split .h and .cpp for LagoInitializer
parent
569f7bb292
commit
1b5f9e7f02
|
@ -0,0 +1,261 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file LagoInitializer.h
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date May 14, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/LagoInitializer.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree,
|
||||
const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap) {
|
||||
|
||||
double nodeTheta = 0;
|
||||
Key key_child = nodeKey; // the node
|
||||
Key key_parent = 0; // the initialization does not matter
|
||||
while(1){
|
||||
// We check if we reached the root
|
||||
if(tree.at(key_child)==key_child) // if we reached the root
|
||||
break;
|
||||
// we sum the delta theta corresponding to the edge parent->child
|
||||
nodeTheta += deltaThetaMap.at(key_child);
|
||||
// we get the parent
|
||||
key_parent = tree.at(key_child); // the parent
|
||||
// we check if we connected to some part of the tree we know
|
||||
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
|
||||
nodeTheta += thetaFromRootMap.at(key_parent);
|
||||
break;
|
||||
}
|
||||
key_child = key_parent; // we move upwards in the tree
|
||||
}
|
||||
return nodeTheta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
|
||||
const PredecessorMap<Key>& tree) {
|
||||
|
||||
key2doubleMap thetaToRootMap;
|
||||
key2doubleMap::const_iterator it;
|
||||
// for all nodes in the tree
|
||||
for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it ){
|
||||
// compute the orientation wrt root
|
||||
Key nodeKey = it->first;
|
||||
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
|
||||
thetaToRootMap);
|
||||
thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta));
|
||||
}
|
||||
return thetaToRootMap;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void getSymbolicGraph(
|
||||
/*OUTPUTS*/ std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds, key2doubleMap& deltaThetaMap,
|
||||
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
||||
|
||||
// Get keys for which you want the orientation
|
||||
size_t id=0;
|
||||
// Loop over the factors
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
|
||||
if (factor->keys().size() == 2){
|
||||
Key key1 = factor->keys()[0];
|
||||
Key key2 = factor->keys()[1];
|
||||
// recast to a between
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between) continue;
|
||||
// get the orientation - measured().theta();
|
||||
double deltaTheta = pose2Between->measured().theta();
|
||||
// insert (directed) orientations in the map "deltaThetaMap"
|
||||
bool inTree=false;
|
||||
if(tree.at(key1)==key2){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
|
||||
inTree = true;
|
||||
} else if(tree.at(key2)==key1){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
|
||||
inTree = true;
|
||||
}
|
||||
// store factor slot, distinguishing spanning tree edges from chordsIds
|
||||
if(inTree == true)
|
||||
spanningTreeIds.push_back(id);
|
||||
else // it's a chord!
|
||||
chordsIds.push_back(id);
|
||||
}
|
||||
id++;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
||||
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
|
||||
|
||||
// Get the relative rotation measurement from the between factor
|
||||
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between)
|
||||
throw std::invalid_argument("buildLinearOrientationGraph: invalid between factor!");
|
||||
deltaTheta = (Vector(1) << pose2Between->measured().theta());
|
||||
|
||||
// Retrieve the noise model for the relative rotation
|
||||
SharedNoiseModel model = pose2Between->get_noiseModel();
|
||||
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
|
||||
if (!diagonalModel)
|
||||
throw std::invalid_argument("buildLinearOrientationGraph: invalid noise model "
|
||||
"(current version assumes diagonal noise model)!");
|
||||
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
|
||||
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactorGraph buildLinearOrientationGraph(const std::vector<size_t>& spanningTreeIds, const std::vector<size_t>& chordsIds,
|
||||
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree){
|
||||
|
||||
GaussianFactorGraph lagoGraph;
|
||||
Vector deltaTheta;
|
||||
noiseModel::Diagonal::shared_ptr model_deltaTheta;
|
||||
|
||||
Matrix I = eye(1);
|
||||
// put original measurements in the spanning tree
|
||||
BOOST_FOREACH(const size_t& factorId, spanningTreeIds){
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
|
||||
}
|
||||
// put regularized measurements in the chordsIds
|
||||
BOOST_FOREACH(const size_t& factorId, chordsIds){
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
double key1_DeltaTheta_key2 = deltaTheta(0);
|
||||
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
|
||||
double k = round(k2pi_noise/(2*M_PI));
|
||||
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*M_PI);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
|
||||
}
|
||||
// prior on the anchor orientation
|
||||
lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise));
|
||||
return lagoGraph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){
|
||||
NonlinearFactorGraph pose2Graph;
|
||||
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph){
|
||||
|
||||
// recast to a between on Pose2
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (pose2Between)
|
||||
pose2Graph.add(pose2Between);
|
||||
|
||||
// recast PriorFactor<Pose2> to BetweenFactor<Pose2>
|
||||
boost::shared_ptr< PriorFactor<Pose2> > pose2Prior =
|
||||
boost::dynamic_pointer_cast< PriorFactor<Pose2> >(factor);
|
||||
if (pose2Prior)
|
||||
pose2Graph.add(BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0],
|
||||
pose2Prior->prior(), pose2Prior->get_noiseModel()));
|
||||
}
|
||||
return pose2Graph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph){
|
||||
|
||||
// Find a minimum spanning tree
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, BetweenFactor<Pose2> >(pose2Graph);
|
||||
|
||||
// Create a linear factor graph (LFG) of scalars
|
||||
key2doubleMap deltaThetaMap;
|
||||
std::vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
std::vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
|
||||
|
||||
// temporary structure to correct wraparounds along loops
|
||||
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
|
||||
|
||||
// regularize measurements and plug everything in a factor graph
|
||||
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree);
|
||||
|
||||
// Solve the LFG
|
||||
VectorValues orientationsLago = lagoGraph.optimize();
|
||||
|
||||
return orientationsLago;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose2 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
return computeLagoOrientations(pose2Graph);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values initializeLago(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose2 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
VectorValues orientationsLago = computeLagoOrientations(pose2Graph);
|
||||
|
||||
Values initialGuessLago;
|
||||
// for all nodes in the tree
|
||||
for(VectorValues::const_iterator it = orientationsLago.begin(); it != orientationsLago.end(); ++it ){
|
||||
Key key = it->first;
|
||||
Vector orientation = orientationsLago.at(key);
|
||||
Pose2 poseLago = Pose2(0.0,0.0,orientation(0));
|
||||
initialGuessLago.insert(key, poseLago);
|
||||
}
|
||||
// add prior needed by GN
|
||||
pose2Graph.add(PriorFactor<Pose2>(keyAnchor, Pose2(), priorPose2Noise));
|
||||
|
||||
// Optimize Pose2, with initialGuessLago as initial guess
|
||||
GaussNewtonOptimizer pose2optimizer(pose2Graph, initialGuessLago);
|
||||
initialGuessLago = pose2optimizer.optimize();
|
||||
initialGuessLago.erase(keyAnchor); // that was fictitious
|
||||
return initialGuessLago;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
|
||||
Values initialGuessLago;
|
||||
|
||||
// get the orientation estimates from LAGO
|
||||
VectorValues orientations = initializeOrientationsLago(graph);
|
||||
|
||||
// for all nodes in the tree
|
||||
for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){
|
||||
Key key = it->first;
|
||||
if (key != keyAnchor){
|
||||
Pose2 pose = initialGuess.at<Pose2>(key);
|
||||
Vector orientation = orientations.at(key);
|
||||
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
|
||||
initialGuessLago.insert(key, poseLago);
|
||||
}
|
||||
}
|
||||
return initialGuessLago;
|
||||
}
|
||||
|
||||
} // end of namespace gtsam
|
|
@ -10,7 +10,7 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testPlanarSLAMExample_lago.cpp
|
||||
* @file LagoInitializer.h
|
||||
* @brief Initialize Pose2 in a factor graph using LAGO
|
||||
* (Linear Approximation for Graph Optimization). see papers:
|
||||
*
|
||||
|
@ -48,271 +48,50 @@ const Key keyAnchor = symbol('Z',9999999);
|
|||
noiseModel::Diagonal::shared_ptr priorOrientationNoise = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
|
||||
noiseModel::Diagonal::shared_ptr priorPose2Noise = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
|
||||
|
||||
/*
|
||||
* This function computes the cumulative orientation (without wrapping) wrt the root of a spanning tree (tree)
|
||||
/* This function computes the cumulative orientation (without wrapping) wrt the root of a spanning tree (tree)
|
||||
* for a node (nodeKey). The function starts at the nodes and moves towards the root
|
||||
* summing up the (directed) rotation measurements. Relative measurements are encoded in "deltaThetaMap"
|
||||
* The root is assumed to have orientation zero.
|
||||
*/
|
||||
double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree,
|
||||
const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap) {
|
||||
const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap);
|
||||
|
||||
double nodeTheta = 0;
|
||||
Key key_child = nodeKey; // the node
|
||||
Key key_parent = 0; // the initialization does not matter
|
||||
while(1){
|
||||
// We check if we reached the root
|
||||
if(tree.at(key_child)==key_child) // if we reached the root
|
||||
break;
|
||||
// we sum the delta theta corresponding to the edge parent->child
|
||||
nodeTheta += deltaThetaMap.at(key_child);
|
||||
// we get the parent
|
||||
key_parent = tree.at(key_child); // the parent
|
||||
// we check if we connected to some part of the tree we know
|
||||
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
|
||||
nodeTheta += thetaFromRootMap.at(key_parent);
|
||||
break;
|
||||
}
|
||||
key_child = key_parent; // we move upwards in the tree
|
||||
}
|
||||
return nodeTheta;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function computes the cumulative orientations (without wrapping)
|
||||
/* This function computes the cumulative orientations (without wrapping)
|
||||
* for all node wrt the root (root has zero orientation)
|
||||
*/
|
||||
key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
|
||||
const PredecessorMap<Key>& tree) {
|
||||
const PredecessorMap<Key>& tree);
|
||||
|
||||
key2doubleMap thetaToRootMap;
|
||||
key2doubleMap::const_iterator it;
|
||||
// for all nodes in the tree
|
||||
for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it )
|
||||
{
|
||||
// compute the orientation wrt root
|
||||
Key nodeKey = it->first;
|
||||
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
|
||||
thetaToRootMap);
|
||||
thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta));
|
||||
}
|
||||
return thetaToRootMap;
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
|
||||
/* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
|
||||
* and stores the factor slots corresponding to edges in the tree and to chordsIds wrt this tree
|
||||
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
|
||||
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
|
||||
*/
|
||||
void getSymbolicGraph(
|
||||
/*OUTPUTS*/ std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds, key2doubleMap& deltaThetaMap,
|
||||
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
||||
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g);
|
||||
|
||||
// Get keys for which you want the orientation
|
||||
size_t id=0;
|
||||
// Loop over the factors
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
|
||||
if (factor->keys().size() == 2){
|
||||
Key key1 = factor->keys()[0];
|
||||
Key key2 = factor->keys()[1];
|
||||
|
||||
// recast to a between
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between) continue;
|
||||
|
||||
// get the orientation - measured().theta();
|
||||
double deltaTheta = pose2Between->measured().theta();
|
||||
|
||||
// insert (directed) orientations in the map "deltaThetaMap"
|
||||
bool inTree=false;
|
||||
if(tree.at(key1)==key2){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
|
||||
inTree = true;
|
||||
} else if(tree.at(key2)==key1){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
|
||||
inTree = true;
|
||||
}
|
||||
|
||||
// store factor slot, distinguishing spanning tree edges from chordsIds
|
||||
if(inTree == true)
|
||||
spanningTreeIds.push_back(id);
|
||||
else // it's a chord!
|
||||
chordsIds.push_back(id);
|
||||
}
|
||||
id++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
|
||||
*/
|
||||
/* Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2> */
|
||||
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
||||
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
|
||||
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta);
|
||||
|
||||
// Get the relative rotation measurement from the between factor
|
||||
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between)
|
||||
throw std::invalid_argument("buildLinearOrientationGraph: invalid between factor!");
|
||||
deltaTheta = (Vector(1) << pose2Between->measured().theta());
|
||||
|
||||
// Retrieve the noise model for the relative rotation
|
||||
SharedNoiseModel model = pose2Between->get_noiseModel();
|
||||
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
|
||||
if (!diagonalModel)
|
||||
throw std::invalid_argument("buildLinearOrientationGraph: invalid noise model "
|
||||
"(current version assumes diagonal noise model)!");
|
||||
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
|
||||
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
|
||||
}
|
||||
|
||||
/*
|
||||
* Linear factor graph with regularized orientation measurements
|
||||
*/
|
||||
/* Linear factor graph with regularized orientation measurements */
|
||||
GaussianFactorGraph buildLinearOrientationGraph(const std::vector<size_t>& spanningTreeIds, const std::vector<size_t>& chordsIds,
|
||||
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree){
|
||||
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree);
|
||||
|
||||
GaussianFactorGraph lagoGraph;
|
||||
Vector deltaTheta;
|
||||
noiseModel::Diagonal::shared_ptr model_deltaTheta;
|
||||
/* Selects the subgraph of betweenFactors and transforms priors into between wrt a fictitious node */
|
||||
NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph);
|
||||
|
||||
Matrix I = eye(1);
|
||||
// put original measurements in the spanning tree
|
||||
BOOST_FOREACH(const size_t& factorId, spanningTreeIds){
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
|
||||
}
|
||||
// put regularized measurements in the chordsIds
|
||||
BOOST_FOREACH(const size_t& factorId, chordsIds){
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
double key1_DeltaTheta_key2 = deltaTheta(0);
|
||||
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
|
||||
double k = round(k2pi_noise/(2*M_PI));
|
||||
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*M_PI);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
|
||||
}
|
||||
// prior on the anchor orientation
|
||||
lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise));
|
||||
return lagoGraph;
|
||||
}
|
||||
/* Returns the orientations of a graph including only BetweenFactors<Pose2> */
|
||||
VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph);
|
||||
|
||||
/*
|
||||
* Selects the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
|
||||
*/
|
||||
NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){
|
||||
NonlinearFactorGraph pose2Graph;
|
||||
/* LAGO: Returns the orientations of the Pose2 in a generic factor graph */
|
||||
VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph);
|
||||
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph){
|
||||
/* Returns the values for the Pose2 in a generic factor graph */
|
||||
Values initializeLago(const NonlinearFactorGraph& graph);
|
||||
|
||||
// recast to a between on Pose2
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (pose2Between)
|
||||
pose2Graph.add(pose2Between);
|
||||
|
||||
// recast PriorFactor<Pose2> to BetweenFactor<Pose2>
|
||||
boost::shared_ptr< PriorFactor<Pose2> > pose2Prior =
|
||||
boost::dynamic_pointer_cast< PriorFactor<Pose2> >(factor);
|
||||
if (pose2Prior)
|
||||
pose2Graph.add(BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0],
|
||||
pose2Prior->prior(), pose2Prior->get_noiseModel()));
|
||||
}
|
||||
return pose2Graph;
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the orientations of a graph including only BetweenFactors<Pose2>
|
||||
*/
|
||||
VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph){
|
||||
|
||||
// Find a minimum spanning tree
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, BetweenFactor<Pose2> >(pose2Graph);
|
||||
|
||||
// Create a linear factor graph (LFG) of scalars
|
||||
key2doubleMap deltaThetaMap;
|
||||
std::vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
std::vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
|
||||
|
||||
// temporary structure to correct wraparounds along loops
|
||||
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
|
||||
|
||||
// regularize measurements and plug everything in a factor graph
|
||||
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree);
|
||||
|
||||
// Solve the LFG
|
||||
VectorValues orientationsLago = lagoGraph.optimize();
|
||||
|
||||
return orientationsLago;
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the orientations of the Pose2 in a generic factor graph
|
||||
*/
|
||||
VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose2 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
return computeLagoOrientations(pose2Graph);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the values for the Pose2 in a generic factor graph
|
||||
*/
|
||||
Values initializeLago(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose2 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
VectorValues orientationsLago = computeLagoOrientations(pose2Graph);
|
||||
|
||||
Values initialGuessLago;
|
||||
// for all nodes in the tree
|
||||
for(VectorValues::const_iterator it = orientationsLago.begin(); it != orientationsLago.end(); ++it ){
|
||||
Key key = it->first;
|
||||
Vector orientation = orientationsLago.at(key);
|
||||
Pose2 poseLago = Pose2(0.0,0.0,orientation(0));
|
||||
initialGuessLago.insert(key, poseLago);
|
||||
}
|
||||
pose2Graph.add(PriorFactor<Pose2>(keyAnchor, Pose2(), priorPose2Noise));
|
||||
GaussNewtonOptimizer pose2optimizer(pose2Graph, initialGuessLago);
|
||||
initialGuessLago = pose2optimizer.optimize();
|
||||
initialGuessLago.erase(keyAnchor); // that was fictitious
|
||||
return initialGuessLago;
|
||||
}
|
||||
|
||||
/*
|
||||
* Only corrects the orientation part in initialGuess
|
||||
*/
|
||||
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
|
||||
Values initialGuessLago;
|
||||
|
||||
// get the orientation estimates from LAGO
|
||||
VectorValues orientations = initializeOrientationsLago(graph);
|
||||
|
||||
// for all nodes in the tree
|
||||
for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){
|
||||
Key key = it->first;
|
||||
if (key != keyAnchor){
|
||||
Pose2 pose = initialGuess.at<Pose2>(key);
|
||||
Vector orientation = orientations.at(key);
|
||||
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
|
||||
initialGuessLago.insert(key, poseLago);
|
||||
}
|
||||
}
|
||||
return initialGuessLago;
|
||||
}
|
||||
/* Only corrects the orientation part in initialGuess */
|
||||
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess);
|
||||
|
||||
} // end of namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue