finish up script

release/4.3a0
Varun Agrawal 2025-02-08 22:57:46 -05:00
parent 085482c2ea
commit 9efd9fc7b1
1 changed files with 224 additions and 0 deletions

View File

@ -86,10 +86,234 @@ class City10000Dataset:
yield None, None
class Experiment:
"""Experiment Class"""
def __init__(self,
filename: str,
marginal_threshold: float = 0.9999,
max_loop_count: int = 8000,
update_frequency: int = 3,
max_num_hypotheses: int = 10,
relinearization_frequency: int = 10):
self.dataset_ = City10000Dataset(filename)
self.max_loop_count = max_loop_count
self.update_frequency = update_frequency
self.max_num_hypotheses = max_num_hypotheses
self.relinearization_frequency = relinearization_frequency
self.smoother_ = HybridSmoother(marginal_threshold)
self.new_factors_ = HybridNonlinearFactorGraph()
self.all_factors_ = HybridNonlinearFactorGraph()
self.initial_ = Values()
def hybrid_loop_closure_factor(self, loop_counter, key_s, key_t,
measurement: Pose2):
"""
Create a hybrid loop closure factor where
0 - loose noise model and 1 - loop noise model.
"""
l = (L(loop_counter), 2)
f0 = BetweenFactorPose2(X(key_s), X(key_t), measurement,
open_loop_model)
f1 = BetweenFactorPose2(X(key_s), X(key_t), measurement,
pose_noise_model)
factors = [(f0, open_loop_constant), (f1, pose_noise_constant)]
mixture_factor = HybridNonlinearFactor(l, factors)
return mixture_factor
def hybrid_odometry_factor(self, key_s, key_t, m,
pose_array) -> HybridNonlinearFactor:
"""Create hybrid odometry factor with discrete measurement choices."""
f0 = BetweenFactorPose2(X(key_s), X(key_t), pose_array[0],
pose_noise_model)
f1 = BetweenFactorPose2(X(key_s), X(key_t), pose_array[1],
pose_noise_model)
factors = [(f0, pose_noise_constant), (f1, pose_noise_constant)]
mixture_factor = HybridNonlinearFactor(m, factors)
return mixture_factor
def smoother_update(self, max_num_hypotheses) -> float:
"""Perform smoother update and optimize the graph."""
print(f"Smoother update: {self.new_factors_.size()}")
before_update = time.time()
linearized = self.new_factors_.linearize(self.initial_)
self.smoother_.update(linearized, max_num_hypotheses)
self.all_factors_.push_back(self.new_factors_)
self.new_factors_.resize(0)
after_update = time.time()
return after_update - before_update
def reInitialize(self) -> float:
"""Re-linearize, solve ALL, and re-initialize smoother."""
print(f"================= Re-Initialize: {self.all_factors_.size()}")
before_update = time.time()
self.all_factors_ = self.all_factors_.restrict(
self.smoother_.fixedValues())
linearized = self.all_factors_.linearize(self.initial_)
bayesNet = linearized.eliminateSequential()
delta: HybridValues = bayesNet.optimize()
self.initial_ = self.initial_.retract(delta.continuous())
self.smoother_.reInitialize(bayesNet)
after_update = time.time()
print(f"Took {after_update - before_update} seconds.")
return after_update - before_update
def run(self):
"""Run the main experiment with a given max_loop_count."""
# Initialize local variables
discrete_count = 0
index = 0
loop_count = 0
update_count = 0
time_list = [] #list[(int, float)]
# Set up initial prior
priorPose = Pose2(0, 0, 0)
self.self.initial_.insert(X(0), priorPose)
self.new_factors_.push_back(
PriorFactorPose2(X(0), priorPose, prior_noise_model))
# Initial update
update_time = self.smoother_update(self.max_num_hypotheses)
smoother_update_times = [] # list[(int, float)]
smoother_update_times.append((index, update_time))
# Flag to decide whether to run smoother update
number_of_hybrid_factors = 0
# Start main loop
result = Values()
start_time = time.time()
while index < self.max_loop_count:
pose_array, keys = self.dataset_.next()
if pose_array is None:
break
key_s = keys[0]
key_t = keys[1]
num_measurements = len(pose_array)
# Take the first one as the initial estimate
odom_pose = pose_array[0]
if key_s == key_t - 1:
# Odometry factor
if num_measurements > 1:
# Add hybrid factor
m = (M(discrete_count), num_measurements)
mixture_factor = self.hybrid_odometry_factor(
key_s, key_t, m, pose_array)
self.new_factors_.append(mixture_factor)
discrete_count += 1
number_of_hybrid_factors += 1
print(f"mixture_factor: {key_s} {key_t}")
else:
self.new_factors_.add(
BetweenFactorPose2(X(key_s), X(key_t), odom_pose,
pose_noise_model))
# Insert next pose initial guess
self.initial_.insert(
X(key_t),
self.initial_.atPose2(X(key_s)) * odom_pose)
else:
# Loop closure
loop_factor = self.hybrid_loop_closure_factor(
loop_count, key_s, key_t, odom_pose)
# print loop closure event keys:
print(f"Loop closure: {key_s} {key_t}")
self.new_factors_.add(loop_factor)
number_of_hybrid_factors += 1
loop_count += 1
if number_of_hybrid_factors >= self.update_frequency:
update_time = self.smoother_update(self.max_num_hypotheses)
smoother_update_times.append((index, update_time))
number_of_hybrid_factors = 0
update_count += 1
if update_count % self.relinearization_frequency == 0:
self.reInitialize()
# Record timing for odometry edges only
if key_s == key_t - 1:
cur_time = time.time()
time_list.append(cur_time - start_time)
# Print some status every 100 steps
if index % 100 == 0:
print(f"Index: {index}")
if len(time_list) != 0:
print(f"Accumulate time: {time_list[-1]} seconds")
index += 1
# Final update
update_time = self.smoother_update(self.max_num_hypotheses)
smoother_update_times.append((index, update_time))
# Final optimize
delta = self.smoother_.optimize()
result.insert_or_assign(self.initial_.retract(delta.continuous()))
print(f"Final error: {self.smoother_.hybridBayesNet().error(delta)}")
end_time = time.time()
total_time = end_time - start_time
print(f"Total time: {total_time} seconds")
# Write results to file
self.write_result(result, key_t + 1, "Hybrid_City10000.txt")
# Write timing info to file
self.write_timing_info(time_list=time_list)
def write_result(self, result, num_poses, filename="Hybrid_city10000.txt"):
"""
Write the result of optimization to file.
Args:
result (Values): he Values object with the final result.
num_poses (int): The number of poses to write to the file.
filename (str): The file name to save the result to.
"""
with open(filename, 'w') as outfile:
for i in range(num_poses):
out_pose = result.atPose2(X(i))
outfile.write(
f"{out_pose.x()} {out_pose.y()} {out_pose.theta()}\n")
print(f"Output written to {filename}")
def write_timing_info(self,
time_list,
time_filename="Hybrid_City10000_time.txt"):
"""Log all the timing information to a file"""
with open(time_filename, 'w') as out_file_time:
for acc_time in time_list:
out_file_time.write(f"{acc_time}\n")
print(f"Output {time_filename} file.")
def main():
"""Main runner"""
args = parse_arguments()
experiment = Experiment(gtsam.findExampleDataFile(args.data_file))
experiment.run()
if __name__ == "__main__":
main()