Updated elaboratePoint2KalmanFilter.cpp example and easyPoint2KF bugfix

release/4.3a0
mkielo3 2025-02-20 21:19:18 +00:00
parent 6b73f3efdf
commit 9e676b215e
3 changed files with 123 additions and 96 deletions

View File

@ -1,7 +1,3 @@
set (excluded_examples
"elaboratePoint2KalmanFilter.cpp"
)
# if GTSAM_ENABLE_BOOST_SERIALIZATION is not set then SolverComparer.cpp will not compile
if (NOT GTSAM_ENABLE_BOOST_SERIALIZATION)
list (APPEND excluded_examples

View File

@ -100,7 +100,7 @@ int main() {
Symbol x2('x',2);
difference = Point2(1,0);
BetweenFactor<Point2> factor3(x1, x2, difference, Q);
Point2 x2_predict = ekf.predict(factor1);
Point2 x2_predict = ekf.predict(factor3);
traits<Point2>::Print(x2_predict, "X2 Predict");
// Update

View File

@ -22,12 +22,12 @@
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
//#include <gtsam/nonlinear/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/base/Vector.h>
#include <cassert>
@ -55,17 +55,21 @@ int main() {
// Create new state variable
Symbol x0('x',0);
ordering->insert(x0, 0);
ordering->push_back(x0);
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
// This is equivalent to x_0 and P_0
Point2 x_initial(0,0);
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
PriorFactor<Point2> factor1(x0, x_initial, P_initial);
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
// Create a JacobianFactor directly - this represents the prior constraint on x0
JacobianFactor::shared_ptr factor1(
new JacobianFactor(x0, P_initial->R(), Vector::Zero(2),
noiseModel::Unit::Create(2)));
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x0, x_initial);
linearFactorGraph->push_back(factor1.linearize(linearizationPoints, *ordering));
linearFactorGraph->push_back(factor1);
// Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
// In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
@ -88,14 +92,14 @@ int main() {
// = (F - I)*x_{t} + B*u_{t}
// = B*u_{t} (for our example)
Symbol x1('x',1);
ordering->insert(x1, 1);
ordering->push_back(x1);
Point2 difference(1,0);
SharedDiagonal Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
SharedDiagonal Q = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
BetweenFactor<Point2> factor2(x0, x1, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x1, x_initial);
linearFactorGraph->push_back(factor2.linearize(linearizationPoints, *ordering));
linearFactorGraph->push_back(factor2.linearize(linearizationPoints));
// We have now made the small factor graph f1-(x0)-f2-(x1)
// where factor f1 is just the prior from time t0, P(x0)
@ -110,13 +114,13 @@ int main() {
// system, the initial estimate is not important.
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver0(*linearFactorGraph);
GaussianBayesNet::shared_ptr linearBayesNet = solver0.eliminate();
GaussianBayesNet::shared_ptr bayesNet = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& x1Conditional = bayesNet->back(); // This should be P(x1)
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = optimize(*linearBayesNet);
Point2 x1_predict = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_predict.print("X1 Predict");
VectorValues result = bayesNet->optimize();
Point2 x1_predict = linearizationPoints.at<Point2>(x1) + Point2(result[x1]);
traits<Point2>::Print(x1_predict, "X1 Predict");
// Update the new linearization point to the new estimate
linearizationPoints.update(x1, x1_predict);
@ -139,14 +143,24 @@ int main() {
// -> b'' = b' - F(dx1' - dx1'')
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
const GaussianConditional::shared_ptr& cg0 = linearBayesNet->back();
assert(cg0->nrFrontals() == 1);
assert(cg0->nrParents() == 0);
linearFactorGraph->add(0, cg0->R(), cg0->d() - cg0->R()*result[ordering->at(x1)], noiseModel::Diagonal::Sigmas(cg0->get_sigmas(), true));
JacobianFactor::shared_ptr newPrior(new JacobianFactor(
x1,
x1Conditional->R(),
x1Conditional->d() - x1Conditional->R() * result[x1],
x1Conditional->get_model()));
// Create the desired ordering
// Ensure correct number of rows, that there is one variable, and that variable is x1
assert(newPrior->rows() == x1Conditional->R().rows());
assert(newPrior->size() == 1);
assert(*newPrior->begin() == x1);
// Create a new, empty graph and add the new prior
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
linearFactorGraph->push_back(newPrior);
// Reset ordering for the next step
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
ordering->push_back(x1);
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1)
@ -169,10 +183,10 @@ int main() {
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
Point2 z1(1.0, 0.0);
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
PriorFactor<Point2> factor4(x1, z1, R1);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor4.linearize(linearizationPoints, *ordering));
linearFactorGraph->push_back(factor4.linearize(linearizationPoints));
// We have now made the small factor graph f3-(x1)-f4
// where factor f3 is the prior from previous time ( P(x1) )
@ -182,13 +196,13 @@ int main() {
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver1(*linearFactorGraph);
linearBayesNet = solver1.eliminate();
GaussianBayesNet::shared_ptr updatedBayesNet = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& updatedConditional = updatedBayesNet->back();
// Extract the current estimate of x1 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x1_update = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_update.print("X1 Update");
VectorValues updatedResult = updatedBayesNet->optimize();
Point2 x1_update = linearizationPoints.at<Point2>(x1) + Point2(updatedResult[x1]);
traits<Point2>::Print(x1_update, "X1 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x1, x1_update);
@ -205,65 +219,76 @@ int main() {
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration
const GaussianConditional::shared_ptr& cg1 = linearBayesNet->back();
assert(cg1->nrFrontals() == 1);
assert(cg1->nrParents() == 0);
JacobianFactor tmpPrior1 = JacobianFactor(*cg1);
linearFactorGraph->add(0, tmpPrior1.getA(tmpPrior1.begin()), tmpPrior1.getb() - tmpPrior1.getA(tmpPrior1.begin()) * result[ordering->at(x1)], tmpPrior1.get_model());
JacobianFactor::shared_ptr updatedPrior(new JacobianFactor(
x1,
updatedConditional->R(),
updatedConditional->d() - updatedConditional->R() * updatedResult[x1],
updatedConditional->get_model()));
// Ensure correct number of rows, that there is one variable, and that variable is x1
assert(updatedPrior->rows() == updatedConditional->R().rows());
assert(updatedPrior->size() == 1);
assert(*updatedPrior->begin() == x1);
linearFactorGraph->push_back(updatedPrior);
// Create a key for the new state
Symbol x2('x',2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
ordering->insert(x2, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) <, 0.1, 0.1));
BetweenFactor<Point2> factor6(x1, x2, difference, Q);
ordering->push_back(x1);
ordering->push_back(x2);
// Create a nonlinear factor describing the motion model (moving right again)
Point2 difference2(1,0);
SharedDiagonal Q2 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
BetweenFactor<Point2> factor6(x1, x2, difference2, Q2);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x2, x1_update);
linearFactorGraph->push_back(factor6.linearize(linearizationPoints, *ordering));
linearFactorGraph->push_back(factor6.linearize(linearizationPoints));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver2(*linearFactorGraph);
linearBayesNet = solver2.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_predict = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_predict.print("X2 Predict");
GaussianBayesNet::shared_ptr predictionBayesNet2 = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& x2Conditional = predictionBayesNet2->back();
// Extract the predicted state
VectorValues prediction2Result = predictionBayesNet2->optimize();
Point2 x2_predict = linearizationPoints.at<Point2>(x2) + Point2(prediction2Result[x2]);
traits<Point2>::Print(x2_predict, "X2 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg2 = linearBayesNet->back();
assert(cg2->nrFrontals() == 1);
assert(cg2->nrParents() == 0);
JacobianFactor tmpPrior2 = JacobianFactor(*cg2);
linearFactorGraph->add(0, tmpPrior2.getA(tmpPrior2.begin()), tmpPrior2.getb() - tmpPrior2.getA(tmpPrior2.begin()) * result[ordering->at(x2)], tmpPrior2.get_model());
JacobianFactor::shared_ptr prior2(new JacobianFactor(
x2,
x2Conditional->R(),
x2Conditional->d() - x2Conditional->R() * prediction2Result[x2],
x2Conditional->get_model()));
assert(prior2->rows() == x2Conditional->R().rows());
assert(prior2->size() == 1);
assert(*prior2->begin() == x2);
linearFactorGraph->push_back(prior2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
ordering->push_back(x2);
// And update using z2 ...
Point2 z2(2.0, 0.0);
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
PriorFactor<Point2> factor8(x2, z2, R2);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor8.linearize(linearizationPoints, *ordering));
linearFactorGraph->push_back(factor8.linearize(linearizationPoints));
// We have now made the small factor graph f7-(x2)-f8
// where factor f7 is the prior from previous time ( P(x2) )
@ -273,13 +298,13 @@ int main() {
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver3(*linearFactorGraph);
linearBayesNet = solver3.eliminate();
GaussianBayesNet::shared_ptr updatedBayesNet2 = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& updatedConditional2 = updatedBayesNet2->back();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_update = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_update.print("X2 Update");
VectorValues updatedResult2 = updatedBayesNet2->optimize();
Point2 x2_update = linearizationPoints.at<Point2>(x2) + Point2(updatedResult2[x2]);
traits<Point2>::Print(x2_update, "X2 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_update);
@ -294,37 +319,41 @@ int main() {
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg3 = linearBayesNet->back();
assert(cg3->nrFrontals() == 1);
assert(cg3->nrParents() == 0);
JacobianFactor tmpPrior3 = JacobianFactor(*cg3);
linearFactorGraph->add(0, tmpPrior3.getA(tmpPrior3.begin()), tmpPrior3.getb() - tmpPrior3.getA(tmpPrior3.begin()) * result[ordering->at(x2)], tmpPrior3.get_model());
Matrix updatedR2 = updatedConditional2->R();
Vector updatedD2 = updatedConditional2->d() - updatedR2 * updatedResult2[x2];
JacobianFactor::shared_ptr updatedPrior2(new JacobianFactor(
x2,
updatedR2,
updatedD2,
updatedConditional2->get_model()));
linearFactorGraph->push_back(updatedPrior2);
// Create a key for the new state
Symbol x3('x',3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
ordering->insert(x3, 1);
ordering->push_back(x2);
ordering->push_back(x3);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor10(x2, x3, difference, Q);
Point2 difference3(1,0);
SharedDiagonal Q3 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
BetweenFactor<Point2> factor10(x2, x3, difference3, Q3);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x3, x2_update);
linearFactorGraph->push_back(factor10.linearize(linearizationPoints, *ordering));
linearFactorGraph->push_back(factor10.linearize(linearizationPoints));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver4(*linearFactorGraph);
linearBayesNet = solver4.eliminate();
GaussianBayesNet::shared_ptr predictionBayesNet3 = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& x3Conditional = predictionBayesNet3->back();
// Extract the current estimate of x3 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_predict = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_predict.print("X3 Predict");
VectorValues prediction3Result = predictionBayesNet3->optimize();
Point2 x3_predict = linearizationPoints.at<Point2>(x3) + Point2(prediction3Result[x3]);
traits<Point2>::Print(x3_predict, "X3 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_predict);
@ -336,23 +365,25 @@ int main() {
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg4 = linearBayesNet->back();
assert(cg4->nrFrontals() == 1);
assert(cg4->nrParents() == 0);
JacobianFactor tmpPrior4 = JacobianFactor(*cg4);
linearFactorGraph->add(0, tmpPrior4.getA(tmpPrior4.begin()), tmpPrior4.getb() - tmpPrior4.getA(tmpPrior4.begin()) * result[ordering->at(x3)], tmpPrior4.get_model());
JacobianFactor::shared_ptr prior3(new JacobianFactor(
x3,
x3Conditional->R(),
x3Conditional->d() - x3Conditional->R() * prediction3Result[x3],
x3Conditional->get_model()));
linearFactorGraph->push_back(prior3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x3, 0);
ordering->push_back(x3);
// And update using z3 ...
Point2 z3(3.0, 0.0);
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
PriorFactor<Point2> factor12(x3, z3, R3);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor12.linearize(linearizationPoints, *ordering));
linearFactorGraph->push_back(factor12.linearize(linearizationPoints));
// We have now made the small factor graph f11-(x3)-f12
// where factor f11 is the prior from previous time ( P(x3) )
@ -362,13 +393,13 @@ int main() {
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver5(*linearFactorGraph);
linearBayesNet = solver5.eliminate();
GaussianBayesNet::shared_ptr updatedBayesNet3 = linearFactorGraph->eliminateSequential(*ordering);
const GaussianConditional::shared_ptr& updatedConditional3 = updatedBayesNet3->back();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_update = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_update.print("X3 Update");
VectorValues updatedResult3 = updatedBayesNet3->optimize();
Point2 x3_update = linearizationPoints.at<Point2>(x3) + Point2(updatedResult3[x3]);
traits<Point2>::Print(x3_update, "X3 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_update);