Merge pull request #1327 from borglab/fix/gbt-determinant
commit
a281e1a26e
|
@ -31,18 +31,37 @@ namespace gtsam {
|
|||
template class BayesTreeCliqueBase<GaussianBayesTreeClique, GaussianFactorGraph>;
|
||||
template class BayesTree<GaussianBayesTreeClique>;
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace internal
|
||||
{
|
||||
/* ************************************************************************* */
|
||||
double logDeterminant(const GaussianBayesTreeClique::shared_ptr& clique,
|
||||
double& parentSum) {
|
||||
parentSum += clique->conditional()
|
||||
->R()
|
||||
.diagonal()
|
||||
.unaryExpr([](double x) { return log(x); })
|
||||
.sum();
|
||||
return 0;
|
||||
/* ************************************************************************ */
|
||||
namespace internal {
|
||||
|
||||
/**
|
||||
* @brief Struct to help with traversing the Bayes Tree
|
||||
* for log-determinant computation.
|
||||
* Records the data which is passed to the child nodes in pre-order visit.
|
||||
*/
|
||||
struct LogDeterminantData {
|
||||
// Use pointer so we can get the full result after tree traversal
|
||||
double* logDet;
|
||||
LogDeterminantData(double* logDet)
|
||||
: logDet(logDet) {}
|
||||
};
|
||||
/* ************************************************************************ */
|
||||
LogDeterminantData& logDeterminant(
|
||||
const GaussianBayesTreeClique::shared_ptr& clique,
|
||||
LogDeterminantData& parentSum) {
|
||||
auto cg = clique->conditional();
|
||||
double logDet;
|
||||
if (cg->get_model()) {
|
||||
Vector diag = cg->R().diagonal();
|
||||
cg->get_model()->whitenInPlace(diag);
|
||||
logDet = diag.unaryExpr([](double x) { return log(x); }).sum();
|
||||
} else {
|
||||
logDet =
|
||||
cg->R().diagonal().unaryExpr([](double x) { return log(x); }).sum();
|
||||
}
|
||||
// Add the current clique's log-determinant to the overall sum
|
||||
(*parentSum.logDet) += logDet;
|
||||
return parentSum;
|
||||
}
|
||||
} // namespace internal
|
||||
|
||||
|
@ -87,7 +106,14 @@ namespace gtsam {
|
|||
return 0.0;
|
||||
} else {
|
||||
double sum = 0.0;
|
||||
treeTraversal::DepthFirstForest(*this, sum, internal::logDeterminant);
|
||||
// Store the log-determinant in this struct.
|
||||
internal::LogDeterminantData rootData(&sum);
|
||||
// No need to do anything for post-operation.
|
||||
treeTraversal::no_op visitorPost;
|
||||
// Limits OpenMP threads if we're mixing TBB and OpenMP
|
||||
TbbOpenMPMixedScope threadLimiter;
|
||||
// Traverse the GaussianBayesTree depth first and call logDeterminant on each node.
|
||||
treeTraversal::DepthFirstForestParallel(*this, rootData, internal::logDeterminant, visitorPost);
|
||||
return sum;
|
||||
}
|
||||
}
|
||||
|
@ -106,7 +132,3 @@ namespace gtsam {
|
|||
|
||||
|
||||
} // \namespace gtsam
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -15,18 +15,18 @@
|
|||
* @author Kai Ni
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/GaussianJunctionTree.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/assign/std/list.hpp> // for operator +=
|
||||
#include <boost/assign/std/set.hpp> // for operator +=
|
||||
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/linear/GaussianJunctionTree.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <iostream>
|
||||
|
||||
using namespace boost::assign;
|
||||
using namespace std::placeholders;
|
||||
|
@ -321,6 +321,35 @@ TEST(GaussianBayesTree, determinant_and_smallestEigenvalue) {
|
|||
EXPECT_DOUBLES_EQUAL(expectedDeterminant,actualDeterminant,expectedDeterminant*1e-6);// relative tolerance
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// Test to expose bug in GaussianBayesTree::logDeterminant.
|
||||
TEST(GaussianBayesTree, LogDeterminant) {
|
||||
using symbol_shorthand::L;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Create a factor graph that will result in
|
||||
// a bayes tree with at least 2 nodes.
|
||||
GaussianFactorGraph fg;
|
||||
Key x1 = X(1), x2 = X(2), l1 = L(1);
|
||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||
fg += JacobianFactor(x1, 10 * I_2x2, -1.0 * Vector2::Ones(), unit2);
|
||||
fg += JacobianFactor(x2, 10 * I_2x2, x1, -10 * I_2x2, Vector2(2.0, -1.0),
|
||||
unit2);
|
||||
fg += JacobianFactor(l1, 5 * I_2x2, x1, -5 * I_2x2, Vector2(0.0, 1.0), unit2);
|
||||
fg +=
|
||||
JacobianFactor(x2, -5 * I_2x2, l1, 5 * I_2x2, Vector2(-1.0, 1.5), unit2);
|
||||
fg += JacobianFactor(x3, 10 * I_2x2, x2, -10 * I_2x2, Vector2(2.0, -1.0),
|
||||
unit2);
|
||||
fg += JacobianFactor(x3, 10 * I_2x2, -1.0 * Vector2::Ones(), unit2);
|
||||
|
||||
// create corresponding Bayes net and Bayes tree:
|
||||
boost::shared_ptr<gtsam::GaussianBayesNet> bn = fg.eliminateSequential();
|
||||
boost::shared_ptr<gtsam::GaussianBayesTree> bt = fg.eliminateMultifrontal();
|
||||
|
||||
// Test logDeterminant
|
||||
EXPECT_DOUBLES_EQUAL(bn->logDeterminant(), bt->logDeterminant(), 1e-9);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue