* @return estimate Values containing the values (VERTEX_SE2)
*/
bool writeG2o(const std::string& filename, const NonlinearFactorGraph& graph, const Values& estimate);
/**
* @brief This function parses a "Bundle Adjustment in the Large" (BAL) file and stores the data into a
* SfM_data structure