320 lines
11 KiB
Python
320 lines
11 KiB
Python
"""
|
|
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
|
Atlanta, Georgia 30332-0415
|
|
All Rights Reserved
|
|
|
|
See LICENSE for the license information
|
|
|
|
Script for running hybrid estimator on the City10000 dataset.
|
|
|
|
Author: Varun Agrawal
|
|
"""
|
|
|
|
import argparse
|
|
import time
|
|
|
|
import numpy as np
|
|
from gtsam.symbol_shorthand import L, M, X
|
|
|
|
import gtsam
|
|
from gtsam import (BetweenFactorPose2, HybridNonlinearFactor,
|
|
HybridNonlinearFactorGraph, HybridSmoother, HybridValues,
|
|
Pose2, PriorFactorPose2, Values)
|
|
|
|
|
|
def parse_arguments():
|
|
"""Parse command line arguments"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("data_file",
|
|
help="The path to the City10000 data file",
|
|
default="T1_city10000_04.txt")
|
|
return parser.parse_args()
|
|
|
|
|
|
# Noise models
|
|
open_loop_model = gtsam.noiseModel.Diagonal.Sigmas(np.ones(3) * 10)
|
|
open_loop_constant = open_loop_model.negLogConstant()
|
|
|
|
prior_noise_model = gtsam.noiseModel.Diagonal.Sigmas(
|
|
np.asarray([0.0001, 0.0001, 0.0001]))
|
|
|
|
pose_noise_model = gtsam.noiseModel.Diagonal.Sigmas(
|
|
np.asarray([1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0]))
|
|
pose_noise_constant = pose_noise_model.negLogConstant()
|
|
|
|
|
|
class City10000Dataset:
|
|
"""Class representing the City10000 dataset."""
|
|
|
|
def __init__(self, filename):
|
|
self.filename_ = filename
|
|
try:
|
|
f = open(self.filename_, 'r')
|
|
f.close()
|
|
except OSError:
|
|
print(f"Failed to open file: {self.filename_}")
|
|
|
|
def read_line(self, line: str, delimiter: str = " "):
|
|
"""Read a `line` from the dataset, separated by the `delimiter`."""
|
|
return line.split(delimiter)
|
|
|
|
def parse_line(self, line: str) -> tuple[list[Pose2], tuple[int, int]]:
|
|
"""Parse line from file"""
|
|
parts = self.read_line(line)
|
|
|
|
key_s = int(parts[1])
|
|
key_t = int(parts[3])
|
|
|
|
num_measurements = int(parts[5])
|
|
pose_array = [Pose2()] * num_measurements
|
|
|
|
for i in range(num_measurements):
|
|
x = float(parts[6 + 3 * i])
|
|
y = float(parts[7 + 3 * i])
|
|
rad = float(parts[8 + 3 * i])
|
|
pose_array[i] = Pose2(x, y, rad)
|
|
|
|
return pose_array, (key_s, key_t)
|
|
|
|
def next(self):
|
|
"""Read and parse the next line."""
|
|
with open(self.filename_, 'w') as f:
|
|
line = f.readline()
|
|
if line:
|
|
yield self.parse_line(line)
|
|
else:
|
|
yield None, None
|
|
|
|
|
|
class Experiment:
|
|
"""Experiment Class"""
|
|
|
|
def __init__(self,
|
|
filename: str,
|
|
marginal_threshold: float = 0.9999,
|
|
max_loop_count: int = 8000,
|
|
update_frequency: int = 3,
|
|
max_num_hypotheses: int = 10,
|
|
relinearization_frequency: int = 10):
|
|
self.dataset_ = City10000Dataset(filename)
|
|
self.max_loop_count = max_loop_count
|
|
self.update_frequency = update_frequency
|
|
self.max_num_hypotheses = max_num_hypotheses
|
|
self.relinearization_frequency = relinearization_frequency
|
|
|
|
self.smoother_ = HybridSmoother(marginal_threshold)
|
|
self.new_factors_ = HybridNonlinearFactorGraph()
|
|
self.all_factors_ = HybridNonlinearFactorGraph()
|
|
self.initial_ = Values()
|
|
|
|
def hybrid_loop_closure_factor(self, loop_counter, key_s, key_t,
|
|
measurement: Pose2):
|
|
"""
|
|
Create a hybrid loop closure factor where
|
|
0 - loose noise model and 1 - loop noise model.
|
|
"""
|
|
l = (L(loop_counter), 2)
|
|
f0 = BetweenFactorPose2(X(key_s), X(key_t), measurement,
|
|
open_loop_model)
|
|
f1 = BetweenFactorPose2(X(key_s), X(key_t), measurement,
|
|
pose_noise_model)
|
|
factors = [(f0, open_loop_constant), (f1, pose_noise_constant)]
|
|
mixture_factor = HybridNonlinearFactor(l, factors)
|
|
return mixture_factor
|
|
|
|
def hybrid_odometry_factor(self, key_s, key_t, m,
|
|
pose_array) -> HybridNonlinearFactor:
|
|
"""Create hybrid odometry factor with discrete measurement choices."""
|
|
f0 = BetweenFactorPose2(X(key_s), X(key_t), pose_array[0],
|
|
pose_noise_model)
|
|
f1 = BetweenFactorPose2(X(key_s), X(key_t), pose_array[1],
|
|
pose_noise_model)
|
|
|
|
factors = [(f0, pose_noise_constant), (f1, pose_noise_constant)]
|
|
mixture_factor = HybridNonlinearFactor(m, factors)
|
|
|
|
return mixture_factor
|
|
|
|
def smoother_update(self, max_num_hypotheses) -> float:
|
|
"""Perform smoother update and optimize the graph."""
|
|
print(f"Smoother update: {self.new_factors_.size()}")
|
|
before_update = time.time()
|
|
linearized = self.new_factors_.linearize(self.initial_)
|
|
self.smoother_.update(linearized, max_num_hypotheses)
|
|
self.all_factors_.push_back(self.new_factors_)
|
|
self.new_factors_.resize(0)
|
|
after_update = time.time()
|
|
return after_update - before_update
|
|
|
|
def reInitialize(self) -> float:
|
|
"""Re-linearize, solve ALL, and re-initialize smoother."""
|
|
print(f"================= Re-Initialize: {self.all_factors_.size()}")
|
|
before_update = time.time()
|
|
self.all_factors_ = self.all_factors_.restrict(
|
|
self.smoother_.fixedValues())
|
|
linearized = self.all_factors_.linearize(self.initial_)
|
|
bayesNet = linearized.eliminateSequential()
|
|
delta: HybridValues = bayesNet.optimize()
|
|
self.initial_ = self.initial_.retract(delta.continuous())
|
|
self.smoother_.reInitialize(bayesNet)
|
|
after_update = time.time()
|
|
print(f"Took {after_update - before_update} seconds.")
|
|
return after_update - before_update
|
|
|
|
def run(self):
|
|
"""Run the main experiment with a given max_loop_count."""
|
|
# Initialize local variables
|
|
discrete_count = 0
|
|
index = 0
|
|
loop_count = 0
|
|
update_count = 0
|
|
|
|
time_list = [] #list[(int, float)]
|
|
|
|
# Set up initial prior
|
|
priorPose = Pose2(0, 0, 0)
|
|
self.self.initial_.insert(X(0), priorPose)
|
|
self.new_factors_.push_back(
|
|
PriorFactorPose2(X(0), priorPose, prior_noise_model))
|
|
|
|
# Initial update
|
|
update_time = self.smoother_update(self.max_num_hypotheses)
|
|
smoother_update_times = [] # list[(int, float)]
|
|
smoother_update_times.append((index, update_time))
|
|
|
|
# Flag to decide whether to run smoother update
|
|
number_of_hybrid_factors = 0
|
|
|
|
# Start main loop
|
|
result = Values()
|
|
start_time = time.time()
|
|
|
|
while index < self.max_loop_count:
|
|
pose_array, keys = self.dataset_.next()
|
|
if pose_array is None:
|
|
break
|
|
key_s = keys[0]
|
|
key_t = keys[1]
|
|
|
|
num_measurements = len(pose_array)
|
|
|
|
# Take the first one as the initial estimate
|
|
odom_pose = pose_array[0]
|
|
if key_s == key_t - 1:
|
|
# Odometry factor
|
|
if num_measurements > 1:
|
|
# Add hybrid factor
|
|
m = (M(discrete_count), num_measurements)
|
|
mixture_factor = self.hybrid_odometry_factor(
|
|
key_s, key_t, m, pose_array)
|
|
self.new_factors_.append(mixture_factor)
|
|
|
|
discrete_count += 1
|
|
number_of_hybrid_factors += 1
|
|
print(f"mixture_factor: {key_s} {key_t}")
|
|
else:
|
|
self.new_factors_.add(
|
|
BetweenFactorPose2(X(key_s), X(key_t), odom_pose,
|
|
pose_noise_model))
|
|
|
|
# Insert next pose initial guess
|
|
self.initial_.insert(
|
|
X(key_t),
|
|
self.initial_.atPose2(X(key_s)) * odom_pose)
|
|
else:
|
|
# Loop closure
|
|
loop_factor = self.hybrid_loop_closure_factor(
|
|
loop_count, key_s, key_t, odom_pose)
|
|
|
|
# print loop closure event keys:
|
|
print(f"Loop closure: {key_s} {key_t}")
|
|
self.new_factors_.add(loop_factor)
|
|
number_of_hybrid_factors += 1
|
|
loop_count += 1
|
|
|
|
if number_of_hybrid_factors >= self.update_frequency:
|
|
update_time = self.smoother_update(self.max_num_hypotheses)
|
|
smoother_update_times.append((index, update_time))
|
|
number_of_hybrid_factors = 0
|
|
update_count += 1
|
|
|
|
if update_count % self.relinearization_frequency == 0:
|
|
self.reInitialize()
|
|
|
|
# Record timing for odometry edges only
|
|
if key_s == key_t - 1:
|
|
cur_time = time.time()
|
|
time_list.append(cur_time - start_time)
|
|
|
|
# Print some status every 100 steps
|
|
if index % 100 == 0:
|
|
print(f"Index: {index}")
|
|
|
|
if len(time_list) != 0:
|
|
print(f"Accumulate time: {time_list[-1]} seconds")
|
|
|
|
index += 1
|
|
|
|
# Final update
|
|
update_time = self.smoother_update(self.max_num_hypotheses)
|
|
smoother_update_times.append((index, update_time))
|
|
|
|
# Final optimize
|
|
delta = self.smoother_.optimize()
|
|
|
|
result.insert_or_assign(self.initial_.retract(delta.continuous()))
|
|
|
|
print(f"Final error: {self.smoother_.hybridBayesNet().error(delta)}")
|
|
|
|
end_time = time.time()
|
|
total_time = end_time - start_time
|
|
print(f"Total time: {total_time} seconds")
|
|
|
|
# Write results to file
|
|
self.write_result(result, key_t + 1, "Hybrid_City10000.txt")
|
|
|
|
# Write timing info to file
|
|
self.write_timing_info(time_list=time_list)
|
|
|
|
def write_result(self, result, num_poses, filename="Hybrid_city10000.txt"):
|
|
"""
|
|
Write the result of optimization to file.
|
|
|
|
Args:
|
|
result (Values): he Values object with the final result.
|
|
num_poses (int): The number of poses to write to the file.
|
|
filename (str): The file name to save the result to.
|
|
"""
|
|
with open(filename, 'w') as outfile:
|
|
|
|
for i in range(num_poses):
|
|
out_pose = result.atPose2(X(i))
|
|
outfile.write(
|
|
f"{out_pose.x()} {out_pose.y()} {out_pose.theta()}\n")
|
|
|
|
print(f"Output written to {filename}")
|
|
|
|
def write_timing_info(self,
|
|
time_list,
|
|
time_filename="Hybrid_City10000_time.txt"):
|
|
"""Log all the timing information to a file"""
|
|
|
|
with open(time_filename, 'w') as out_file_time:
|
|
|
|
for acc_time in time_list:
|
|
out_file_time.write(f"{acc_time}\n")
|
|
|
|
print(f"Output {time_filename} file.")
|
|
|
|
|
|
def main():
|
|
"""Main runner"""
|
|
args = parse_arguments()
|
|
|
|
experiment = Experiment(gtsam.findExampleDataFile(args.data_file))
|
|
experiment.run()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|